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Abstract :  In this paper, the authors provide the generalized Ulam - Hyers stability of a additive functional equation which is 
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Quasi beta Banach Space, Intuitionistic Fuzzy Banach Space, Fixed point. 

I. INTRODUCTION 

During the past eight decades, many authors have extensively studied the stability problems of several functional 

equations in [2,19,20,26,29,30]. The generalized terminology Ulam-Hyers stability comes from these chronological backgrounds. 

These terminologies are also applied to the case of other functional equations. More detailed definitions of such terms 

[1,17,18,21,22,24,25,31-35]. 

The famous Cauchy additive functional equation is   

                                                                       
2 2

1 1

R R

R R

A u A u
 

 
 

 
  .                                                                                 (1.1) 

Its stability in various settings were inspected in [3,20,22,28.31,32]. Several other types of additive functional equations in 

various normed spaces were discussed by Aczel, Dhombres [1], Arunkumar [3-13]. Bodaghi [15-16], Lee [23], Rassias [27-28] .  

Theorem 1.1 [18,25] (The alternative of fixed point) Let (𝑋, 𝑑) be a complete generalized metric space. Let 𝐽: 𝑋 → 𝑌 be a strictly    

contractive mapping with Lipschitz constant 𝐿 < 1.Then for each given element 𝑥 ∈ 𝑋, either  

𝑑(𝐽𝑛𝑥, 𝐽𝑛+1𝑥) = ∞ 

for all non negative integers n.  or there exists positive integers 𝑛0 such that  

[FP1] 𝑑(𝐽𝑛𝑥, 𝐽𝑛+1𝑥) < ∞ for all 𝑛 ≥ 𝑛0. 

[FP2] The sequence {𝐽𝑛𝑥} converges to a fixed point 𝑦∗ of J. 

[FP3] 𝑦∗ is the unique fixed point of J in the set 𝑌 = {𝑦 ∈ 𝑋/𝑑(𝐽𝑛0𝑥, 𝑦 < ∞)}. 

[FP4] 𝑑(𝑦, 𝑦∗) ≤ (
1

1−𝐿
)𝑑(𝑦, 𝐽𝑦) for all  yϵX. 

 

 

I.I SUM OF n NATURAL NUMBERS  

The sum of n natural numbers formula is used to find 1 + 2 + 3 + 4 +..... up to n terms. This is arranged in an arithmetic 

sequence. Hence we use the formula of the sum of n terms in the arithmetic progression for deriving the formula for the sum of 

natural numbers. Sum of n natural numbers can be defined as a form of arithmetic progression where the sum of n terms are 

arranged in a sequence with the first term being 1, n being the number of terms along with the nth term. The sum of n natural 

numbers is represented as [n(n+1)]/2. 

 

In this paper, the authors provide the general solution and generalized Ulam - Hyers stability of a additive functional 

equation which is originating from sum of ascending and descending N natural numbers  
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   .                                                    (1.2) 

in various Banach Spaces with the help of two different methods.  

II. GENERAL SOLUTION  

In this part, we consult about the general solution of functional equation (1.2) by taking E and S be real vector spaces. 

Theorem 2.1.  If :A E S  be a function agreeable the functional equation (1.1) if and only if :A E S  be a function agreeable 

the functional equation (1.2) for all 1, , Nu u E . 

Proof. By data, if :A E S  be a function agreeable the functional equation (1.1). Altering,  1 2,u u  by  0,0 ,  ,u u ,  ,u u

 ,2u u in (1.1) and for any positive integer  , one can achieve                                                                                          

                                              0 0; ; 2 2 ; 3 3 ; ; .A A u A u A u A u A u A u A u A u u E                                          (2.1) 

Substituting  1 2,u u by  1 2 3, Nu u u u    in (1.1) using (2.1) as well as (1.1), we attain  

                                                 1 2 3 1 2 3 ; .N NA u u u u A u A u A u A u u E                                                       (2.2) 

Interchanging  1 2 3, , , , Nu u u u  by  1 2 31 ,2 ,3 , , Nu u u N u  in (1.1)  and using (2.1), we land 

                                            1 2 3 1 2 31 2 3 1 2 3 ; .N NA u u u N u A u A u A u NA u u E                                          (2.3) 

Again, Interchanging  1 2 3, , , , Nu u u u  by  1 1,( 1) , ,1N NN u N u u  in (1.1) and using (2.1), we arrive  

                                          1 1 1 1( 1) 1 ( 1) 1 ; .N N N NA N u N u u NA u N A u A u u E                                            (2.4) 

Adding (2.3) and (2.4), we see :A E S  agreeable the functional equation (1.2) for all 1, , Nu u E . 

Conversely, by data, if :A E S  be a function agreeable the functional equation (1.2). Altering,  1 2 3, , , , Nu u u u  by 

 0,0,0, ,0 ,  , ,0, ,0u u ,  , ,0, ,0u u  ,2 ,0, ,0u u in (1.2) and for any positive integer  , one can achieve                                                                                          

                                   
1

0 0; ; 2 2 ; 3 3 ; ; ; .
u

A A u A u A u A u A u A u A u A u A A u u E 
 

 
          

 
                   (2.5) 

Substituting  1 2 3, , , , Nu u u u by 2

1, ,0, ,0
2

u
u
 
 
 

 in (1.2) using (2.5), we see :A E S  agreeable the functional equation (1.1) 

for all 1 2, .u u E  

III STABILITY RESULTS: BANACH SPACE 

In this part, we study the generalized Ulam – Hyers stability in Banach space using direct and fixed point methods. In order to 

prove the stability results, we take that T be a normed space and M be a Banach space.  

III .1 HYERS DIRECT ANALYSIS.  

Theorem 3.1: Let :A T M  be a function fulfilling the inequality 

                             1 1

1 1 1

1 1 , , ; , ,
N N N

R R R N N

R R R

A Ru A N R u N A u u u u u T
  

   
           

   
                                   (3.1) 

where  : 0,NT   be a function with the condition  

                              
   1

1

, , 1
lim 0; ; 1; , ,

2

CD CD

N

NCD
C

M u M u N N
M D u u T

M

 
      .                                              (3.2) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                            
 

 
 

1

2

, ,1
; lim ; .

2

JD JC CD

JD CD
CD

J

M u M u A M u
A u Y u Y u u T

M M M







                                         (3.3) 

Proof. Substituting  1 2 3, , , , Nu u u u by  , , , ,u u u u  in (3.1), one can arrive that 

                             
1

1 2 3 ( 1) 1 1 , , ;
N

R

A u u u N u A N u N u u N A u u u u T


               ; 

which implies                                                      

        2 1 2 3 1 , , ; .A N u N N A u u u u T           

By definition of M in (3.2), which gives 

      
   

         
1 1 1 1

, , , , ;
2 2 2 2

N N N N
A u A u u u A M u MA u u u u T
   

           
  

                          (3.4) 

It follows from (3.4), that  

                                                                
1 1

, , ; .
2

A M u A u u u u T
M M

                                                                  (3.5) 

Once can verify for any positive integer C , (3.5) can be generalized as  
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 1
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; .
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C
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J

M u M u
A M u A u u T

MM M






                                                       (3.6) 

Replacing 1C
u M u  and divided by 1CM in (3.6), one can have that 

                                      
 1 1

1 1

1 1 1

1

0

, ,1 1 1
; .

2

J C J C
C

C C C

C c c J C
J

M u M u
A M u A M u u T

MM M M

 




 



                                       (3.7) 

Letting 
1C   in (3.7), one can see that the sequence  

1 C

C
A M u

M

 
 
 

 is a Cauchy sequence and converges to  Y u M . So, 

define a mapping :Y T M by  

                                                                           
 

lim ; .

C

C
C

A M u
Y u u T

M

                                                                          (3.8) 

Approaching limit C  tends to infinity in (3.7) and using (3.8), one can attain that 

                                                                   
 

0

, ,1
; .

2

J J

J
J

M u M u
A u Y u u T

M M






                                                     (3.9) 

Now, to prove the existence of  Y u  satisfies the functional equation (1.2), changing  1, , Nu u  by  1, ,C C

NM u M u  and 

divided by 
CM in (3.1), one can obtain that 

        1 1

1 1 1

1 1
1 1 , , ; , , .

N N N
C C C C C

R R R N NC C
R R R

A M Ru A M N R u N A M u M u M u u u T
M M  

   
           

   
      (3.10) 

Approaching limit C  tends to infinity in (3.10) and using (3.8), one can see that  Y u  satisfies the functional equation (1.2). It is 

easy to verify that the existence of  Y u  is unique, it follows form (3.8), (3.9) and for any positive number 
1C  , we have   

   
             1 1 1 1 1 1 1 1

1 1 1 1 1 1 1
0

' ' ' , ,1
' ;

C C C C C C C CJ J

C C C C C C CJ
J

Y M u Y M u Y M u A M u Y M u A M u M u M u
Y u Y u

MM M M M M M M

 






          

for all .u T  Taking limit 1C  tends to infinity in the above inequality, one can see the desired result. So, (3.3) holds for 1.D    

Alternatively, interchanging 
u

u
M

  in (3.14), one can arrive that 

                                                  
1

, , ; .
2

u u u
A u M A u T

M M M

   
       

   
                                                                  (3.12) 

Once can verify for any positive integer C , (3.12) can be generalized as  

                                                
1

1
, , ; .

2

C
C J

C J J
J

u u u
A u M A M u T

MM M M

   
        

   
                                               (3.13) 

The rest of the proof is analogous to that of preceding case. So, (3.3) holds for 1.D   Hence the proof is complete.  

Example 3.2: Let :A T M  be a function fulfilling the inequality 

                                1

1 1 1

1 1 ; , , ; 0.
N N N

R R R N

R R R

A Ru A N R u N A u u u T
  

   
             

   
                                 (3.14) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                                               ; .
2 1

A u Y u u T
M


   


                                                                             (3.15) 

Corollary 3.3: Let :A T M  be a function fulfilling the inequality 

              1

1 1 1 1

1 1 ; , , ; 0; 1.
N N N N

H

R R R R N

R R R R

A Ru A N R u N A u u u u T H
   

   
              

   
                              (3.16) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                                           ; .
2

H

H

u
A u Y u u T

M M


   


                                                                             (3.17) 

Corollary 3.4: Let :A T M  be a function fulfilling the inequality 

           1

1 1 1 1

1 1 ; , , ; 0; 1.R

N N N N
H

R R R R N R

R R R R

A Ru A N R u N A u u u u T H
   

   
              

   
                             (3.18) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                                          
1

; .
2

R

R

H
N

H
R

u
A u Y u u T

M M


   


                                                                    (3.19) 
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Corollary 3.5: Let :A T M  be a function fulfilling the inequality 

       1

1 1 1 1

1 1 ; , , ; 0; 1.
NN N N

H

R R R R N

R R R R

A Ru A N R u N A u u u u T NH
   

   
              

   
                                  (3.20) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                                              ; .
2

NH

NH

u
A u Y u u T

M M


   


                                                                      (3.21) 

Corollary 3.6: Let :A T M  be a function fulfilling the inequality 

           1

1 1 1 11

1 1 ; , , ; 0; 1.R

NN N N N
H

R R R R N R

R R R RR

A Ru A N R u N A u u u u T H
   

   
              

   
                           (3.22) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                                   
1

1

; .

2

N

RR

N

RR

H

H

u
A u Y u u T

M M






   



                                                                        (3.23) 

Corollary 3.7: Let :A T M  be a function fulfilling the inequality 

         1

1 1 1 1 1

1 1 ; , , ; 0, 1.
NN N N N

NH H

R R R R R N

R R R R R

A Ru A N R u N A u u u u u T NH
    

    
                

     
            (3.24) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                                         
 1

; .
2

NH

NH

N u
A u Y u u T

M M

 
   


                                                                       (3.25) 

Corollary 3.8: Let :A T M  be a function fulfilling the inequality 

        1

1 1 1 1 11

1 1 ; , , ; 0; 1R R

NN N N N N
H H

R R R R R N R

R R R R RR

A Ru A N R u N A u u u u u T H
    

    
                

     
     .    (3.26) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                     
1

11

; .
2

N

R RR

N
R

RR

H H
N

H
HR

u u
A u Y u u T

M M M M





 
 

     
  

 

                                                         (3.27) 

III .2 RADUS FIXED ANALYSIS.  

Theorem 3.9: Let :A T M  be a function fulfilling the inequality (3.1) where  : 0,NT    be a function with the 

condition  

                     
 1

0 1 1

, , 1
lim 0; ; ;with 0or1; , , .

C C

e e N

NC
C

e

u u
M e u u T

M

  
       


                                            (3.28) 

If there exists  L L e  such that the functions  , ,u u  has the properties 

                        
1 1

, , , , and , , , , ; .
2

e e

e

u u
u u u u L u u u T

M M

 
          

 
                                         (3.29) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                     
 

   
 1

, , ; lim ; .
1

Ce
e

C
C

e

A uL
A u Y u u u Y u u T

L





 
      

   
                                           (3.30) 

Proof. Assume the set    : 0 0B a T M a    and introduce the generalized metric on the B  as 

          , inf 0, , , ; .d a b K a u b u u u u T      It is easy to see that  ,B d  is complete. Suppose assume a 

function :Z B B  by  
 

; .
e

e

a u
Z u u T


  


 For any ,a b B , by [25] it is easy to verify that  ,d Z a Z b L K  which 

implies    , ,d Z a Z b Ld a b . That is Z  is a strictly contractive mapping on B  with Lipschitz constant L .  

By definition of B , Z , (3.29) and (3.5) for 0e   it comes to 

                                                       11
, , , ; .eA M u A u L u u d Z A A L u T

M

                                                  (3.31) 

By definition of B , Z , (3.29) and (3.12) for 1e   it comes to 
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                                                       1, , , ; .eu
A u M A u u d A Z A L u T

M

 
      

 
                                               (3.32) 

From (3.31) and(3.32), we land that  

                                                                                      1, .ed A Z A L                                                                                        (3.33) 

By Theorem 1.1, the proof holds and this completes the proof.  

Corollary 3.10: Let :A T M  be a function fulfilling the inequalities (3.14), (3.16), (3.20), (3.24). Then there exists a unique 

additive mapping :Y T M which satisfying the functional equation (1.2) and the inequalities (3.15), (3.17), (3.21), (3.25).   

Proof. If we take the RHS of (3.1) as (3.14), (3.16), (3.20), (3.24) with replacing    1 1, , , ,C C

N e e Nu u u u    and dividing by  

C

e  one can see that (3.28) holds. By definition of  e , (3.29) and (3.30), the proof holds.  

 

IV STABILITY RESULTS: QUASI-BETA BANACH SPACE 

In this part, we study the generalized Ulam – Hyers stability in Quasi-Beta Banach space using direct and fixed point methods. In 

order to prove the stability results, we take that T  be a linear space and M  be a Quasi-Beta Banach space. For basic facts 

concerning Quasi-Beta Banach space and some preliminary results one can refere [17,31,35]. 

IV .1 HYERS DIRECT ANALYSIS.  

Theorem 4.1: Let :A T M  be a function fulfilling the inequality (3.1) where  : 0,NT   be a function with the 

condition  

                              
   1

1

, , 1
lim 0; ; 1; , ,

2

CD CD

N

NCD
C

M u M u N N
M D u u T

M 


 
      .                                              (4.1) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                        
 

 
 

1

2

, ,1
; lim ; .

2

J JD JC CD

JD CD
CD

J

K M u M u A M u
A u Y u Y u u T

M M M  







                                   (4.2) 

Proof.  By definition of M in (3.2), which gives 

     
   

         
1 1 1 1

, , , , ; .
2 2 2 2

N N N N
A u A u u u A M u MA u u u u T

 

   
           

  

                          (4.3) 

It follows from  (4.4), that  

                                                            
1 1

, , ; .
2

A M u A u u u u T
M M 

                                                                  (4.4) 

Once can verify for any positive integer C , (4.5) can be generalized as  

                                         
 1

0

, ,1 1
; .

2

j J J
C

C

C J
J

K M u M u
A M u A u u T

M M M  






                                                       (4.5) 

Corollary 4.2: Let :A T M  be a function fulfilling the inequality 

     
1

1

1 1 1

1

1 1

;

; 1;

1 1 , , ; 0;
; 1;

; 1;

N
H

R

R
N N N

N
HR R R N

RR R R

R

NN
NH H

R R

R R

u H

A Ru A N R u N A u u u T
u NH

u u NH



  



 



 


    
                  


  
   
 



   

 

       (4.6) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                                   

 

;
2

;
2

.

;
2

1
;

2

H

H

NH

NH

NH

NH

M K

u

M KM

A u Y u u T
u

M KM

N u

M KM

 

 

 

 









 


   


 


 

 


                                                                  (4.7) 

IV .2 RADUS FIXED ANALYSIS.  

Theorem 4.3: Let :A T M  be a function fulfilling the inequality (3.1) where  : 0,NT    be a function with the 

condition  

http://www.jetir.org/


© 2024 JETIR April 2024, Volume 11, Issue 4                                                            www.jetir.org(ISSN-2349-5162) 

 

JETIR2404772 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h643 
 

                     
 1

0 1 1

, , 1
lim 0; ; ;with 0or1; , , .

C C

e e N

NC
C

e

u u
M e u u T

M

  
       


                                            (4.8) 

If there exists  L L e  such that the functions  , ,u u has the properties 

                       
1 1

, , , , and , , , , ; .
2

e e

e

u u
u u u u L u u u T

M M

 
          

 
                                         (4.9) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                     
 

   
 1

, , ; lim ; .
1

Ce
e

C
C

e

A uL
A u Y u u u Y u u T

L





 
      

   
                                           (4.10) 

Corollary 4.4: Let :A T M  be a function fulfilling the inequalities (4.6). Then there exists a unique additive mapping 

:Y T M which satisfying the functional equation (1.2) and the inequalities (3.15), (3.17), (3.21), (3.25).   

 

V STABILITY RESULTS: INTUITIONISTIC FUZZY BANACH SPACE 

In this part, we  study  the generalized Ulam – Hyers stability in Banach space using direct and fixed point methods. In 

order to prove the stability results, we take that T  be a linear space, (𝑍, 𝛼, 𝛽)  is an intuitionistic fuzzy normed space and 
(𝑀, 𝛼′, 𝛽′)  be a Banach space. For basic facts concerning Intuitionistic Fuzzy Banach Space and some preliminary results one 

can refere [11,14,16,24,32-34].  

 

V.1 HYERS DIRECT ANALYSIS.  

Theorem 5.1  Let :A T M  be a function fulfilling the inequality  

                

        

        

1

1 1 1

1

1

1 1 1

1 1 , ' , , ,

; , , ; 0

1 1 , ' , , ,

N N N

R R R N

R R R

N
N N N

R R R N

R R R

A Ru A N R u N A u I u u I

u u T I

A Ru A N R u N A u I u u I

 

 

  

  

    
           

     
  

     
           

     

  

  

             (5.1) 

where  : 0,NT   be a function with the conditions  

                      
     

     

1 1

1

1 1

' , , , ' , , ,
; , , ; 0; 1

' , , , ' , , ,

CD CD CD

N N

N
CD CD CD

N N

M u M u I u u I
u u T I D

M u M u I u u I

 

 

   

    

    


                                (5.2) 

and 

                           
  

  
 1

1

1

lim ' , , , 1 1
; , , ; 0; ; 1.

2lim ' , , , 0

CD CD CD

N
C

N
CD CD CD

N
C

M u M u M I N N
u u T I M D

M u M u M I









  
     

  


                 (5.3) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 

                                          
       

       

, ' , , , 2
; ; 0

, ' , , , 2

A u Y u I u u I M
u T I

A u Y u I u u I M

 

 

    
  

    

                                                 (5.4) 

where 

                                                              

 
 

 
 

lim , 1

; ; 0.

lim , 0

CD

CD
C

CD

CD
C

A M u
Y u I

M
u T I

A M u
Y u I

M









 
  

  
  

  
  
   
    

                                                        (5.5) 

Proof. Substituting  1 2 3, , , , Nu u u u by  , , , ,u u u u  in (5.1), one can arrive that 

                               
          

          

2 1 2 3 1 , ' , , ,
; ; 0.

2 1 2 3 1 , ' , , ,

A N u N N A u I u u I
u T I

A N u N N A u I u u I

 

 

        
  

        

                                  (5.6) 

By definition of M in (5.6), which gives 

                                          

   
    

   
    

1 1
, ' , , ,

2 2 2
; ; 0.

1 1
, ' , , ,
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It follows from (5.7) that 
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                                            (5.8) 

Also, from (5.8) and (IFN4),(IFN10) of [11], which implies   
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                                          (5.9) 

Changing u by CM u  in (5.9) using (5.2), (IFN4), (IFN10) of [11], and again interchanging I  by 
CI  , we see that 
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                           (5.10) 

From (5.10) and (IFN5), (IFN11) of [11], one can arrive  
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(5.11) 

Interchanging u by 1C
M u  in (5.11) using (5.2), (IFN4), (IFN10) of [11], and again interchanging I  by 1CI  in the resulting       

inequality, one can obtain  
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                (5.12) 

The Cauchy criterion for convergence in IFBS shows that the sequence  
1 C

C
A M u

M

 
 
 

 is Cauchy sequence in M  with 

0 .  So, by definition of Cauchy in IFBS, we have   

                                                     

 
 

 
 

lim , 1

; ; 0; : .

lim , 0

C

C
C

C

C
C

A M u
Y u I

M
u T I Y T M

A M u
Y u I

M









 
  

  
  

   
  
   
    

                                         (5.13) 

Taking 1 0C   and c   in (5.12)  and using (5.13), we get that  
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                                          (5.14) 

Now, to prove the existence of  Y u  satisfies the functional equation (1.2), changing  1, , Nu u  by  1, ,C C

NM u M u  and 

divided by 
CM in (3.1), one can obtain that 
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 (5.16) 

Approaching limit C  tends to infinity in (5.16) and using (5.15), (5.13), (5.3), one can see that  Y u  satisfies the functional 

equation (1.2). It is easy to verify that the existence of  Y u  is unique, it follows form (5.13), (5.14) and for any positive number 

1C  , we have   
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Taking limit 1C  tends to infinity in the above inequality and using (5.2), (5.3), (5.13), one can see the desired result. So, Theorem  

holds for 1.D    

Alternatively, interchanging 
u

u
M

  in (5.8), one can arrive that 
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                                                   (5.17) 

The rest of the proof is analogous to that of preceding case. So, Theorem holds for 1.D   Hence the proof is complete.  

Corollary 5.2: Let :A T M  be a function fulfilling the inequality 
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       (5.18) 

Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality 
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                                                        (5.19) 

V .2 RADUS FIXED ANALYSIS.  

Theorem 5.3: Let :A T M  be a function fulfilling the inequality (5.1) where  : 0,NT    be a function with the 

condition  
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If there exists  L L e  such that the functions  , ,u u has the properties                   
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Then there exists a unique additive mapping :Y T M which satisfying the functional equation (1.2) and the inequality  
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                               (5.22) 

Proof.  The follows from similar tracing Theorem 3.9 with the help of Theorem 5.1.  

Corollary 5.4: Let :A T M  be a function fulfilling the inequalities (5.18). Then there exists a unique additive mapping 

:Y T M which satisfying the functional equation (1.2) and the inequalities (5.19).   

 

VI. Applications  

The functional equation (1.2) have the additive solution  A u u . By Theorem 3.1, 4.1, 5.1, it follows from (1.2) and 

number series formula, that   
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So, the functional equation (1.2) is originating from sum of ascending and descending N natural numbers with additive solution      

Natural numbers are the set of numbers that start from the numeral 1 and can extend up to infinity. The alphabet N is 

used as a symbol to address natural numbers. The natural number set does not include – negative numbers, fractional numbers, 

and decimal numbers. The properties of natural numbers are – closure property, distributive property, associative property, and 

commutative property. These properties make the natural number set unique. Natural numbers can be used in everyday activities. 

The two predominant daily applications of natural numbers are ordering and counting. 

 In Counting, we have to count the specific amount of objects by assigning the first object to the natural number 1. The 

next object will be assigned the number 2 and so on until all the objects are counted. Counting is also known as 

enumeration 

 In  Ordering is also known as ranking the objects. For orders, we have to first select the object with an extreme value 

(example – tallest, smallest, etc.) and we will assign this object with the natural number 1. The next object with the 

second-highest or extreme value will be assigned with the number 2 and so on the ranking will continue 
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