e31

 JETIR.ORG
 ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

 JETIR
 JOURNAL OF EMERGING TECHNOLOGIES AND

 INNOVATIVE RESEARCH (JETIR)
 An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Title: "ON CHARACTERIZATION OF BITOPOLOGICAL SPACES AND IT'S PROPERTIES"

By : "Puja Kumari & Dr. Mukund Kumar Singh, H.O.D. Mathematics, B. N. Mandal University,

Madhepura, - Bihar"

<u>Abstract</u>

Our main aim is to derive modified version of Separation axioms in bitopological space. Levine⁽⁶⁾ introduced the concept of generalized closed sets in topological spaces and initiated the notion of $T_{1/2}$ - spaces in unital topology which is properly placed between T_0 -space and T_1 -spaces by defining $T_{1/2}$ -space in which every generalized closed set is closed. We extend R_0 -topological spaces introduced by Pervin⁽³⁾. The properties of R_0 -topological spaces and results have been obtained in various contexts. McCarty⁽⁷⁾ also introduced the notion of R_1 -topological space which is independent of both T_0 and T_1 but strictly weaker than T_2 . Bitopological forms of these concepts have appeared in the definitions of pairwise R_0 and pairwise R_1 spaces given by Mrsevic. J.C. Kelly⁽¹⁾ studied quasi metrics and showed that a quasi-metric p on $X \neq \phi$ gives rise in a natural way to another quasi metric p* called conjugate of p, defined by p*(x, y) = p (y, x) for all x, y $\in X$.

Key words: (Separation Axiom, Bitopological space, Hausdorff spaces, regular spaces, open set, Close set, and quasi metrics)

1.1 Introduction

The separation axioms of topological spaces are denoted by T. Since separation axioms are terms of generalized closed sets. The first separation axiom between T_0 and T_1 was introduced by Aull and Thron⁽²⁾. The separation axioms are where the axioms for Hausdorff spaces, regular spaces and normal spaces. Separation axioms and closed sets in topological spaces have been very useful in the study of certain objects in digital topology. We to introduce modified and new separation axioms called pairwise

 $Q^* T_i$ spaces (I = 0, 1, 2, 3, 4), pairwise Q* normal, pairwise Q* regular, pairwise Q* US, pairwise Q* KC space, pairwise urysohn space, pairwise Q* $T_{7/8}$, pairwise Q* $T_{1 1/2}$, pairwise Q* $T_{1 2/3}$, pairwise Q* $T_{2 1/2}$ space, pairwise Q* $T_{4 1/2}$ space and pairwise Q* $T_{5 1/2}$ space in bitoplogical spaces. The concept of generalized closed sets and generalized open sets was first introduced by Levine⁽⁶⁾ in topological space. The new class of sets called semi generalized closed sets and obtained various properties. The study of generalized semi closed sets was initiated. The new class of sets called semi closed sets was initiated. The new class of sets called semi closed sets was initiated. The new class of sets called semi closed sets as initiated. The new class of sets called semi closed sets was initiated their properties. Throughout this paper, (X, τ) represents a nonempty topological space on which separation axioms are assumed unless explicitly stated.

The concept of closed sets is a fundamental object in general topology. Levine⁽⁶⁾ introduced the generalized closed sets in a single topological space in order to extend many of the important properties of closed sets to a larger family. A set A of a topological space (X, τ) is called generalized closed set (g-closed) if cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

1.2 Theorem

In a bitopological space (X, τ_1 , τ_2) the following statements are equivalent:

i) (X, τ_1, τ_2) is pairwise Q*- R₀.

ii) For any $\tau_i - Q^*$ closed set F and a point $x \notin F$, there exists a $U \in Q^* O(X, \tau_2)$ such that $x \notin U$ and $F \subset U$ for I, j = 1, 2 and $I \neq j$.

iii) For any $\tau_i - Q^*$ closed set F and a point $x \notin F$, $\tau_j - Q^*$ cl ({x}) $\cap F = \phi$, for j = 1, 2 and $I \neq j$.

Proof:

Case i) \Rightarrow **ii):** Let F be a $\tau_j - Q^*$ closed set F and a point $x \notin F$. Then by i) $\tau_j - Q^*$ cl ({x}) $\subset X - F$, where I, j = 1, 2 and $I \neq j$.

Let $U = X - \tau_j - Q^*$ cl ({x}) then $U \in Q^* O(X, \tau_2)$ and also $F \subset U$ and $x \notin U$.

Case ii) \Rightarrow **iii**): Let F be a $\tau_j - Q^*$ closed set F and a point $x \notin F$. we suppose that the given conditions hold. Since

www.jetir.org(ISSN-2349-5162)

$$J \in Q^* O(X, \tau_2), U \cap \tau_j - Q^* cl (\{x\}) = \phi \qquad ...(1)$$

Then $F \cap \tau_j - Q^*$ cl ({x}) = ϕ , where i, j = 1, 2 and I $\neq j$.

Case- iii) \Rightarrow **i**) : Let $G \in Q^* O(X, \tau_i)$ and $x \in G$. Now X - G is $\tau_j - Q^*$ closed and $x \notin X - G$. By iii), $\tau_j - Q^*$ cl ($\{x\}$) $\cap (X - G) = \phi$ and hence $\tau_j - Q^*$ cl ($\{x\}$) $\subset G$ for I, j = 1, 2 and I \neq j.

Therefore, the space (X, τ_1, τ_2) is pairwise Q^* - R_0 .

1.3 Theorem

If (X, τ_1, τ_2) is pairwise $Q^* - R_1$, then it is pairwise $Q^* - R_0$.

Proof

Let us consider that (X, τ_1, τ_2) is pairwise $Q^* - R_1$. Let U be a $\tau_i - Q^*$ open set and x $\in U$. If $y \notin U$, then $y \in X - U$ and $x \notin \tau_i - Q^*$ cl ({y}).

Therefore, for each point $y \in X - U$, $\tau_j - Q^* \operatorname{cl}(\{x\}) \neq \tau_i - Q^* \operatorname{cl}(\{y\})$.

Since (X, τ_1, τ_2) is pairwise Q*- R₁, there exist a $\tau_i - Q^*$ open set U_y and a $\tau_j - Q^*$ open set V_y such that $\tau_j - Q^*$ cl $(\{x\}) \subset U_y, \tau_i - Q^*$ cl $(\{y\}) \subset V_y$ and $U_y \cap V_y = \phi$, where I, j = 1, 2 and I \neq j.

Let $A = \bigcup \{ V_y / y \in X - U \}$, then $X - U \subset A$, $x \notin A$ and A is $\tau_j - Q^*$ open set. Therefore, $\tau_j - Q^*$ - cl $(\{x\}) \subset X - A \subset U$. Hence (X, τ_1, τ_2) is pairwise Q^* -R₀.

The converse of theorem is not true in general. The space (X, τ_1, τ_2) because is pairwise Q* -R₀ but not pairwise Q*-R₁.

1.4 Theorem

The product of an arbitrary family of pairwise Q* T₀ space is pairwise Q* T₀.

Proof

Let $(X, \tau_1, \tau_2) = \prod_{\alpha \in \Delta} (X_{\alpha}, \tau_{1\alpha}, \tau_{2\alpha})$, where τ_1 and τ_2 are the product topologies on X generated by $\tau_{1\alpha}$ and $\tau_{2\alpha}$ respectively and $X = \prod_{\alpha \in \Delta} X_{\alpha}$. Let $x = (x_{\alpha})$ and $y = (y_{\alpha})$ be two distinct points of X. Hence, $x_{\alpha} \neq y_{\alpha}$ for some $\alpha \in \Delta$.

But $(X_{\lambda}, \tau_{1\lambda}, \tau_{2\lambda})$ is pairwise Q* T₀, there exist either a $\tau_{1\lambda}$ - Q* open set U_a containing x_{λ} but not y_{λ} or a $\tau_{2\lambda}$ - Q* open set V_a containing y_{λ} but not x_{λ} .

Let us derive $U = \prod_{\lambda \neq} (X_{\lambda} \times U_{\alpha})$ and $V = \prod_{\lambda \neq} (Y_{\lambda} \times V_{\alpha})$. Then U is τ_1 - Q* open and V is τ_2 - Q* open. Also, U contains x but not y. Hence, the theorem is proved.

1.5 Theorem

Let $f: X \rightarrow Y$ be a bijection, pairwise Q* continuous and Y is pairwise Q* T₀ space, then X is a pairwise Q* T₀ space.

Proof

Let $f: X \rightarrow Y$ be a bijection, pairwise Q* continuous map and Y is a pairwise Q* T₀ space that X is a pairwise Q* T₀ space.

Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is a bijection, there exists $y_1, y_2 \in Y$ with $y_1 \neq y_2$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$.

$$\Rightarrow \mathbf{x}_1 = f^{-1}(\mathbf{y}_1) \text{ and } \mathbf{x}_2 = f^{-1}(\mathbf{y}_2) \qquad \dots (2)$$

e34

Since Y is pairwise Q* T₀space, there exists a set which is either $\tau_i - Q^*$ open or $\tau_j - Q^*$ open set M in X such that $y_1 \in M$ and $y_2 \notin M$. Since f is pairwise Q* continuous map, $f^{-1}(M)$ is a pairwise Q* open set in Y. we get $y_1 \in M \Rightarrow f^{-1}(y_1) \in f^{-1}(M) \Rightarrow x_1 \in f^{-1}(M)$ and $x_2 \notin f^{-1}(M)$. Hence for any two distinct points y_1 , y_2 in Y, there exists pairwise Q* open set $f^{-1}(M)$ in Y such that $x_1 \notin f^{-1}(M)$ and $x_2 \notin f^{-1}(M)$. Now Y is a pairwise Q* T₀ space. Hence, the theorem is proved.

1.6 Theorem

If a space (X, τ_1, τ_2) is pairwise $Q^* - T_2$, then it is pairwise $Q^* - R_1$.

Proof

Let (X, τ_1, τ_2) be pairwise Q* -T₂.

Then for any two distinct points x, y of X, their exist a $\tau_i - Q^*$ open set U and a $\tau_j - Q^*$ open set V such that $x \in U$, $y \in V$ and $U \cap V = \phi$ where I, j = 1, 2 and $I \neq j$. If (X, τ_1, τ_2) is pairwise $Q^* - T_1$, then $\{x\} = \tau_j - Q^* \operatorname{cl}(\{x\})$ and $\{y\} = \tau_i - Q^* \operatorname{cl}(\{y\})$ and thus $\tau_i - Q^* \operatorname{cl}(\{x\}) \neq \tau_j$.

cl({y}) where I, i = 1, 2 and $I \neq j$, there exist a $\tau_i - Q^*$ open set U and $\tau_i - Q^*$ open set V such that $x \in V$, $y \in U$ and $U \cap V = \phi$ where I, j = 1, 2 and $I \neq j$. Hence, (X, τ_1, τ_2) τ_2) is pairwise Q* - R₁.

The converse of the theorem (Every pairwise $Q^* T_2$ space is pairwise $Q^* T_1$ (i) space) is not true in general i.e.) pairwise $Q^* T_1$ space is not pairwise $Q^* T_2$ space.

(ii) If a bitopological space X pairwise $Q^* T_i$, then it is pairwise $Q^* T_{I-1}$. I = 1, 2.

1.7 Theorem

Every pairwise Q* completely normal space is pairwise Q* normal.

Proof

Let X be a pairwise Q* completely normal bitopological space. Now A be a $\tau_i - Q^*$ closed set and B be a $\tau_i - Q^*$ closed set such that $A \cap B = \phi$. Then

$$T_{i} - Q^{*} cl(A) \cap B = A \cap B = \phi$$

and $A \cap \tau_{j} - Q^{*} cl(B) = A \cap B = \phi$...(3)

By complete Q* normality, there exists a $\tau_j - Q^*$ open set U and a $\tau_i - Q^*$ open set V such that $A \subset U$, $B \subset V$, $U \cap V = \phi$. Since X is pairwise Q* normal. Hence, the theorem is proved.

1.8 References

1.	J.C. Kelly, (1955 and	General Topology D. Van Non-standard New
	1963)	York and Bitopological spaces, Proc. London
		Math. Soc., 13, 71-81.
2.	C. E. Aull and W. J.	Separation axioms between T_0 and T_1 , Indag.
	Thron, (1962)	Math 24, 26-37.
3.	Pervin, W. J. (1967)	Connectedness in bitopoligcal space, Duke Math.
		J V 34 (367-392)
4.	Patty, C. W. (1967)	Bitopological Space Duke Math J. V34 (387-
		392)
5.	Cullen, H. F., (1968)	"Separation Axioms" in Introduction to General
		Topology. Boston, MA: Heath, pp. 99-140.

www.jetir.org(ISSN-2349-5162)

e36

6.	Levine, N., (1970)	Generalized closed sets in topology. Rend. Circ.
0.	[10, 100, 100, (17/0)]	
		Mat. Palermo., 19(2): 89-96
7.	McCarty, G., (1970)	Topology, an Introduction with Application to
		Topological Groups. New York: McGraw-Hill,
		1967.Willard, S. "The Separation Axioms." §13
		in General Topology. Reading, MA: Addison-
		Wesley, pp. 85-92.
8.	E.G. Manes, (1974)	Compact Hausdorff objects, General Topology
		Appl. 4, 341-360.
9.	Joshi, K. D., (1983)	"Separation Axioms" in Introduction to General
		Topology. New Delhi, India: Wiley, pp. 159-188.
10.	P.Bhattacharyya and	Semi-generalized closed sets in Topology, Indian
	B.K.Lahiri, (1987)	J. Math. 29 (3), 375-382.
11.	H.Maki, R.Devi and	Associated topologies of generalized α closed sets
	K.Balachandran, (1994)	and α generalized closed sets, Mem. Fac. Sci.,
		Kochi Uni. (Math), 15, 51-63.
12.	J. Brazas, (2011)	The topological fundamental group and free
		topological groups, Topology Appl. 158 779–802.
13.	Pauline Mary Helan,	g closed sets in topological spaces, IJMA ,3(30), ,
	M.Veronica Vijayan,	1-15.
	Ponnuthai Selvarani,	
	(2012)	
14.	R. Lakehal, Lj. D.R.	Neighbourhood star selection properties in
	Kocinac and D. Seba,	bitopological spaces, Filomat. 35(1), 339–351.
	(2021)	
	(====)	