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Abstract - The Arithmetic Logic Unit (ALU) stands as a pivotal subsystem within processors, playing a crucial role in 

executing arithmetic and logical functions essential for digital system operations across a multitude of devices such as 

calculators, cell phones, and computers. However, conventional ALUs constructed using non-reversible logic gates are 

notorious for their substantial power consumption, presenting a pressing need for more energy-efficient alternatives in 

digital system design. In response to this challenge, our project proposes the development of a 32-bit ALU utilizing reversible 

logic gates, with the dual objective of reducing power consumption and enhancing computational performance. By 

embracing the principles of reversible logic gates, our proposed 32-bit ALU seeks to revolutionize digital system design by 

offering a solution that not only minimizes power consumption but also enhances computational efficiency. In addition to 

mitigating energy concerns, we aim to expand the functionality of the ALU by incorporating a comprehensive set of 16 

distinct operations, further elevating its utility and versatility in various computing applications. Through this innovative 

approach, we strive to establish a new paradigm in ALU design, one that prioritizes both power efficiency and computational 

prowess. The integration of reversible logic gates into the architecture of our 32-bit ALU represents a significant step 

towards realizing the vision of low-power digital systems without compromising computational capabilities. With meticulous 

attention to detail and a focus on innovation, our project aims to contribute to the advancement of digital system design, 

addressing the critical need for energy-efficient solutions in today's technology-driven world.  
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1. INTRODUCTION 
 

The ALU, a core CPU component, handles arithmetic and logical operations on binary numbers. Its functions include 

addition, subtraction, multiplication, division, AND, OR, XOR, and NOT. Built with combinational logic circuits, it 

processes inputs from the CPU's control unit and registers using logic gates. The bit width determines the size of binary 

numbers it can process at once. Advances aim to enhance speed, efficiency, and parallelism, with specialized operations 

for specific tasks. New methods like reversible logic gates aim to cut power consumption while maintaining 

performance, crucial for modern computing efficiency. 

 

1.1 Arithmetic Logic Unit 

 

The Arithmetic Logic Unit (ALU) is a central component of a CPU, responsible for executing arithmetic and logical 

operations on binary numbers. It encompasses functions such as addition, subtraction, multiplication, division, and logical 

operations like AND, OR, XOR, and NOT. Composed of combinational logic circuits, the ALU processes inputs from 

the CPU's control unit and registers through logic gates. Its bit width determines the size of binary numbers it can handle 

in one operation. Advances in ALU design aim to improve speed, efficiency, and parallelism, with specialized operations 

tailored for specific tasks. Emerging techniques, like reversible logic gates, seek to reduce power consumption while 

maintaining computational performance. Ultimately, the ALU significantly influences the performance and efficiency of 

modern computing systems. 
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Fig.1.1: Basic Block Diagram of ALU 

2. EXISTING METHOD 
 
To design a 32-bit irreversible ALU with 16 operations, one would start by defining the supported operations, which 

could encompass arithmetic, logical, and comparison operations. The ALU would have two 32-bit inputs and one 32-

bit output. Components for arithmetic operations (addition, subtraction, multiplication, division), logical operations 

(AND, OR, XOR, NOT), shifts (left, right), and comparisons (greater than, less than) would be implemented. Control 

logic would be devised to select operations based on input signals. Ensuring irreversibility involves employing 

irreversible algorithms or logic gates. Extensive testing and documentation are crucial for verifying the correctness and 

functionality of the ALU. 

 
Fig. 2.1: Implementation diagram of 32-bit ALU 

 

The diagram represents a 32-bit Arithmetic Logic Unit (ALU), a pivotal component of a CPU responsible for arithmetic 

and logical operations on binary data. Composed of individual 1-bit ALUs, it processes data in 32-bit chunks. Control 

signals dictate specific operations, with inputs including operands, control signals, and carry-in, and outputs comprising 

results, carry-out, and status flags. Through bitwise operations, it manipulates individual bits, handling tasks like logical 

AND and arithmetic operations with carry propagation. This design underscores how complex operations are 

decomposed into smaller units for efficient data processing within a computing system. 

    

3.PROPOSED METHOD 
   

3.1 Reversible logic gates 
 

Reversible logic, characterized by the property that each input vector produces a unique output vector, is gaining 

significance in various future computing technologies. Its implementation is indispensable for realizing quantum 

computing. The primary objectives behind designing reversible logic circuits include reducing quantum cost, circuit 

depth, and the number of garbage outputs. Reversible circuits serve as the fundamental building blocks of quantum 

computers, given that all quantum operations are reversible. However, reversible logic circuits are subject to two key 

constraints: 
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1. Fan-out limitation: Unlike conventional logic circuits, reversible logic circuits cannot have fan-out, meaning 

that a signal cannot be duplicated. 

2. No feedback or loops: Reversible logic circuits cannot incorporate feedback or loops in their design. 

3. When designing reversible logic circuits, it's essential to ensure the following characteristics: 

4. Minimal usage of reversible gates: Utilize the smallest possible number of reversible gates to optimize circuit 

efficiency. 

5. Minimal generation of garbage outputs: Limit the production of garbage outputs, which are outputs that do not 

contribute to the desired computation and may degrade circuit performance. 

6. Minimal reliance on constant inputs: Reduce the reliance on constant inputs to streamline circuit operation and 

improve resource utilization. 
 

3.1.1 NOT Gate 

 

The simplest reversible gate is the NOT gate, which operates on a single input. In a 1x1 gate setup, the NOT gate has 

zero quantum cost. Its function is basic: if the input is A, then the output P is the opposite of A, meaning if A is 0, then P 

is 1, and if A is 1, then P is 0. This gate's simplicity and lack of quantum cost make it fundamental in various circuit 

designs. 

 
Fig 3.1.1: Not gate 

 

3.1.2 Feynman Gate 

 

The Feynman gate, also recognized as the Controlled NOT gate, is a 2x2 reversible gate extensively utilized for fan-out 

purpose in computing. With inputs labeled as A and B, it produces outputs P = A and Q = A ⊕ B (where ⊕ denotes 

XOR). Its quantum cost is one making it the singular 2x2 reversible gate accessible, hence frequently selected for fan-out 

operations across diverse circuit designs. 
 

 
                          

Fig 3.1.2:  Feynman Gate 

 

3.1.3 Toffoli Gate 

 

The Toffoli gate, also known as the CCNOT gate, is a 3x3 gate with inputs labeled as A, B, and C, producing outputs P 

= A, Q = B, and R = A.B ⊕ C (where ‘.’ represents logical AND & “⊕” denotes XOR). It holds a quantum cost of 5 

and produces 2 garbage outputs. Invented by Tommaso Toffoli, it is recognized as a universal reversible logic gate, 

meaning that any reversible circuit can be constructed solely using Toffoli gates. 
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Fig 3.1.3: Toffoli gates 

 

 

 

 
 

3.1.4 Peres Gate 

 

The Peres gate, also referred to as the 3x3 reversible gate, operates on inputs A, B, and C, yielding outputs P = A, Q = A 

⊕ B, and R = A, B ⊕ C (where ⊕ signifies XOR and, represents logical AND). With a quantum cost of 4, it stands out 

for its efficiency, often making it a preferred choice in various circuit designs. Notably, a single Peres gate is sufficient 

to design a half adder due to its minimal quantum cost. 
 

 
 

                                                           Fig 3.1.4: Peres Gate 
 

3.1.5 Fredkin Gate 

 

The Fredkin gate, also known as the controlled swap gate or CSWAP gate, is a reversible three-bit gate in quantum 

computing and reversible computing. The Fredkin gate performs a controlled swap operation on its three input bits, 

depending on the state of the control bit. If the control bit is set to 1, it swaps the second and third bits. If the control bit 

is 0, it leaves the bits unchanged. 

 
                                                                 Fig 3.1.5: Fredkin Gate 
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3.2  32-bit Reversible ALU 

 
 

 
 

Fig. 3.2.1: Implementation diagram of 1-bit Reversible ALU 

 
 

 

1-bit ALU embodies flexibility and efficiency in digital systems, handling arithmetic, basic logic, advanced logic, and 

specialized operations within a single hardware unit. ARITH block executes arithmetic operations based on ASEL [1:0] 

control signal, adapting to diverse computational needs. BASIC LOGIC block manages fundamental logic functions 

like AND, OR, XOR, etc., selected via BLSEL [1:0]. LOGIC block tackles complex logical tasks like multiplexing and 

shifting, guided by LSEL [1:0]. OTHER block caters to specialized functions such as signal conditioning and data 

conversion, controlled by OSEL [1:0]. Dynamic SEL [1:0] signals enable seamless mode transitions, optimizing 

resource usage and minimizing hardware overhead. This modular design reduces complexity, power consumption, and 

enhances scalability, ideal for various applications from embedded systems to high-performance computing. 

 

 
Fig 3.2.2: Implementation diagram of 32-bit Reversible ALU 

 
 

The 32-bit ALU specializes in arithmetic and logical operations on binary data, consisting of 32 individual 1-bit ALUs. 

Each 1-bit ALU processes a pair of input bits and performs operations determined by function signals. Carry-out from 

each ALU propagates to the next, enabling multi-bit arithmetic and logical operations. Results from all ALUs are 

consolidated into the 32-bit output bus. In contrast, the multi-function digital logic unit offers flexibility in handling 

diverse operations, while the 32-bit ALU focuses on fixed-width computations. Both units serve as fundamental 

components in digital system design. 

 

Table 1.1 Truth Table of 32-bit ALU 
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The ALU has two 32-bit input lines labelled “A” and “B”. Each bit from the A and B inputs (a0 to a31 and b0 to b31) 

is connected to individual 1-bit ALUs. There are four control signals. These likely determine the operation performed 

by the ALU.The ALU features two 32-bit inputs and employs four selection lines for executing 16 operations using 

reversible logic gates. However, the table outlining these operations. 

The provided table outlines a set of control signals and their corresponding operations within a digital system, 

likely part of an Arithmetic Logic Unit (ALU) or a similar computational unit. Here's a brief explanation of 

each operation: 

0000 (sum): Adds two operands, a and b, to produce their sum. 

0001 (a - b): Subtracts operand b from operand a to yield the result. 

0010 (a *b): Bit by Bit Multiplication which yields the product as a result. 

0011 (a | b): Performs a bitwise OR operation between operands a and b. 

0100 (~a):  Computes the bitwise complement of operand a. 

0101 (R0):  Returns the value stored in register R0. 

0110 (~ (a ^ b)): Performs a bitwise XNOR operation between operands a and b. 

0111 (~(a&b)): Performs a bitwise NAND operation between operands a and b. 

1000 (Clear): Returns a 32-bit zero value. 

1001 (~ (a | b)): Performs a bitwise NOR operation between operands a and b. 

1010 (a&b): Performs a bitwise AND operation between operands a and b. 

1011 (IO_STS): Returns the value of the IO_STS register. 

1100 (INC): Increments the value of a by 1. 

1101 (b*1): Multiplies the contents of b by one time. 

1110 (a ^ b): Computes the bitwise XOR of operands a and b. 

1111 (a*1): Multiplies the contents of b by one time. 
 

4. DESIGN METHODOLOGY 

The methodology for the project involves a systematic approach to design, implement, and evaluate a 32-Bit ALU 

utilizing reversible logic gates. Initially, a thorough literature review is conducted to understand the current state of the 

art in reversible logic gates, ALU design, FPGA implementation, and related topics. Subsequently, specific design 

specifications and requirements are defined, encompassing supported arithmetic and logical operations, input-output 

formats, and performance targets such as speed, power consumption, and delay. With these specifications in place, the 

logic design of the 32-Bit ALU is developed, focusing on designing individual functional blocks like adders, multipliers, 

and logical gates while ensuring compatibility with reversible logic principles. Following this, the designed ALU is 

implemented on an FPGA platform using hardware description languages (HDL) and synthesis tools. Rigorous 

verification and testing procedures are then carried out, involving both simulation and hardware testing, to validate 

functionality and assess performance metrics. Comparative performance evaluation is conducted, comparing the 
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reversible 32-Bit ALU with traditional non-reversible designs in terms of power consumption, dissipation, speed, and 

delay. Based on the evaluation results, optimization techniques are explored to enhance the efficiency and effectiveness 

of the reversible ALU design. Throughout the process, comprehensive documentation is maintained, peaking in a 

detailed report outlining the methodology, findings, and conclusions of the project, aimed at distribution to relevant 

stakeholders and contributing to advancements in low-power computing and digital system design. 

 

                                                     Fig 4.1: Full adder and Full subtractor 

 

In Figure 4.1, a full adder/subtractor is designed using Feynman gates and Perse gates. The selection between addition 

and subtraction operations is determined by the control line. If the control signal is set to 0, the circuit performs addition. 

Conversely, if the control signal is set to 1, the circuit performs subtraction. 

 

                                                                         Fig 4.2: Multiplier  

The multiplier block depicted in Figure 4.2 accepts two inputs, labeled as A and B, and executes the multiplication 

operation based on these inputs. A bit-by-bit multiplication takes place in this block.                                                      

 

                                                                Fig 4.3: OR Operation 

Figure 4.3 illustrates an OR operation block, where a Fredkin gate is employed to execute the logical OR operation. The 

Fredkin gate, configured with two inputs labeled A and B, performs the OR operation on these inputs. 

                          

                                                        Fig 4.4: NOT Operation 
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Figure 4.4 shows Not operation. It takes single input A. It performs not operation on input A.      

 
      

 

                                                                        

 

 

 

                                       
                                                             Fig 4.5: Buffer 

 

 

Figure 4.5 shows Buffer operation. It takes single input A. It performs read operation on input A. 

                          

  

 

 

 

                                                Fig 4.6: AND Operation 

Figure 4.6 illustrates an AND operation block, where a Peres gate is employed to execute the logical AND operation by 

passing input c as zero. The Peres gate, configured with three inputs labeled A, B and C, performs them AND operation 

on these inputs.                              

        

      

 

 

                                              Fig 4.7: XOR Operation 

Figure 4.7 illustrates an XOR operation block, where a Peres gate is employed to execute the logical XOR operation. 

The Peres gate, configured with three inputs labeled A, B and C, performs them XOR operation on these inputs. 
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5.SCHEMATIC VIEWS 
                

 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Fig 5.1: RTL schematic of 32-bit reversible ALU   
 

Figure 5.1 shows RTL Schematic of 32-bit reversible ALU. A 32-bit reversible ALU involves employing reversible 

decoder-controlled combinational circuits, presenting significant advantages. Notably, it slashes dynamic power 

consumption by 1.6 times, utilizes merely 3% of FPGA memory, and conserves a substantial 91% of space in contrast 

to conventional designs. To summarize, the integration of reversible logic, efficient decoding, and optimized power 

utilization enhances computational efficiency in the ALU's RTL schematic. 
 

 

 

 

                            Fig 5.2: Technology schematic of 32-bit Reversible ALU 

Figure 4.2 shows Technology schematic of 32-bit reversible ALU. The technology schematic of a 32-bit Reversible ALU 

illustrates how its components are laid out and interconnected. It integrates reversible logic principles and decoder-

controlled circuits to perform operations efficiently. Gates like Toffoli and Fredkin enable invertible operations, while 

decoders select operations based on control signals. Efficiency is a priority, with gate-level optimization and layout design 

http://www.jetir.org/


© 2024 JETIR April 2024, Volume 11, Issue 4                                                                        www.jetir.org(ISSN-2349-5162) 

 

JETIR2404757 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h487 

 

minimizing power, area, and latency. Techniques to optimize memory and area usage reduce FPGA resource consumption, 

enhancing compactness and efficiency. Thorough simulation and verification processes ensure performance 

enhancement, focusing on computational speed, reliability, and scalability. 

6.SIMULATION RESULTS 

 
    

              Fig 6.1: Output waveform of first 8 operations.   
 

 
 

           Fig 6.2: Output waveform of next 8 operations.  
 

The simulation waveform represents an overview of control signals used in digital systems, each corresponding to 

specific operations. Binary codes are employed to represent these signals, helping configure component behavior such 

as the ALU. Understanding these signals is essential for designing efficient digital systems, enabling engineers to create 

custom instructions and manage data flow effectively. In essence, the table serves as a fundamental guide for 

implementing and interpreting control signals in digital system design. 
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6.CONCLUSION 
 

In this paper we had implemented a 32-bit Reversible ALU using Peres, Fredkin, Feynman and Toffoli Gates. The main 

moto of this paper is   to improve the performance of ALU.  The latest design outperforms previous ones in power 

efficiency and conducts a comparative analysis of reversible and irreversible gates' delay and power dissipation. 

Remarkably, it utilizes just 3% of the FPGA's total area, demonstrating significant area optimization. Notably, 

irreversible gate logic shows a substantial decrease in delay from 10.636ns to 5.255ns and power dissipation from 

22.488W to 1.136W. 

 

  1.2 Comparison Table of Reversible and  Irreversible ALU Parameters 

 

Parameters 
32-bit ALU 

Irreversible gates 

32-bit ALU  

Reversible gates 
 

Power 22.488W 1.136W  

Delay 10.636ns 5.255ns  

Area(LUT’S) 243 7  

 

 

As this design is based on basic reversible gates, furthermore this approach will extend to other circuit designs like 

encoders, and also the gates like CNOT, DNG, HNG can be further used in order to reduce the power, delay and Area 

further showcases the adaptability and versatility of reversible logic. It highlights how fundamental principles can be 

creatively applied to various levels of circuit complexity, paving the way for innovative solutions in logic design. 
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