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Abstract : Approximate computing is a promising solution to design faster and more energy efficient systems, which provide an  
adequate quality for a variety of functions. Division, in particula r floa ting point division is one of the most important ope rations in 
multimedia applications, which has been implemented less in hardwa re due to its significant cost and complexity. Approximatio n 
is nothing but approximating the output by reducing the constraints in it. There are several different strategies for approxi mate 
computing like Approximating the circuits, Approximating the software, Approximating the storage etc. This project uses 
Approximating the Circuit strategy. Approximating the circuits includes approximating the adders subtractors,  multipliers, 
dividers etc. In this project, we will approximate the floating point divider using the concept of  Approximate computing. The  
focus of this work will be on implementing a Verilog-based Approximate divider for floating point divider. Both accuracy and 
power will be calculated. We expect an improvement in accuracy and reduction in power. 

 

IndexTerms - Approximate computing, Accuracy, Power efficient, Floating point representation, Division. 

I. INTRODUCTION 

In today's world of technologies increasing usa ge of energy consumption by computer systems is a serious problem that needs 
to be addressed. Computer systems will be processing massive amounts of data o this requires more power. Making the models  
energy efficient will save a lot of power. Simply said, energy efficiency is nothing but using less energy for doing the same  
function, in other words, eliminating energy wa ste. The power consumption of current consumer electronics has become a crucial 
design concern as the speed, mobility and compactness of these products have increased. 

 

Numerous approaches have been introduced in the past to improve energy efficiency across circuit, architectural, and system 

abstraction levels. An approach to decrease energy and power usage in the system model involves approximating the hardwa re. 
This method of approximation is suggested for designing the IEE754 floating point divider. The utilization of floa ting point blocks 

has grown in various applications, including arithmetic architecture, due to their low production cost and ease of use. In ar ithmetic 

digital design, the floatingpoint divider is considered a highly complex logic block. 

 
Current sensory data algorithms tend to be statistical in nature, which makes them able to perform approximate computations. 

In embedded devices, precision would  be repla ced by energy efficiency as approxima te computing continues to ga in popularity due 
to its low energy consumption. Attention has la tely focused on the design of approximation units, e.g. adder and multiplier. But one 
of the key operations in multimedia applications is division, especially with regard to floating point divisions. 

 
In recent work it has been attempted to speed up the division in order to allow approximation. In this study [1], they propose e 

FPAD, a novel approximation floating point divider based on the basic mathematical method of breaking down the mantissa  
division into a sequence of shifts and addition operations. A wide range of services is also offered by them. The FPAD is designed 
with a variety of errors and tradeoffs with the PDP. At each level of the proposed divider, a limit is set for inaccuracy. To increase 
the different areas, power, and delay, the number of adders at each levelm a y be changed. 

 
In this research [2], they are offering a revolutionary adjustment of the approxima tion coefficient that splits floating point data 

in an efficient and precise wa y. CADE removes the costly mantissa division and repla ces it with a single subtraction between two 
input operands mantissa. The tuning procedure consists of defining the amount of error, then correcting it by using both i n p u t 
mantissa's initial N bits. The CADE may be configured to vary degrees of precision depending on the N va lue. According to our 
findings, CADE is the first floating point divider to include a new GPU knob for configuring the amount of approximation at  
runtime based on the application/user accuracy requirements. 
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 In this paper, the main a im is to reduce the error and power consumption of the floating point divider. By 

studying different algorithms for floating point division and the main brief from it is the floating point dividers 

mantissa consumes more power and energy and is the ma in block that is responsible for the obtained error rate. This 

leads to finding a different algorithm for floating point division, which has fewer errors, power and energy than the 

current ones. In order to reduce the error rate, approximate calculations are performed. Since the mantissa is the ma in 

block of implementation so we primarily focused on mantissa block and performed different operations to analyze the 

error, power, utilization and dela y of system. The a im of this work is to approximate the floating point divider, 

analyze and compare the power, accuracy and error rates of the proposed model. 

 
II. METHODOLOGY 

2.1 IEEE-754 FLOATING POINT REPRESENTATION 

In order to separate decima l and floating point va lues, the floating point representation of a number represents where the po int 
should be indicated. In order to allocate the va lues mentioned, a specific number of bits is allocated to the representation. It's where 
the float point has to float rather than being a fixed point. This is one of the ma in differences in representation by fixed and float 
points. For floating point, we use the IEEE-745 format because it conta ins various set formats and operation modes that are widely 
used in a number of hardware applications. 

 
IEEE-754 floating point representation can be represented in two different precisions SINGLE PRECISION [32 bit] and 

DOUBLE PRECISION [64 bit]. The three main components of IEEE-754 floating point representation are SIGN  BIT, 
EXPONENT and MANTISSA. Sign bit is a single bit value that represents whether the given number is positive or negative. If th e 
bit va lue is '0' then the number is said to be positive number. Exponent bits are the bits that represent both positive and n ega tive  
values that describe where the floa ting point (or decima l point) needs to be pla ced. Represented as power of 2. Mantissa bits are the 
bits that describe the floating point numbers of binary values, always positive. This part holds the main bits of the number. 

 
The precision ma inly differs by its size i.e. the bit size. In single precision the total float point representation is a 32 -bit 

representation. As said earlier they contain sign, mantissa and exponents bits. This contains 1 sign bit, '23' mantissa bits and '8' 
exponent bits. This precision is also called binary 32. In the 24 -bit mantissa, the MSB (most significant bit) is always '1' so this bit 
need not to be stored. So though theoretically the mantissa is a 24 -bit va lue but technically mantissa is a 23-bit value. So, this MSB 
'1' is called as "Hidden bit". As the exponent is an 8 -bit value the range of value it can hold is 2 ^ (-126) to2^ (127). 

 
In double precision the total floa t point representation is a 64 -bit representation. The total bit size of double precision is twice 

that of single precision, that is why this is called double precision. As said earlier they contain sign, mantissa and exponent bits.The  
below dia gram depicts the distribution of the three in a 64 -bit single precision representation. This conta ins '1' sign bit, '52' mantissa bits 
and '11' exponent bits as shown. This precision is also called as binary64.In the 53 -bit mantissa, the MSB (most significant bit) is 
always '1' so this bit need not to be stored. So though theoretically the mantissa is a 53 -bit va lue but technically mantissa is a 52-bit 
value. So, this MSB '1' is called as "Hidden bit". As the exponent is an 11 -bit value the range of va lue it can hold is 2 ^ (-1022) to2^ 
(1023). 

 

For converting a given decimal number into a floa ting point representation we need to follow certa in steps. Firstly, we need to 
convert the decima l number into binary number then normalize the binary value resulting in an exponent va lue (in integer) and 
mantissa value (in binary). In the given formula , S represents the sign bit, M represents the mantissa and E represents the exponent 
value. We use a formula as shown 

Number = (-1) ^ (s)*(1.M) *2^ (E - 127) 

 
 

2.2 FLOATING POINT DIVISION 

 
Let us consider two numbers X & Y ,floating point representation of these numbers is as follows: X =(-1)Sx*(1.Mx)*2(Ex-127) 

and Y =(-1)Sy*(1.My)*2(Ey-127) If we divide the two equations X/Y the resultant is Z =(-1)Sz*(Mx)/(My)*2(Ey-Ex). 
The following are few steps to perform generalized floating point division: 
Step-1: Output of sign bit is XOR of the input sign bits i.e. Sz =Sx xor Sy. 

Step-2: Exponent is Ex =(Ey-Ex) +bias. [for single precision the bias value is +127]. 
Step-3Mantissa Division Mz =(Mx)/(My). This is the general binary division of the two input mantissas. 

Normalization: This is the case where the final output is normalized. We need to normalize by moving the mantissa towards the 
left and reducing the final exponent value. This step is not mandatory, if required we need to perform this operation. 

Percentage Error: 
Percentage Error= (Actual value –  Obtained  value)/Obtained  value *100% 

 
III. PROPOSED ALGORITHMS 

IEEE 754 floating point number (X31,X30,…...X0) consists of 3 parts i.e. sign(S31), exponent(E30,E29,...E23) and Mantissa 

(M22,M21,….M0). The operation that we perform is floating point division. 
 

3.1 ALGORITHM-1: DIVIDE & SUBTRACT 

 
Figure-3.1 shows a block diagram for the proposed algorithm -1. This illustrates the whole system architecture in which 

operations are carried out for each block. 
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Figure-1: Block diagram of Algorithm-1 

 
Sign Bit: The sign bit operator of the divider output is "Exor". We perform Exor operation of both the inputs i.e. S Z=SX XOR 

SY gives the sign bit value of the divider output. 
 

Exponent Bit: The exponent bit is deducted by comparing the input mantissas. During this comparison we will be having two 
cases - 

 

CASE 1:MX < MY: In this case we subtract the two input exponent va lues and then a ga in subtract 1 from the obta ined va lue. 
And the key point here is we should always add the bia s to the exponent to get the stored va lue. So, the final exponent va lue of the 

divider output is EZ=EX – EY -1. 

 
Case 2: MX>MY: In this case we just need to subtract the two input exponent values. And the bias va lue which is + 127 should 

be added to the exponent to get the stored value. So, the final exponent value of the divider output is E Z = EX – EY 

 

Mantissa Bit: As mentioned earlier in the notation of mantissa bits, the mantissa bits are (M22,M21,….M0). In the proposed  
algorithm, we consider the first eight input bits are chosen for division and the rest of the 15 bits are chosen for subtract ion. This is 
done to reduce the hardwa re and power consumption. The 8 - bit division is done by considering the hidden bit also. As the division 
operation consumes a lot of power and indeed requires a lot of hardwa re to implement the 32 - bit division. So, the final operation 
is (MZ22MZ21....MZ0) = (MX22MX21....MX17)/ (MY22MY21....MY17) +((MX16MX15...MX0)- (MY16MY15 MY0)). The final divider outputs 
are obtained from the proposed "Algorithm 1". 

 

3.2 ALGORITHM-2:DIVIDE & ALTERNATE ‘10’ 
 

Figure-3.2 shows a block diagram for the proposed algorithm -1. This illustrates the whole system architecture in which operations are 
carried out for each block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2: Block diagram of Algorithm-2 

 
Sign Bit: The sign bit operator of the divider output is "Exor". We perform Exor operation of both the inputs i.e. S Z=SX XOR 

SY gives the sign bit value of the divider output. 
 

Exponent Bit: The exponent bit is deducted by comparing the input mantissa. During this comparison we will be having two  
cases - 

 
CASE 1:MX < MY: In this case we subtract the two input exponent va lues and then a ga in subtract 1 from the obta ined va lue.  

And the key point here is we should always add the bia s to the exponent to get the stored va lue. So, the final exponent va lue of the 
divider output is EZ=EX – EY -1. 
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Case 2: MX>MY: In this case we just need to subtract the two input exponent values. And the bias va lue which is + 127 should 
be added to the exponent to get the stored value. So, the final exponent value of the divider output is E Z = EX – EY . 

 
Mantissa Bit: As mentioned earlier in the notation of mantissa bits, the mantissa bits are (M 22, M21,….M0). In the proposed 

algorithm, we consider the first eight input bits to be chosen for division and the rest of the 15 bits are not considered fo r any of the 
operation. The 8 - bit division is done by considering the hidden bit also. This is valid as the output of the divider is mostly based 
on the first few MSB va lues of the mantissa. And for the final result the rest of the bits i.e. the bits left after storing t he division 
output are made a lterna te ‘10’ (1010101...). This is done to reduce the hardwa re and power consumption. As the division opera tion 
consumes a lot of power and indeed requires a lot of hardware to implement the 32 - bit division. So, the final operation is 
MZ22MZ21....MZ0) = (MX22MX21....MX17)/ (MY22MY21 MY17) +”1010101010101010”. The   final divider outputs are   obtained from 
the proposed "Algorithm 2". 

 

3.3 ALGORITHM-3: DIVIDE & ZERO 

 
Figure-3.3 shows a block diagram for the proposed algorithm -1. This illustrates the whole system architecture in which operations 

are carried out for each block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure-3: Block diagram of Algorithm-3 

 
Sign Bit: The sign bit operator of the divider output is "Exor". We perform Exor operation of both the inputs i.e. S Z=SX XOR 

SY gives the sign bit value of the divider output. 
 

Exponent Bit: The exponent bit is deducted by comparing the input mantissa. During this comparison we will be having two 
cases - 

 
CASE 1:MX < MY: In this case we subtract the two input exponent va lues and then a ga in subtract 1 from the obta ined va lue.  

And the key point here is we should always add the bia s to the exponent to get the stored va lue. So, the final exponent va lue of the 

divider output is EZ=EX – EY -1. 
 

Case 2: MX>MY: In this case we just need to subtract the two input exponent values. And the bias va lue which is + 127 should 
be added to the exponent to get the stored value. So, the final exponent value of the divider output is E Z = EX – EY . 

 
Mantissa Bit: As mentioned earlier in the notation of mantissa bits, the mantissa bits are (M 22, M21,….M0). In the proposed 

algorithm, we consider the first eight input bits to be chosen for division and the rest of the 15 bits are not considered fo r any of the 
operation. The 8 - bit division is done by considering the hidden bit also. This is valid as the output of the divider is mostly based 
on the first few MSB va lues of the mantissa. And for the final result the rest of the bits i.e. the bits left after storing the division 
output are made zeros (0000000...). This is done to reduce the hardwa re and power consumption. As the division operation 
consumes a lot of power and indeed requires a lot of hardwa re to implement the 32 - bit division. We then introduced a look up 
table into the algorithm to provide operational range without requiring more time and la rge gate count which results in reduc ing the 
cost of operation. This look up table includes a comparison of mantissa for further operation. 

 

We have two  cases for mantissa  operation- 

CASE-1 Mx < My: In this case we use the output from the previous block as it is without any further operation and consider this 

as the finalmantissa of the divider output. 

CASE-2 Mx > My: In this case we use a shift operator to the output obtained from the previous block i.e. we shift the number 1 

bit towards the left, and then this output is considered as the finalmantissa of the divider output. 

So, the final operation is 
 

(MZ22MZ21....MZ0) =  (MX22MX21....MX17)/  (MY22MY21..MY17)    +”0000000000000000” 

The final divider outputs are obtained from the proposed "Algorithm 3”. 
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IV. RESULTS &ANALYSIS 

4.1ERROR ANALYSIS 

Error ana lysis is ana lyzing how much percentage error rate has been obta ined for each algorithm. As said earlier we have three 
different proposed algorithms and two existingalgorithms for comparison. 

 
 Algorithm-1 Algorithm-2 Algorithm-3 

Percentage Error Rate 6.0% 5.9% 0.36% 

Table-1: Error rates of three proposed algorithms 
 

According to the above table, Algorithm 3 gives a very low percenta ge error rate among all algorithms and actually makes an 
appreciable improvement in accuracy. Although the error rates of all three algorithms should be taken into account, since eac  h 
algorithm has an error rate below 10 %, in order to produce a high performance model, it is necessary to have minima l errors. So, in 
our case the algorithm-3 which is given an error rate of 0.36% for N=8 bits (bit size) will definitely be the best model. The error  
rate is also reduced by increasing the number of bits, but this increases hardwa re and power consumption due to a division block. 
For both error rate and power consumption, it would therefore be reliable to restrict the bit size to ‘8'. 

 

4.2 COMPARISON OF POWER, UTILIZATION & DELAY b/w THE THREE PROPOSED ALGORITHMS 

 

The corresponding reports of the three algorithms after simulation are given below. 

 
 Algorithm-1 Algorithm-2 Algorithm-3 

Power Report 25.403W 13.808W 11.274W 

Device Utilization Report 92 LUT’s 76 LUT’s 85 LUT’s 

Delay Report 14.061ns 12.457ns 9.264ns 

Table-2: Comparison of  three algorithms 
 

4.3 POWER CONSUMPTION ANALYSIS 

 

 

 

 

 

 

 

 

 

 

 

 
Figure-4: Output obtained  from  proposed  divider design 

 
 

 
Figure-5: P ower consumption by proposed divider design 
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The final output of the approximate divider is shown in fig-4.1. This output is represented in binary format. The output is 
approximated giving a high accuracy and less error rate. For the power ana lysis, fig-4.2 is the power consumption summary of the 
proposed approximate divider which is 11.260W and this power is split into two categories: dynamic and static. The static and  
dynamic power distributions are 99% and 1% respectively. Because the dynamic power is more than the static power, we can say 
that the device has high performance. Because of the leakage current, this device has an extremely low static power consumption.  
The existing system power consumption is 33.356W which is high. And our design uses power of 11.260W that indicates that we  
have reduced the power consumption to more than 50%, which is highly reliable. 

 
V. CONCLUSION 

In this paper, we proposed a noval method for design of approximate division algorithm. Our method has been shown to 
perform better in terms of error rate, accuracy and energy consumption compared to many existing methods such as CADE, FPAD 
etc. When compared to the existing floating point division. We have observed a 50% decrease in power consumption while 
ma inta ining the error percentage at 1%. This can further be done by reducing the size of mantissa input selection for division. This 
can be consider as the finalapproximate algorithm for floatingpoint divider. 
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