JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

FINAL YEAR PROJECT REPORT ON STUDY OF EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTI-STOREY BUILDING

z

¹Sonali Malvi, ²Jay Dhurve, ³Omkar Yadav, ⁴Pawan Sahu, ⁵Mr. Mohit Verma,

¹UG student, ²UG student, ³UG student, ⁴UG student, ⁵Professor

Department of Civil Engineering,

Annie Institute of Technology And Research Center, Chhindwara, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Madhya PradeshIndia

Abstract : : The need for earthquake-resistant buildings in Nepal is of critical importance due to the country's high vulnerability to earthquakes. Nepal is located at the junction of the Indian and Eurasian tectonic plates and has a long history of devastating earthquakes, making it one of the most seismically active countries in the world. The country has experienced several earthquakes of magnitude 6.0 or greater in the past century, and the risk of large earthquakes in Nepal continues to increase due to the active tectonic plate boundary that runs through the region.

SYMBOL	Meaning				
a _x , a _y	BM coefficients for Rectangular Slab Panels				
φ	Diameter of Bar, Angle of internal friction of soil				
δ_m	Percentage reduction in moment				
rc	Shear Stress in Concrete				
rc,max	Max. shear stress in concrete with shear reinforcement				
r_{bd}	Design Bond Stress				
σ_{ac}	Permissible Stress in Axial Compression (Steel)				
σ_{cbc}	Permissible Bending Compressive Strength of Concrete				
σsc, σst	Permissible Stress in Steel in Compression and Tension respectively				
γm	Partial Safety Factor for Material				
Υf	Partial Safety Factor for Load				
Ŷ	Unit Weight of Material				
AB	Area of Each Bar				
AG	Gross Area of Concrete				
A _H	Horizontal Seismic Coefficient				
Pz	Wind Pressure				
Q, Q _U	Permissible and Ultimate bearing capacity of soil				
QI	Design Lateral Force in 📩 Level				
SR, RMIN	Slenderness Ratio, (minimum) for structural steel section				
R	Response Reduction Factor				
<u>S</u> ₂/g	Average Response cceleration Coefficient				
Sv	Spacing of Each Bar				
TI	Torsional Moment due to Lateral Force in i-direction				
L.L	Live Load				
RCC	Reinforced Cement Concrete				
SPT, N	Standard Penetration Test				
M25	Grade of Concrete				

1. INTRODUCTION

1.1 Background

The need for earthquake-resistant buildings in Nepal is of critical importance due to thecountry's high vulnerability to earthquakes. Nepal is located at the junction of the Indian and Eurasian tectonic plates and has a long history of devastating earthquakes, making it one of the most seismically active countries in the world. The country has experienced several earthquakes of magnitude 6.0 or greater in the past century, and the risk of large earthquakesin Nepal continues to increase due to the active tectonic plate boundary that runs through the region.

1.2 Title and Theme of the Project Work

z

The proposed project is "**Earthquake Resistant Analysis and Design of Multi-Storey Building**". Our project lies in Nepal and it lies in seismic zone 'V' according to its seismic severity. Earthquake load dominates wind load and governs the lateral design loading. The report strictly follows Indian Standards with limit state design philosophy in general. The estimation of live and dead load could be predicted with reasonable accuracy but the loads due o earthquake can't be accurately predicted. So, statistical and probabilistic approaches are resorted to, considering one of factor economy. The seismic coefficient design method as stipulated in IS 1893:2016 is applied to analyze the building for earthquake. The 3- dimensionalmoment resistance frame is considered as the main structural system of the building.

1.1 Objective

The specific objectives of the project work are:

- 1. To analyze and design a multi-storey earthquake-resistant building.
- 2. To study architectural drawings and fix the structural system of the building to

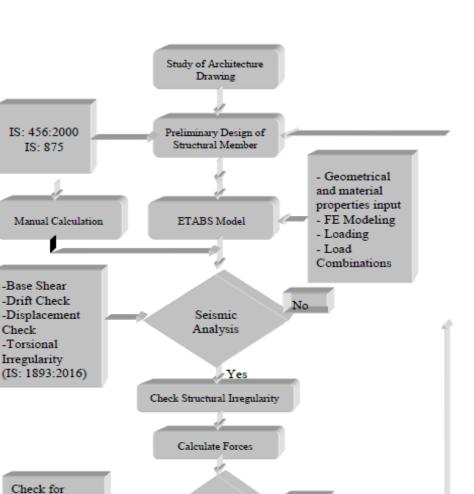
1.2 Scope

The project work aims to provide a comprehensive analysis and design of a multi-storey earthquake-resistant building.

1. METHODOLOGY

In Nepal, design of buildings is mainly based upon the guidelines provided by the Nepal NationalBuilding Codes: 000- 1994. NBC codes are designed referring to IS codes and are less detailed and extensive comparing to IS code. So, it permits use of IS code for design such that building fulfills requirement of NBC codes on doing so. In this project, we are going to use IS codes which follows limit state design method.

shear,


length,

development

reinforcement and others

IS: 456:2000

IS: 13920:2016

No

Verify

members

passed

Design and Detailing of Structural Members

Preparation of detail drawings

Yes

z

2.1 Planning Phase

Planning of building is grouping and arrangement of different component of a building so as to form a homogenous body which can meet all its function and purposes. Proper orientation, safety, healthy, beautiful and economic construction are the main target of building planning. It is done based on the following criteria:

2.2 Load Assessment

Once the detailed architectural drawing of building is drawn, the buildings subjected to different load are found out and the calculations of load are done. The loads on building are categorized as below

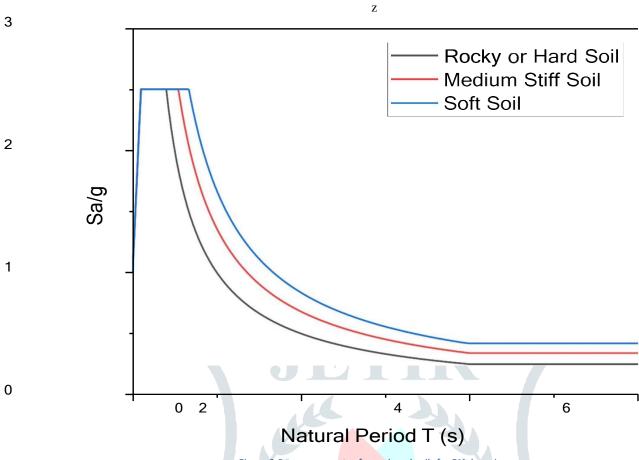
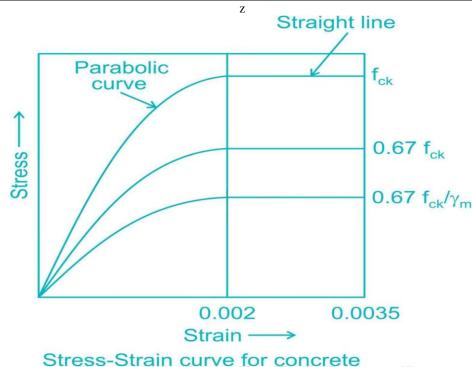


Figure 2:Response spe<mark>ctra for rock and</mark> soils for 5% damping

The seismic analysis can be performed using design spectrum. Response spectrum method isdynamic analysis used for the analysis of seismic loads for unsymmetrical buildings.

2.1 Modeling and Analysis of structure


2.1.1 Salient Features of ETABS

ETABS represents one of the most sophisticated and user-friendly release of SAP series of computer programs. Creation and modification of the model, execution of the analysis, and checking and optimization of the design are all done through this single interface. Graphical displays of the results, including real-time display of time-history displacements are easily produced.

2.2 Detailing Principle for Reinforced Concrete and Steel Structures

2.2.1 Ductile Detailing of Reinforced Concrete Structure

Ductile detailing of reinforced concrete structure is done based on IS 13920:2016 for theprovision of compliance with earthquake resistant design philosophy. Special consideration is taken in detailing of linear frame elements (BEAMS & COLUMNS) to achieve ductility in the

2.2.2

Design and Detailing of Structural Element

2.2.2.1

Slabs are plate elements forming floors and roofs of buildings and carrying distributed loads primarily by flexure. Inclined slabs may be used as ramps for Multi-storey car parks. A staircasecan be considered to be an inclined slab. A slab may be supported by beams or walls and maybe used as the flange or a T- or L-beam. Moreover, a slab may be simply supported, or cantilever over one or more supports and is classified according to the manner of support.

• One-way slabs spanning in one direction

Slab

- Two-way slabs spanning in both direction
- Circular slabs
- Flat slabs resting directly on column with no beams
- Grid floor and ribbed slabs

2.2.2.2 Beam

Beam is a flexural member which distributes the vertical load to the column and resists the bending moment. The total effect of all the forces acting on the beam is to produce shear forces and bending moments within the beam, that in turn induce internal stresses, strains and deflections of the beam. Its mode of deflection is primarily by bending. The loads applied to the beam result in reaction forces at the beam's support points.

2.2.2.3 Column

Columns are compression members whose effective length exceeds three times the least lateral dimension. They are subjected to large axial compression force. Any compression member of a structure, or column in particular, takes the load from flexure and slab members present aboveit and transfers the load to the foundation and consecutively to the earth below. Thus, it is very important to design columns of adequate size and with adequate reinforcement in order to safely transfer the incoming loads.

2.1.1 Foundation

The foundation forms a very important part of the structure which transfers the load to the soilon which it rests. Theground surface in contact with the lower surface of the foundation is known to be the base of the foundation

2.1.1.1 Slab

Slabs are plate elements forming floors and roofs of buildings and carrying distributed loads primarily by flexure. Inclined slabs may be used as ramps for Multi-storey car parks. A staircasecan be considered to be an inclined slab

1. RELIMINARY DESIGN OF STRUCTURAL MEMBERS

Before proceeding for the actual modeling of the building, it is necessary to fix approximate dimensions for the structural elements. This is done through preliminary design and acts as guidelines in analysis which are liable to be changed in future after response evaluation. Drawings received from architect were thoroughly studied and elements at maximum exploited location were chosen for preliminary design.

3.1 Preliminary Design of Slab

Preliminary design of RCC slab for the floor and roof of the proposed building is done in such a way that it complies with deflection control criteria of **IS 456:2000** and behavior of floor slab as a rigid diaphragm. Being equal spacing of columns in both the axes, planar dimensions of all slabs being equal, on ly a single panel is taken for preliminary design.

lx=6000mm

ly=6000mm

Classification of slab

 $\frac{ly}{lx} = \frac{6000}{6000} = 1 <$

So, the slab behaves as two-way slab.


For slab, as per IS 456:2000 CL 24.1, the provision for beams app ly to slabs also.

Therefore, from IS 456:2000 CL 23.2

• Storey Drift

Storey drift is the relative displacement between the floors above and/or below the storey under consideration. As per **IS 1893:2016** Storey drift in any Storey shall not exceed 0.004 times the storey height. The limitation on storey drift is necessary to avoid discomfort to occupants of the building and to save non-structural elements from damage. ETABS analysis directly generates the drift in form ratio so that the result can be directly compared with the permissible drift ratio **0.004**.

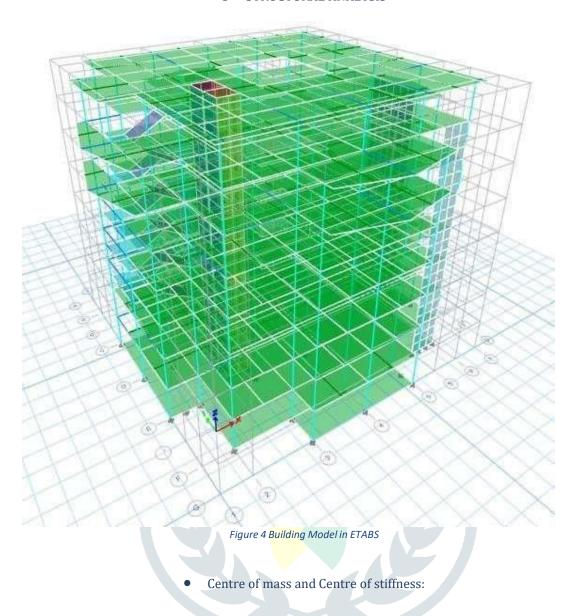
Table 17: Storey Drift Ratio Storey	Elevation (m)	X-Direction	<0.004	Y-Direction	<0.004
Roof Floor	27.72	0.002098	OK	0.001339	OK
Top Floor	24.255	0.002268	OK	0.001222	OK
4th floor	20.79	0.002328	OK	0.001216	OK
3rd floor	17.325	0.002298	OK	0.001177	OK
2nd floor	13.86	0.002146	ОК	0.001078	OK
1st floor	10.395	0.001846	OK	0.000912	OK
Ground Floor	6.93	0.001378	ок	0.000676	ок
Upper Basement	3.465	0.000669	ОК	0.000351	ОК
Lower Basement	0	0	ОК	0	ОК

4 LOAD CALCULATION

Slab:

UPPER BASEMENT:

Slab ID	Lengt	Breadt	Area	Unit	Thick	Dead	Live	Live	Total
	h (m)	h(m)	(m2)	Weight	ness	Load	Load	Load	Load (kN)
				(kN/m3)	(m)	(kN)	(kN/m2)	(kN)	
BF26	24	24	576	25	0.14	2016	5	1440	3456
Deductio	4.4	2	-8.8	25	0.14	-30.8	5	-22	-52.8
n									
Deductio	6	6	-36	25	0.14	-126	5	-90	-216
n									
Deductio	1	.2	-	25	0.14	-	5	-	-54.286
n			9.047			31.667		22.61	
						2		9	
								46711	
OTHER	12	3	144	25	0.14	504	5	360	864
S									
Total									3996.9132
			12						
) FLOOR:									


GROUND FLOOR:

									1
Slab ID	Lengt	Breadt	Area	Unit	Thick	Dead	Live	Live	Total
	h(m)	h(m)	(m2)	Weight	ness	Load	Load	Load	Load (kN)
				(kN/m3)	(m)	(kN)	(kN/m2)	(kN)	
DE13	9	6	54	25	0.14	189	5	135	324
Deductio	4.4	2	-8.8	25	0.14	-30.8	5	-22	-52.8
n									
BC23	6	6	36	25	0.14	126	3.48402	62.71	188.712
							9	2	
EF23	6	6	36	25	0.14	126	3.1039	55.87	181.8705
								0	
AB34	6	3	18	25	0.14	63	3.19805	28.78	91.7825
							5	2	
AB45	6	3	18	25	0.14	63	3	13.5	76.5
BC34	6	6	36	25	0.14	126	3.5313	63.56	189.5642
								4	
BC45	6	6	36	25	0.14	126	3.0345	54.62	180.621
								1	
CE35	12	12	144	25	0.14	504	4	288	792
EG35	12	9	108	25	0.14	378	4	216	594
BC56	6	6	36	25	0.14	126	40.837	735.0	861.066
								6	
CD57	9	6	54	25	0.14	189	4	108	297
DE57	9	6	54	25	0.14	189	3.82562	103.2	292.2918
							5	9	
EF56	6	6	36	25	0.14	126	4	72	198
Total									4214.6090

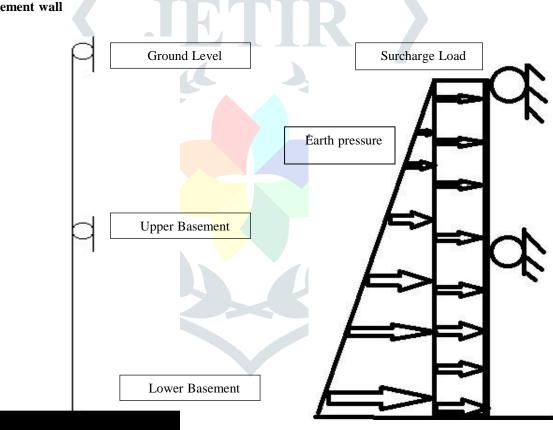
Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org JETIR2404419 e161

.

5 STRUCTURAL ANALYSIS

Centre of mass of each storey was calculated manually, along with the center of rigidity for thepreliminary architectural plan. Additionally, these values were generated from the ETABS model, and compared. Eccentricity thus observed was used in determining changes, to structural configuration.

• Design of basement wall


z

Basement wall is constructed to retain the earth and to prevent moisture from seeping into the building. Since the basement wall is supported by the mat foundation, the stability is ensured and the design of the basement wall is limited to the safe design of vertical stem.

Basement walls are exterior walls of underground structures (tunnels and other earth sheltered buildings), or retaining walls must resist lateral earth pressure as well as additional pressure due to other type of loading. Basement walls carry lateral earth pressure generally as vertical slabs supported by floor framing at the basement level and upper floor level. The axial forces in the floor structures are, in turn, either resisted by shear walls or balanced by the lateral earth pressure coming from the opposite side of the building.

The basement wall is designed as the cantilever wall with the fixity provided by the matfoundation.

Basement wall is idealized as propped cantilever wall assuming that basement wall is rigidly fixed as base and supported hingedly at floor slab.

Modeling of Basement wall

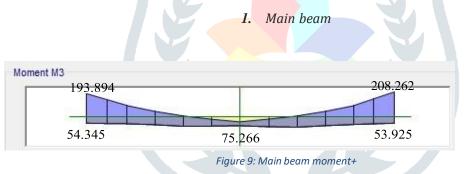
Design of beam

Z

Beams are structural members assigned to transmit the loads from slab to the column through it. Specially, flexure is more dominant than shear in the beam.

There are three types of reinforced concrete beams:

- 1. Singly reinforced beams
- 2. Doubly reinforced beams
- 3. Singly or doubly reinforced flanged beams


In singly reinforced simply supported beams, reinforcements are placed at the bottom of the beamwhereas on top in case of cantilever beams.

A doubly reinforced concrete beam is reinforced in both compression and tension regions. The necessity of using steel in compression region arises when depth of the section is restricted due to functional or aesthetic requirements.

A complete design of beam involves consideration of safety under ultimate limit state in flexure, shear, torsion and bond as well as consideration of serviceability limit states of deflection, crack width, durability etc.

Basically, two types of works are performed namely, analysis of section and design of section. In the analysis of a section, it is required to determine the moment of resistance knowing thecross section and reinforcement details.in the design of sections, it is required to determine thecross section and amount of reinforcement knowing the factored design loads.

Concrete Grade = M25Steel Grade = Fe500

Main Beam - B18 Unique No: 492 Floor: Second FloorKnown Data

Concrete Grade= **25 MPa** Steel Grade= **415 MPa** Overall depth of beam, **D=550mm**

• Design of lift shear wall

Sample Calculation

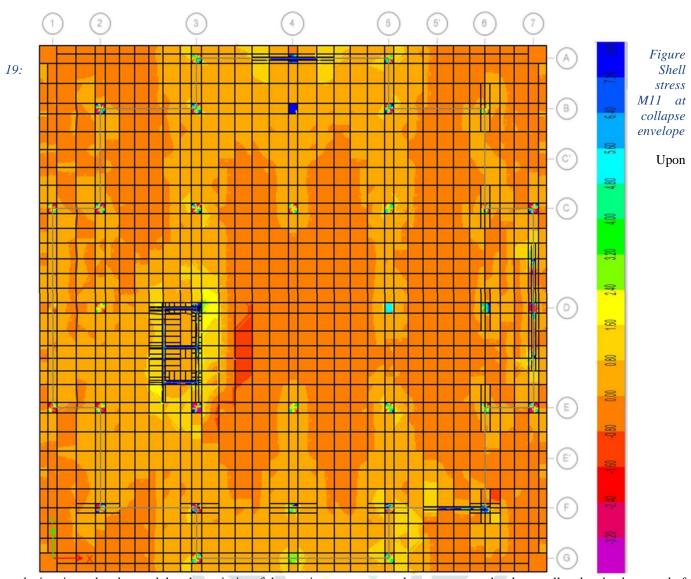
The lift shear wall design of wall spanning along Y-axis at lower basement level isshown below.

Table 43: Design parameter for lift shear wall

Length of wall	4475 mm
Thickness of wall, tw	400 mm

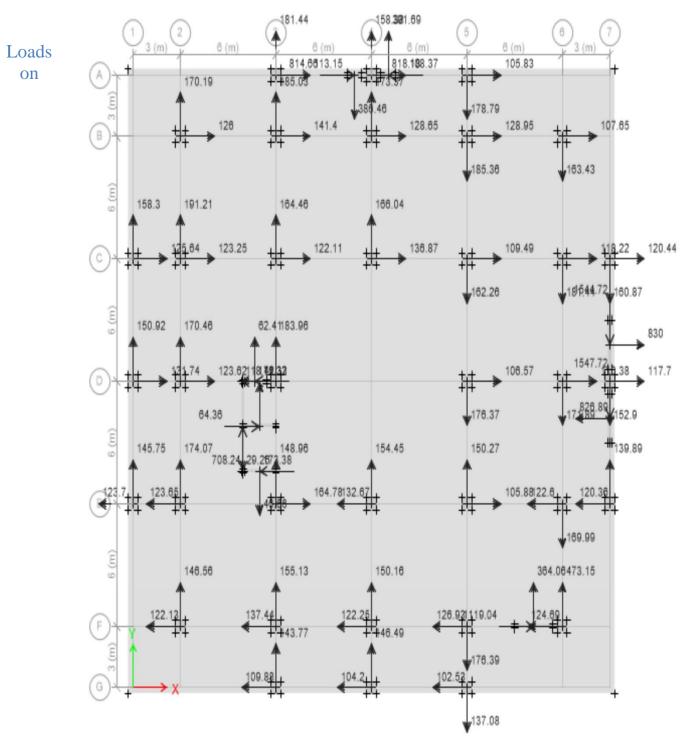
Pier id	L1
Axial Force (compressive) P.	16974.9kN
Axial Force (tensile) P ₊	11335.23 kN
Inplane Moment M ₃	11407.6kN-m
Out of Plane Moment M ₂	506.2 kN-m
In Plane Shear V ₂	4038.1kN
Out of Plane Shear V ₃	410.63kN

The Vertical reinforcement, Horizontal reinforcement and Horizontal reinforcement in boundary element is designed as in Shear wall design section above and the result is shown below as:


Table 44: Reinforcement detail in Lift shear wall

Vertical Reinforcement Dia. Φv (mm)	32
Vertical Reinforcement spacing (mm)	120
Horizontal Reinforcement Dia. Φh (mm)	20
Horizontal Reinforcement spacing (mm)	100
Boundary Element tie spacing (sv) (mm)	100
Boundary element Ties dia (mm)	10
Boundary <mark>Element size (mm x mm)</mark>	895 X 400

As per above reinforcement the provided resistance capacity of wall would be


Force/Moment	M ₃ (kNm)	M ₂ (kNm)	$V_2(kN)$	V ₃ (kN)	P _c (kN)	P _t (kN)
Design Forces	11407.6	506.2	4038.1	410.63	16974.9	11335.23
Provided Capacity	19292.34	737.383	8222.13	1643.81	32558.75	19034.5

.

z

analyzing, it can be observed that the majority of the maximum moment values occur near the shear wall end and column end of the structure. In contrast, significantly lower moments are observed in other areas of the structure. Taking this into account, the structural design has been optimized for economic efficiency by providing additional reinforcement only in the areas where the maximum moment values are observed, i.e., at the column and shear wall ends. Specifically, the main reinforcement has been designed to withstand a moment value of 1000kNm, which is the maximum moment that can be sustained by the structure as a whole. However, to ensure that the observed maximum moment values near the column and shear wall ends can be safely sustained without requiring unnecessary reinforcement throughout the rest of the structure,

z

Foundation for Ultimate state

7 Conclusion

In conclusion, this building project has provided us with a valuable learning experience inearthquake resistant design and ductile detailing of concrete structures. As Nepal is located in a seismically active region, it is crucial to consider the safety of structures and human lives during earthquakes. By following the earthquake resistant design code (IS 1983 (Part-I):2016) and ductile detailing of concrete (IS 13920:2016), we have designed a building that is better equipped to withstand lateral earthquake loads and minimize damage. Our team worked together to idealize, analyze, and design the building under the guidance of our respected supervisor, and we hope that our design meets their expectations. We believe that this project has given us a deeper understanding of the transfer mechanism of lateral earthquake loads into vertical members and, finally, into the foundation. Overall, we are grateful for the opportunity to work on this project, and we are confident that the knowledge and skills we have gained will serve us well in our futurecareers as civil engineers.

References

1. IS 875(Part 1):1987, Indian Standard Code of Practice for Design Loads (Other than earthquake) for Buildings and Structures, Part 1- Dead Loads, Indian Standards Institution

2. IS 875(Part 2):1987, Indian Standard Code of Practice for Design Loads (Other thanearthquake) for Buildings and Structures, Part 2- Imposed Loads, Indian Standards Institution

3. IS 875(Part 3):1987, Indian Standard Code of Practice for Design Loads (Other than earthquake) for Buildings and Structures, Part 3- Wind Loads, Indian Standards Institution

4. IS 875(Part 5):1987, Indian Standard Code of Practice for Design Loads (Other than earthquake) for Buildings and Structures, Part 5- Special Loads and Combinations, IndianStandards Institution

5. IS 456:2000, Indian Standard Plain and Reinforced Concrete- Code of Practice, Indian Standards Institution

6. IS 1893(Part 1):2016, Indian Standard Criteria for Earthquake Resistant Design of Structure, Part 1-General Provisions and Buildings, Indian Standards Institution

7. IS 13920:2015, Indian Standard Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces- Code of Practice, Indian Standards Institution

8. SP 16:1980, Design Aids for Reinforced Concrete to IS 456:2000, Bureau of IndianStandards, New Delhi, p. 232

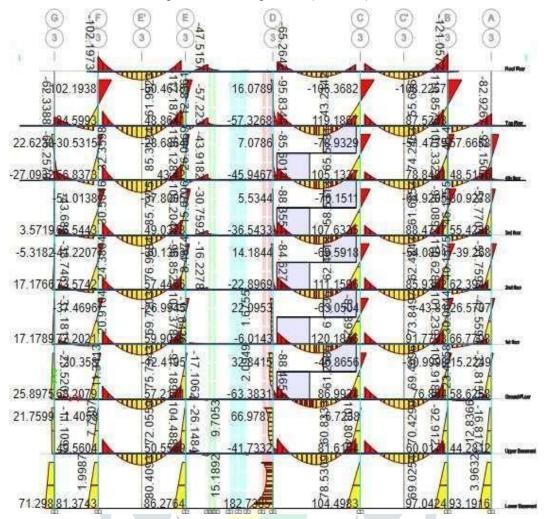
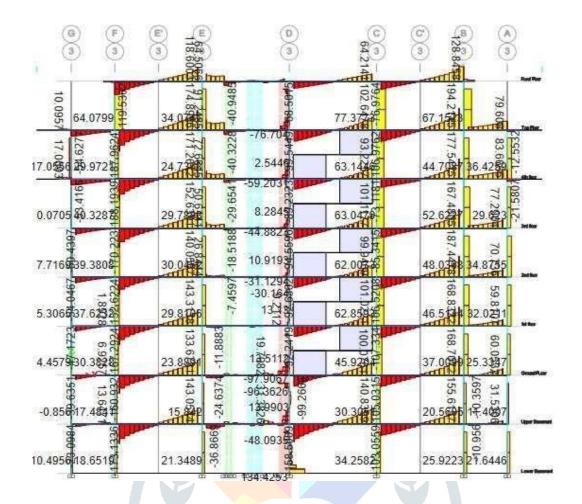
8 SP 34:1987, Handbook on Concrete Reinforcement and Detailing, Bureau of IndianStandards, New Delhi, p.192

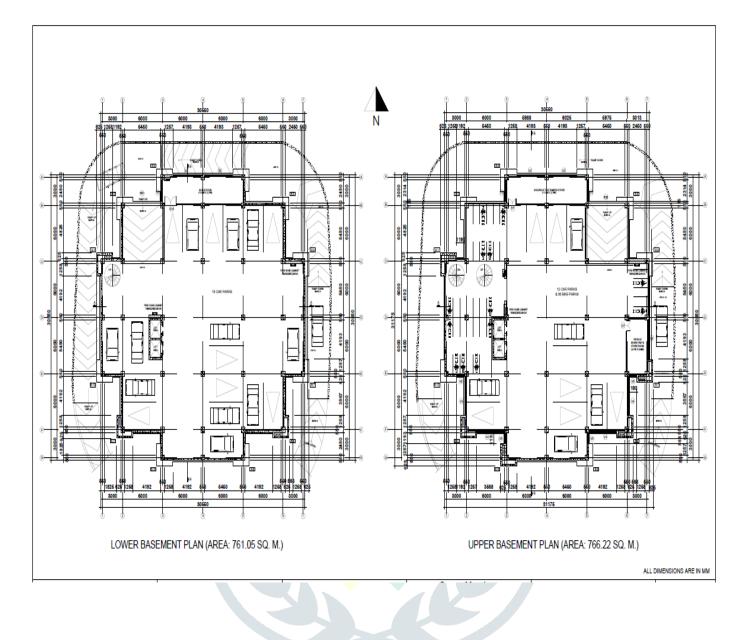
9 Subramanian N. (2013), *Design of Reinforced concrete structures*, 1st edition, OxfordUniversity Press, New Delhi,

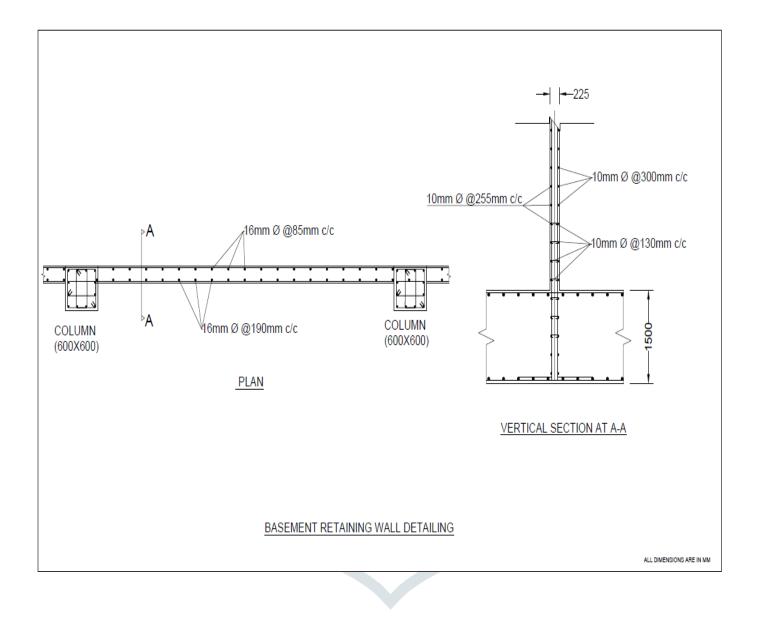
10 Jain, A.K., *Reinforced Concrete Structures Limit State Design- Sixth Edition*, NemchandBrothers and Sons' Publishers

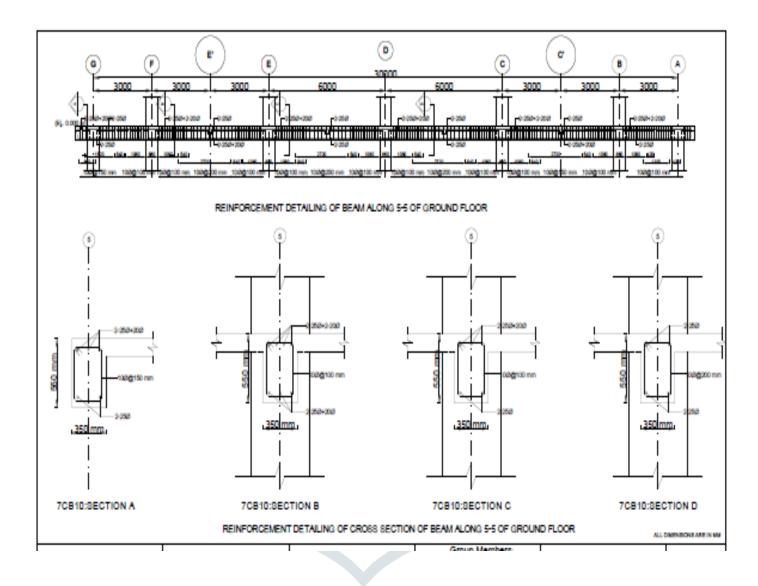
11 Pillai, S.U. and Menon, D, *Reinforced Concrete Design- Third Edition*, Tata McGraw HillEducation Private Limited, New Delhi-2009

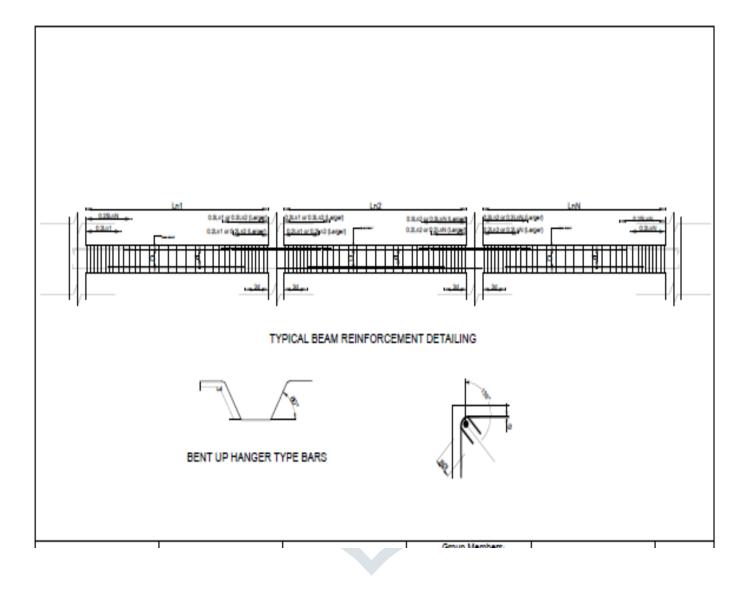
12 Clough, R.W. and Penzien, P., *Dynamics of Structure-Second Edition*, CBS Publisher andDistributors Pvt. Ltd., New Delhi-2015

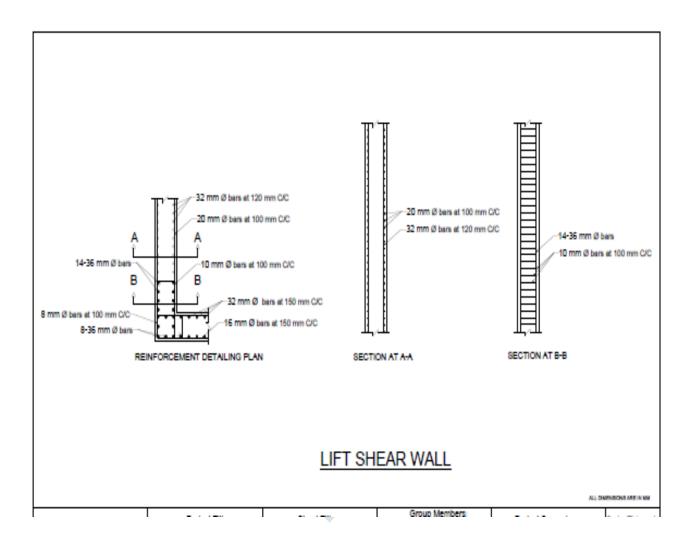




Figure 22 Moment Diagram at 1.2(DL+LL+EQx)


z


z


Figure 23 Shear Force Diagram at 1.2(DL+LL+EQx



.

.