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Abstract:  Binary arithmetic is one of the most primitive and most commonly used applications in microprocessors, digital signal processors 

etc. But binary arithmetic is unable to fulfill the requirement of fractional terms thus causing inexact results. And in commercial applications 

fractional terms are common and efficient output is must requirement so we use Binary Coded Decimal (BCD) adders. Because they contain two 

binary adders and a carry look ahead adder for corrective logic, traditional BCD adders are slow. Thus, new high-speed BCD adders that employ 

a single binary adder have been devised and built here. The suggested BCD adder lowers the number of binary adders, which lowers the BCD 

adder's propagation time. Utilizing a Carry Select Adder, a 64-bit BCD adder was also implemented. Vivado 2018.2 version is used to design 

and implement the suggested BCD adders using Verilog. The results of conventional BCD adders are compared with proposed BCD adders. The 

experimental results show that the proposed BCD adders outperform the traditional BCD adders by 15.28%. 

 

IndexTerms - BCD Adder, Carry select adder , Multiplexer, FPGA implementation. 

I. INTRODUCTION 

In our day-to-day life electronics play a important role. Back in 90’s the technology evolution started and now in 21st century, 

the technology has been updated far ahead than expected. Once there used to be computer with big size of machines like CPU, 

Monitor, hard disks, floppy drives, etc. but now laptops, tabs, etc are in use. The approach for latest and simple use electronics is 

very much needed in present atmosphere. One such improvement is required in adders, amplifiers, transmitters, etc is needed so 

the design engineers are trying their best to decrease the area of the device and as well as to decrease the delay for the operation of 

the device. Now, the BCD adder is used by both computers and calculators. The BCD-Adder is used by calculators and computers 

that perform arithmetic operations directly in the decimal number system. The BCD-Adder accepts binary numbers that are 

decimal. The Decimal-Adder requires a minimum of nine inputs and five outputs. Nevertheless, a 16-bit binary integer is utilised 

instead of a 4-bit one in the BCD adder due to its increasing use. Additionally, a correction logic employing CLA is inserted in 

the adder to reduce delay time. 

a) Binary-Coded Decimal (BCD): A type of binary encodings of decimal numbers known as Binary-Coded Decimal uses a 

defined amount of binary bits to represent each decimal digit. For every decimal digit in the BCD encoding, a 4-bit binary code is 

usually employed. This makes the binary representation of decimal numbers easier to understand and more readable for humans, 

which makes it especially helpful in situations where decimal arithmetic is crucial.  

b) BCD Addition: BCD addition involves adding two BCD numbers, typically represented as strings of 4-bit nibbles. The 

addition is performed similarly to binary addition, digit by digit. If the result of adding two BCD digits exceeds 9 (1001 in BCD), 

a correction factor is added to bring the result back into the valid BCD range.  

For example, consider the addition of two BCD digits:  

1001    9 in BCD)  

   + 1010 (A in BCD, which is 10 in decimal) 

 ------ 

10011 (Corrected to BCD) 

Here, the correction factor of 6 (0110 in binary) is added to ensure that the result remains a valid BCD digit.  

II. LITERATURE SURVEY 

“Parallel BCD adders with new majority gate architectures for quantum-dot cellular automata”. This is a new definition for the 

output carry computation of a BCD adder using majority gates, which may be used to compute all of the multi-digit BCD adder's 

carries simultaneously [1-2]. To calculate carries in the BCD adder, we have implemented decimal group generate and decimal 

group propagate signals. We have thereby decreased the multi digit BCD adder's latency. To implement the suggested multi-digit 

BCD adder, we have used various binary adder types, including RCA, CFA, and parallel binary adder (PBA) [4]. Our PBA-based 

n-digit BCD adder decreases the area-delay product (ADP) and delay, theoretically. The 4-bit binary adder (ADD1), correction 

logic (CL), and the 1-digit BCD adder are the components of the 4-bit binary adder (ADD2). To obtain the binary total bS3:0 and 

the output carry bCout[3] , the binary adder (ADD1) adds the decimal numbers dA3:0, dB3:0, and dCin. To convert the binary 

sum bS3:0 to decimal sum dS3:0, the CL circuit generates the carry signals cL3:0 and dCout. Otherwise dCout = 1, then cL3:0 = 

(0110)2, otherwise not, cL3:0 = (0000)2[5]. The binary adder (ADD2) adds bS3:0 and cL3:0 to generate the decimal digit 
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dS3:0.The multi-digit BCD adder produces parallel decimal input carry, but the decimal group generate and propagate signals are 

independent of it. As a result, the multi-digit BCD adder's generation and propagation signals are shared by all decimal groups, 

and they share the same latency. 

 

 
Fig.1 BCD adder correction using CLA 

 

 

 
Fig.2 BCD adder correction logic 

III. EXISTING METHOD 

The design in [12] used the same block diagram for the implementation of BCD adder but they have used AND OR gate based 

output carry as shown in Fig.1. 

dCout = bCout + (bS3:0 >= 10) + (bS3:0 == 9)dCin  

dCout = bCout + (bS3:0 >= 10) + (bS3:0 >= 9) 

dCin = bCout + (bS3:0 >= 10) + [bCout + (bS3:0 >= 9)]dCin  

The logic signals bCout + (bS3:0 >= 10) and bCout + (bS3:0 >= 9) can be rewritten as [bCout + (bS3:0 >= 10)] · [bCout + 

(bS3:0 >= 9)] and [bCout + (bS3:0 >= 10)] + [bCout + (bS3:0 >= 9)], respectively. By substituting these values in dCout, we can 

rewrite the equation of dCout as follows: dCout = [bCout + (bS3:0 >= 10)] · [bCout + (bS3:0 >= 9)] + [bCout + (bS3:0 >= 10) + 

bCout + (bS3:0 >= 9)]dCin (3) The dCout in (3) is clearly in 3-input majority gate form with inputs bCout + (bS3:0 >= 10), bCout 

+ (bS3:0 >= 9) and dCin. dCout = M(bCout + (bS3:0 >= 10), bCout + (bS3:0 >= 9), dCin). The terms (bS3:0 >= 10) and (bS3:0 >= 

9) are binary signals and we are calling these signals as decimal group generate and decimal group propagate signals. These two 

signals are represented as dG3:0 and dP3:0. dG3:0 = bCout + (bS3:0 >= 10).  dP3:0 = bCout + (bS3:0 >= 9). The proposed majority 

gate form of dCout using dG3:0 and dP3:0 signals is given as follows:. dCout = M(dG3:0, dP3:0, dCin). The dCout uses decimal 

group generate and decimal group propagate signals for calculation. This is similar to CLA method for the calculation of carry. 

Because of this, we are calling CL stage as CL-CLA. The cL3:0 signal is calculated using the dCout. cL3:0 = {0, dCout, dCout, 0} 

The proposed dCout requires only 1 majority gate after calculating the dG3:0 and dP3:0 signals. The Proposed majority gate circuit 

for calculating dCout used the majority gate results presented for calculation of dG3:0. dG3:0 = bCout + bS3 · bS2 + bS3 · bS1 = 

M(bCout, M(bCout, bS3, 1), M(bS3, bS2, bS1)) To save the area, we have calculated dP3:0 as follows: dP3:0 = bCout + (bS3:0 >= 

9) = bCout + (bS3:0 >= 10) + (bS3:0 == 9) = dG3:0 + bS3 · bS0. We can observe that the decimal group generate and decimal 

group propagate signals are independent of decimal input carry, which are produced parallelly in the multi-digit BCD adder. 

Consequently, all decimal group generate and decimal group propagate signals of the multi-digit BCD adder share the same delay. 

The majority gate circuit for calculating the carries dC1, dC2, dC3 and dC4 using decimal group generate and decimal group 

propagate signals. The delay required for calculating the dC4 is only the delay of four majority gates, which can be achieved from 

the proposed definition of dCout. 
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The total delay required for the n-digit BCD adder is the sum of delay required for ADD1 (da1), ADD2 (da2) and CLCLA 

(dcl(n)) circuits as shown in Fig. 2. All ADD1 blocks in n-digit BCD adder can calculate in parallel. The da1, da2 and dcl(n) 

represent the delay of 1-digit ADD1, ADD2 and n-digit CL-CLA blocks, respectively. The delay da1 and da2 depend upon the 

selection of 4-bit binary adder. In case of proposed PBA-BCD design, both of the da1 and da2 values are 5 majority gates. The 

delay dcl(n) of n-digit BCD adder is the sum of delay required for calculation of dGi+3:i , dPi+3:i and all dCouts, as shown in 

Fig. 2. The delay required for dGi+3:i and dPi+3:i terms is 3 majority gates, as shown in Fig. 1. An n-digit BCD adder requires 

delay of n majority gates for calculation of all dCouts after calculation of dGi+3:is and dPi+3:is, as shown in Fig. 1. The delay 

term dcl(n) is given as follow: dcl(n) = 3 + n (11) The generalized expression for calculating the delay complexity of an n-digit 

BCD adder (in terms of majority gates) is given as follow: d(n) = da1 + da2 + 3 + n.  

The delay complexity for an n-digit RCA-BCD, CFA-BCD and PBA-BCD designs are shown below.  

d(n) = 17 + n (13) 

d(n) = 17 + n (14)  

d(n) = 13 + n (15) 

 

IV.  PROPOSED METHOD: 
We propose a new definition for BCD adder output carry computation in terms of majority gates and use it for computing all the 

carries of the multi-digit BCD adder in parallel. We have introduced decimal group generate and decimal group propagate signals 

to calculate carries in the BCD adder. As a result, we have reduced delay in the multi digit BCD adder. We have used different 

types of binary adders, such as RCA, CFA and parallel binary adder (PBA) for realizing the proposed multi-digit BCD adder. 

Theoretically, our PBA based n-digit BCD adder reduces the delay and area-delay product (ADP) by 50% compared with the 

existing designs. Carry flow adder (CFA) based and carry look ahead adder (CLA) based BCD adders, which show good 

performance. Moreover, exploits novel binary adder to propose the efficient 1-digit BCD adder, reducing comprehensive 

consumption. In order to fully utilize the majority gates, and rewrite the correction function for less delay by using Carry Select 

Adder. The BCD adder uses the 4-bit binary adder for generation of decimal digits. The performance of BCD adder also depends 

upon the selection of 4-bit binary adder. In this section, we are going to change the Correction logic by modified it with Carry 

Select Adder for area and delay complexity of n-digit BCD adder.By decoding bigger groups of adder bits, higher-order carry 

select adder decoding may minimise the amount of partial product rows by a wider margin. This procedure of adding requires 

3operations. 

 First, the 64 bits are grouped, and then we instantiate 16 instances of a 4-bit BCD adder (bcd_adder_4bit) within a generate loop.  

 The 64-bit inputs a and b are split into 16 4-bit parts, each part being processed by one instance of the 4-bit BCD adder.  

 In the second stage, the outputs of each 4-bit BCD addition (sum and carry_out) are assigned to the corresponding part of the 

sum and carry_out signals of the 64-bit BCD adder.  

 The carry_out of the last 4-bit BCD addition is considered as the carry_out of the entire 64- bit BCD addition.  

 In the second stage, for each 4-bit part we instantiate a carry select adder (carry_select_adder) to perform the BCD addition.  

 The sum and carry out of each 4-bit addition are assigned to the corresponding part of the sum and carry_out signals of the 64-

bit BCD adder.  

 The carry_out of the last stage is considered as the carry_out of the entire 64-bit BCD addition. This design allows the 64-bit 

BCD addition to be performed in parallel using carry select adders for efficient carry handling. 

 

Table 2: BCD Adder Truth Table 
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Table 3 Carry Select Adder Truth Table. 

 
V. RESULTS 

 

 

 
Fig.3 BCD adder results 
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Table 4 Comparison Table 

 

 

PARAMETER 

 

EXISTING 

 

PROPOSED 

 

Methodology 

 

CLA 

 

CSA 

 

Delay(ns) 
 

 

7.75ns 

 

4.835ns 

 

CONCLUSION 

In this, BCD adder engineering is adjusted by supplanting the adjustment rationale of carry see ahead adder with carry 

select adder. The proposed plan of adder is reenacted and synthesized for different input bit sizes and after that assessed in terms 

of delay (ns) with the existing adders and region involved. The modern proposed strategy is would be managing Carry select 

adder, carry select adder for the most part a sort of parallel adder that points to diminish the engendering delay related with 

parallel expansion. It is planned to make strides the speed of expansion by employing a dual-bank structure, permitting for the 

parallel calculation of carries in both banks. By this delay is been diminished. In future, the BCD adders can be worked barcode 

functions which is point of sale, high automated testing machines, etc. 
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