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l. INTRODUCTION

During the past eight decades, many authors have extensively studied the stability problems of several functional
equations in [2,19,20,26,29,30]. The generalized terminology Ulam-Hyers stability comes from these chronological backgrounds.
These terminologies are also applied to the case of other functional equations. More detailed definitions of such terms
[1,17,18,21,22,24,25,31-35].

The famous Cauchy additive functional equation is

A(guRjng(uR). (1.2)

Its stability in various settings were inspected in [3,20,22,28.31,32]. Several other types of additive functional equations in
various normed spaces were discussed by Aczel, Dhombres [1], Arunkumar [3-13]. Bodaghi [15-16], Lee [23], Rassias [27-28] .
Theorem 1.1 [18,25] (The alternative of fixed point) Let (X, d) be a complete generalized metric space. Let J: X — Y be a strictly
contractive mapping with Lipschitz constant L < 1.Then for each given element x € X, either
d(]nx,]n+1x) = o0

for all non negative integers n. or there exists positive integers n, such that

[FP1] d("x,J"1lx) < wforalln = n,,

[FP2] The sequence {J™x} converges to a fixed point y* of J.

[FP3] y*isthe unique fixed point of Jinthe set Y = {y € X/d(J™ox,y < =)}.

[FP4]  d(y,y") < (=) d(y,Jy) for all yeX.

1.1 SUM OF n NATURAL NUMBERS
The sum of n natural numbers formula is used to find 1 + 2 + 3 + 4 +..... up to n terms. This is arranged in an arithmetic
sequence. Hence we use the formula of the sum of n terms in the arithmetic progression for deriving the formula for the sum of
natural numbers. Sum of n natural numbers can be defined as a form of arithmetic progression where the sum of n terms are
arranged in a sequence with the first term being 1, n being the number of terms along with the nth term. The sum of n natural

numbers is represented as [n(n+1)]/2.

In this paper, the authors provide the general solution and generalized Ulam - Hyers stability of a additive functional
equation which is originating from sum of ascending and descending N natural numbers
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A(gRuRj+A(RzN:(N—R+l)uRJ:(N +1) > A(ug). (1.2)

=1 R=1
in various Banach Spaces with the help of two different methods.
Il. GENERAL SOLUTION

In this part, we consult about the general solution of functional equation (1.2) by taking E and S be real vector spaces.
Theorem 2.1. If A:E — S be a function agreeable the functional equation (1.1) if and only if A:E — S be a function agreeable

the functional equation (1.2) for all u,,---,u, € E.
Proof. By data, if A:E —S be a function agreeable the functional equation (1.1). Altering, (u;,u,) by (0,0),(u,—u),(u,u)

(u,2u) in (1.1) and for any positive integer &, one can achieve

A(0)=0; A(-u)=—A(u); A(2u) = 2A(u); A(3u) =3A(u); A(u)=6A(u); VueE. (2.1)
Substituting (uj,u, )by (u;,u, +U; +---+uy ) in (1.1) using (2.1) as well as (1.1), we attain
AU, +U, +Uy +--+Uy )= A )+ AU, )+ Al ) +--+A(uy ); Vu e E. (2.2)
Interchanging (u,,u,,Us,--,uy ) by (1u;,2u,,3u,,---,Nuy) in(1.1) and using (2.1), we land
ALy, +2u, +3uy +---+ Nuy ) =1A(u, )+ 2A(U, ) +3A(U; ) +---+ NA(u, ); Vu e E. (2.3)
Again, Interchanging (ul,uz,ug,---,uN) by (Nuy,(N-2)uy_,,---,1u,) in(1.1) and using (2.1), we arrive
A(Nuy +(N -1)uy_; +---+1u, ) = NA(uy )+ (N =DA(uy_, ) +---+1A(u,); Yu e E. (2.4)

Adding (2.3) and (2.4), we see A:E — S agreeable the functional equation (1.2) for all u,,---,u, €E.
Conversely, by data, if A:E —S be a function agreeable the functional equation (1.2). Altering, (ul,uz,ua,---,uN) by
(0,0,0,-++,0),(u,~u,0,---,0),(u,u,0,---,0) (u,2u,0,---,0) in (1.2) and for any positive integer &, one can achieve

A(0) = 0; A(-u) = ~A(u); A(2u) = 2A(u); A(31) =3A(u); A(6U)=BA(U); A(%):%A(u); Vu<E. (25)

Substituting (ul,uz,us,m,uN ) by (ul,“??,o,---,oj in (1.2) using (2.5), we see A:E — S agreeable the functional equation (1.1)

for all u,,u, e E.

111 STABILITY RESULTS: BANACH SPACE

In this part, we study the generalized Ulam — Hyers stability in Banach space using direct and fixed point methods. In order to
prove the stability results, we take that T be a normed space and M be a Banach space.

111 .1 HYERS DIRECT ANALYSIS.

Theorem 3.1: Let A:T——M be a function fulfilling the inequality

N N N
A(ZRURJ+ A[Z(N —R+1)URJ—(N +1) > AU ) < O (U, -,y ); YUy, Uy €T (3.1)
R=1 R=1 R=1
where ©:T" ——[0,0)be a function with the condition
_ O(M Py, MPuy ) N (N +12)
lim ) =00M=———;D=%1 Vu,,---,uy €T. (3.2)
C——>x M 2

Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality
1 & ©(M™y,,M*u) _ A(M®u)
[AW)-Y (u)| < = ; Y (u)= lim  VueT. (3.3)

2M , 5 MJD e MCD '

T2

Proof. Substituting (u;,u,,u,,---,uy )by (u,u,u,---,u) in (3.1), one can arrive that

Alu+2u+3u+-+Nu)+A(Nu+(N-Du+--+1u)—(N+1)> A(u)

R=1

<O(u,--,u); YueT;

which implies
[2A((1+2+3+-++N)u)=N (N +1) A(u)| < ©(u,-,u); VueT.
By definition of M in (3.2), which gives

A{{MJUJ—MA(U)‘ s%x(a(u,---,u):"A(M u)—MA(u)"g%x@(u,---,u); vueT (3.4)
It follows from (3.4), that
‘%A(M u)—A(u) Sﬁx@(u,m,u);Vu eT. (3.5)

Once can verify for any positive integer C, (3.5) can be generalized as
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1 1 <« O(M’u,-,M’u
‘WA(MCU)—A(U) YR ( VE );VUET. (3.6)

Replacing u=M % u and divided by M “ in (3.6), one can have that

1 ca ®(MJ+C1U MJ+C1U)
—x yVueT. (3.7
2M MG

1 . 1
HWA(MC Clu)—WA(Mclu)

Letting C, — oo in (3.7), one can see that the sequence {% A(MEC u)} is a Cauchy sequence and converges to'Y (u) eM . So,
define a mapping Y : T——M by
_ A(M®)

Approaching limit C tends to infinity in (3.7) and using (3.8), one can attain that

O(M’u,---,M"u)

[A)-Y ()] < —XZ

Now, to prove the existence of Y (u) satisfies the functional equation (1.2), changing (uy,--,u, ) by (MC U, -, M uN) and
divided by M in (3.1), one can obtain that

[;M Ru ]+A[ZM (N-R+1)u j(NJrl)gA(MCuR)

Approaching limit C tends to infinity in (3.10) and using (3.8), one can see that Y (u) satisfies the functional equation (1.2). It is

VueT. (3.9)

1
SWx@(MC Uy, MUy ); VU, -o,uy €T, (3.10)

easy to verify that the existence of Y( ) is unique, it follows form (3.8), (3.9) and for any positive number C, , we have
”Y(Mqu) Y (M%) || ||Y MSu) A(MCu) || ||Y (M) A'(Mclu)" 1.&60(M7 Gy, M%)
R o b e o ey EPRR

forall ueT. Taking limit C, tends to infinity in the above inequality, one can see the desired result. So, (3.3) holds for D =1.

. . . u . .
Alternatively, interchanging u = Hi in (3.14), one can arrive that
SEXG)(i,---,iJ;Vu eT. (3.12)
M M

A(u)-M A(%j ;

Once can verify for any positive integer C , (3.12) can be generalized as

J u .
A(u)—M A(M j<—XZM (MJWJ VueT. (3.13)

The rest of the proof is analogous to that of preceding case. So, (3.3) holds for D =—1. Hence the proof is complete.

Example 3.2: Let A:T——M be a function fulfilling the inequality

A(RZN;R“RJ“LA[RZN;(N —R+l)uRj—(N +1)RZN;A(UR)

Then there exists a unique additive mapping Y :T——M Which satisfying the functional equation (1.2) and the inequality

<Q; VYu,---,uy €T;Q>0. (3.14)

|Au)-Y (u)| < ‘vueT. (3.15)
Corollary 3.3: Let A:T——M be a function fulfilling the inequality
N N N
A(ZRURJ+ A[Z(N - R+1)UR]—(N +1)>" A(ug)
R=1 R=1 R=1
Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality
Qu]"
A(u)-Y(u)| £ ————
Corollary 3.4: Let A:T——>M be a function fulfilling the inequality
N N N
‘A(ZRuRjJr A(Z(N - R+1)uRj—(N +1)> A(ug)
R=1 R=1 R=1
Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality

JA@W)-Y (u)] < iw"‘*"R e (319)

N

< QY ug|™; VU Uy €T;Q>0H #1, (3.16)
R=1

VueT. (3.17)

N
< QY Jue [ W, Uy €T Q> 0 H #1. (3.18)
R=1
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Corollary 3.5: Let A:T——>M be a function fulfilling the inequality

A(%RURJ+A[§:(N —R+1)URJ—(N +1)gA(uR)

=1

N
< Q[ Jfuel"; up,+uy €T;Q2>0;NH =1, (3.20)
R=1
Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality
Q u NH
|Au)-Y (u)]| < Jul

2/M -M™|
Corollary 3.6: Let A:T——M be a function fulfilling the inequality

A(gRuR]+A(§:(N—R+1)uRj—(N+1)§;A(UR)

-1

;VueT. (3.20)

N N
SQE||UR"HR;VU1,...,UN GT;Q>0;;HR¢1' (3.22)

Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality
N HR
Q>

|AU)-Y (u)] < X ivueT. (3.23)

M _MZRzl

Corollary 3.7: Let A:T——M be a function fulfilling the inequality

N N N N N

A(ZRUR)+ A(Z(N - R+1)URJ—(N +1) > Aug ) < Q(ZHUR”NH +TTlue]” j; VU, Uy, €T;Q>0,NH =1, (3.24)
R=1 R=1 R=1 R=1 R=1

Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality

L Q(N+D)[u™
"A(U)—Y (U)” y 2|M M NH|

Corollary 3.8: Let A:T——>M be a function fulfilling the inequality

N N N N N N
A[ZRUR]+ A[Z(N - R+1)uR)—(N +1)> Aug ) < Q(ZHUR"HR +T T ™ J; VU, Uy €T;Q>0,) He =1, (3.26)
R=1 R R=1 R=1 R=1

=1 R=1

;VueT. (3.25)

Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality

0 ™ e

ORI ERbS

VueT. (3.27)

111 .2 RADUS FIXED ANALYSIS.

Theorem 3.9: Let A:T——M be a function fulfilling the inequality (3.1) where ®:T" —>[O,oo) be a function with the
condition

- G)(Eecul"“’EguN) 1 .

lim =0;E0=M;E12M;WIth e=0orl; Vu,---,uy eT. (3.28)

C—>w g

If there exists L =L(e) such that the functions ®(u,---,u) has the properties

1 u u 1
O(u,--,u)= EXG(MMJ and E—e®(Eeu,~-,Eeu): L ©(u,---,u); VueT. (3.29)
Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality
L . o A(ECY),
|A)-Y (u)] < { = L):lG)(u,---,u), Y(u)=_tim o VueT. (3.30)

Proof. Assume the set B= { a:T—>M/a(0)=O} and introduce the generalized metric on the B as

d(a,b):inf{ Ke(0,)/a(u)-b(u)|<®(u,-,u);ueT }.It is easy to see that (B,d) is complete. Suppose assume a

a(E,u)

e

implies d(Za,Zb)<Ld(a,b). Thatis Z is a strictly contractive mapping on B with Lipschitz constant L .

By definition of B, Z, (3.29) and (3.5) for e =0 it comes to

L AMu)-A()

I

By definition of B, Z, (3.29) and (3.12) for e=1 it comes to

function Z:B——B by Z(u)= ; YueT. Forany a,beB, by [25] it is easy to verify that d(Za,Zb)<LK which

<LO(U,---u)=d(ZAA)<L*; VueT. (3.31)
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o)

From (3.31) and(3.32), we land that

<O(u,--,u)=d(AZA) <L VueT. (3.32)

d (A,Z A) <L (3.33)
By Theorem 1.1, the proof holds and this completes the proof.
Corollary 3.10: Let A:T——M be a function fulfilling the inequalities (3.14), (3.16), (3.20), (3.24). Then there exists a unique
additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequalities (3.15), (3.17), (3.21), (3.25).
Proof. If we take the RHS of (3.1) as (3.14), (3.16), (3.20), (3.24) with replacing (ul,---,uN ) =(Ee°u1,---,E§uN) and dividing by

ES one can see that (3.28) holds. By definition of E,, (3.29) and (3.30), the proof holds.

IV STABILITY RESULTS: QUASI-BETA BANACH SPACE

In this part, we study the generalized Ulam — Hyers stability in Quasi-Beta Banach space using direct and fixed point methods. In
order to prove the stability results, we take that T be a linear space and M be a Quasi-Beta Banach space. For basic facts
concerning Quasi-Beta Banach space and some preliminary results one can refere [17,31,35].

IV .1 HYERS DIRECT ANALYSIS.

Theorem 4.1: Let A:T——M be a function fulfilling the inequality (3.1) where ®:T" —>[0,oo) be a function with the

condition

O(MPu,,--,M®uy)
M pCD

lim :O;M:M

C—b>x

Then there exists a unique additive mapping Y :T——M which satisfying the functional equation (1.2) and the inequality

;D==xL vu,,---,uy €T. (4.1)

w K’®(M ®u,---,M*u) _ (Mu)
||A(u)—Y(u)|| ZﬂMﬂ = M A ; Y(U)ZCI'_mmW; VueT. (4.2)
Proof. By definition of M in (3.2), which gves
N(N +1) N (N +1) 1 1 :
A{{ > JUJ_ > A(u) sz7x®(u,-~-,u):||A(M u)—MA(u)”gz—ﬂx@(u,m,u),VU eT. (4.3)
It follows from (4.4), that
HﬁA(M u)—A(u) sﬁw(u,---,u); YueT. (4.4)

Once can verify for any positive integer C, (4.5) can be generalized as
1 ¢t KIO(M'u,, M u)
2
2ﬁ M B M VA

H%A(Mcu)—A(u) < VueT. (4.5)

Corollary 4.2: Let A:T——M be a function fulfilling the inequality
Q;

N
QY Jlus[[*;H =1
R=1

VU, Uy €T, Q>0 (4.6)

HA(%RURJ+A(§‘(N R+1)u j N+1gA

R=1

N
Ql_[||uR||H ‘NH =1
R=1

N N
o S Tl Joe =
R=1 R=1

Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality
__Q .
2" M7 K|’

|QMW |
27 |M? —KM* |’
[Au)-Y (u)] < ol VueT. 4.7)
2/ |M7 —KMM|’
Q (N +1)|Ju
2 |M7 — KM’

"NH

IV .2 RADUS FIXED ANALYSIS.

Theorem 4.3: Let A:T——>M be a function fulfilling the inequality (3.1) where ©:T" ——[0,o0) be a function with the

condition
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i O(ESu,, -+ ESuy)

C—>» Eg

=0;E0=M;El=$;with e=0orl; vu,---,uy eT. (4.8)

If there exists L =L (e) such that the functions ©(u,---,u)has the properties

1 u u 1 )
®(u""’u):2_/?x®(m"”’ﬁj and E—EG)(EeU,-..,EeU):L@(u’...,u),VU cT. (49)
Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality
|_1- . A(Eecu)
|Au)-Y (u)| < O(u,+,u); Y(u)= lim e VueT. (4.10)
C—>»

Corollary 4.4: Let A:T——>M be a functlon fulfilling the inequalities (4.6). Then there exists a unique additive mapping
Y : T——M which satisfying the functional equation (1.2) and the inequalities (3.15), (3.17), (3.21), (3.25).

V STABILITY RESULTS: INTUITIONISTIC FUZZY BANACH SPACE

In this part, we study the generalized Ulam — Hyers stability in Banach space using direct and fixed point methods. In
order to prove the stability results, we take that T be a linear space, (Z,a,8) is an intuitionistic fuzzy normed space and
(M,a’,B") be a Banach space. For basic facts concerning Intuitionistic Fuzzy Banach Space and some preliminary results one
can refere [11,14,16,24,32-34].

V.1 HYERS DIRECT ANALYSIS.
Theorem 5.1 Let A:T——>M be a function fulfilling the inequality

a(A(ﬁ;RuR]+A(g (N-R+1)u j (N+1)RZN_‘IA(uR),|]m'(@(ul,---,uN),l)

. . . VU, uy €T 1 >0 (5.1)
ﬂ[A(ZRuR}rA(Z (N=R+1)u j (N +1) ZA J B(O(uy,-,uy ), 1)
R=1 R=1 =1
where @: TV ——[0,00) be a function with the conditions
a'(@(MCDu1,~~-,MCDuN),I)Za‘(goCD®(ul,~--,uN),I)
yVU, Uy €T 1 >0,D=+1 (5.2)
B(O(MPu,,-,MPuy ), 1) < B'(p0(uy, -,y ), 1)
and
lim o'(®(M“®u,---,M®u, ),MLI)=1
e ( ( ' N) ) VU, Uy €T 1 >00M =M;D:ﬂ. (5.3)

Cﬁﬂwﬁ'( O(M Py, M®Puy ),M®1)=0
Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality
a(A(u)-Y (u),1)<a'(O(u,u),21 M -g))

B(A(U)-Y (u), 1)< (O(u,-++,u),21 [M _M)};Vu eT;1>0 (5.4)

where

o ;VueT; Il >0. (5.5)
CIim B A( CDU) Y(u),IJ:O

Proof. Substituting (u;,u,,u,,---,uy )by (u,u,u,---,u) in (5.1), one can arrive that

a(2A((1+2+3+-+N)u)=N (N +1) A(u), 1) <a'(©(u,-u), 1)
N

+1)A(u), 1) <B'(O(u,+u),1)

;YueT;l >0. (5.6)
/;’(2A((1+2+3+---+ N)u)-N

By definition of M in (5.6), which gives

a{A([WJu]—MA(u),%] <a'(®(u,-,u),l)

YueT;l>0. (5.7
ﬂ(,{[m}}wwé}gﬂ-(@)(u,...,u),.)

It follows from (5.7) that
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a(A(M 1)-M A(u),Ej <a(O(uu).1)

;YueT;l >0. (5.8)
ﬁ(A(M u)-M A(u),lzj <B'(O(u,+,u),1)
Also, from (5.8) and (IFN4),(IFN10) of [11], which implies
1 I '
O{MA(M u)—A(u),m) <a'(®(u,-,u),1)
;YueT; 1 >0. (5.9

/{ﬁ A(M u)—A(u),Lj <B'(®(u,-,u),1)

2M
Changing uby M€u in (5.9) using (5.2), (IFN4), (IFN10) of [11], and again interchanging | by 1 ©° , we see that

1 . 1 | p° ,
G(WA(MC 1u)—WA(MCu),2|\f|OC+1j <a'(®(u,u),l)

1 ci 1 c | p° .
A A0 e A ) | <01

;YueT;l >0. (5.10)

From (5.10) and (IFN5), (IFN11) of [11], one can arrive

a(%A(MCu)—M(u),IJ=a£§ﬁA(MJ+lu)—ﬁA(MJu),cl IgoilJgc'la-(@(u,...,u),l)

& = VUeT;1>0
ﬂ(iA(Mcu)—M(u) Ij:ﬁ S oamtu) - am ), S g (0 u). 1)
MC ' L\ M ’JZOZMJA _J:O IR X
(5.11)

Interchanging uby M%u in (5.11) using (5.2), (IFN4), (IFN10) of [11], and again interchanging | by |  in the resulting
inequality, one can obtain

a(—l A(MEM® u)-

'\/|C|\/|C1 A(Mcl u),l)gal @(u,...,u)’

G

YueT;l >0. (5.12)

1 1
ﬂ(—A(MCMCI u)—Mq

IV A(M© u),ljsﬂ‘ @(u,-‘-,u),ic—

The Cauchy criterion for convergence in IFBS shows that the sequence {% A(MC u } is Cauchy sequence in M with

O<gp<1. So, by definition of Cauchy in IFBS, we have

lim a(A(&A:”)_v(u)J]:l

e
lim /{A(Mcu)—Y(u),l]zo
C—w M €

Taking C, =0 and ¢ — oo in (5.12) and using (5.13), we get that

a(A(u)-Y (u),1)<a'(O(u,--,u),21 (M -p))

B(A(U)-Y (u),1)<B'(O(u,-,u),21 (M-p))

Now, to prove the existence of Y (u) satisfies the functional equation (1.2), changing (u,,---,u, ) by (M° U, -, M° uN) and
divided by M€ in (3.1), one can obtain that

VYueT;1 >0Y: T——> M. (5.13)

};VUET;|>0 (5.19)
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a(%A(gMCRuRj (RZN; (N-R+1)M°® u] (N +1) RZN;A( Ug ). ! ]

<a'(O(M°u,-+,Muy),M°1)
yVUy,---,Uy €T, 1 >0. (5.15)

<p(O(ME U MEu, ) MC1)
Now
g (e
A e e o) o)
RCRED) NIUSISEIED) (AT
a(%A(gMCRuRj+ A[i (N-R+1)M° uJ e (VDY AMe )%]
o o o e ) 2
ﬁ(%A(gMC RURJ+%A(§_;(N—R+1)MCURJ—%(N +l)gA(M°uR),%j;VUl,---,uN eT:1 >0,

Approaching limit C tends to infinity in (5.16) and using (5.15), (5.13), (5.3), one can see that Y(u) satisfies the functional

equation (1.2). It is easy to verify that the existence of Y (u) is unique, it follows form (5.13), (5.14) and for any positive number
C, , we have

oA ol

[@(>M] WeTi50

@)= 00)2 1 () A ) 2o v () ) L0
:ﬂ'(Q(u,...,u),wJ

p 1
Taking limit C, tends to infinity in the above inequality and using (5.2), (5.3), (5.13), one can see the desired result. So, Theorem
holds for D =1.

Alternatively, interchanging u :% in (5.8), one can arrive that
al A(Mu)-M A(lj,l <a' @(i,...,i%
M) 2 M M
;yVu

ﬁ(A(M u)-M A[%)'Ej Sﬂ'(%ﬁwn%},q ;VueT;1>0. 61)

The rest of the proof is analogous to that of preceding case. So, Theorem holds for D =—1. Hence the proof is complete.
Corollary 5.2: Let A:T——>M be a function fulfilling the inequality
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a'(Q1)
a[A(g j (ZN R+1)u j(N+1)§_‘IA( R),u]w(gg"%n JH;tl
a-(gljnuR" IJ;NH .1
VU, uy €T 1 >0. (5.18)
B(Qr)
ﬂ(A[g j (RiN R+1)u j N+1%A j '(Qg"uR"“,lj;Hﬂ;
ﬂ{gfypdﬂl}NH¢x

Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality
a'(Q.21 M -1))
a(A(u)-Y (u)1) < @' (@N]u" 21 M =m*])

a' Q||u

"NH

21 [M-M"™)
;VYueT;l >0. (5.19)
B'(Q.21|M-1)
B(A(U)-Y (u),1) < B’
B

(Qfu

||NH

(
(
(QNJu™ 21 M -m*])
( 21 [M-M")

V .2 RADUS FIXED ANALYSIS.
Theorem 5.3: Let A:T——M be a function fulfilling the inequality (5.1) where @:T" —>[O,oo) be a function with the
condition

lim o'(©(M°u,,-+, My, ),M°1)=1

C—x

Cmeﬁ'(@(l\/lcul,---,lvlcuN),lvlcl):o

Ey =M E; =$;With e=0orl;Vu,---,u, €T;1 >0. (5.20)

If there exists L =L (e) such that the functions ®(u,--,u)has the properties

a'(@(u,---,u),I)za'(%x@(%,---,%j,l} d a'(Ei(a(Eeu,m,Eeu),|]:a'(L O (u,++,u),1)

e

£(0(u,+,u), I)=ﬂ'[%x®(%,...’%jl |j ﬁ'[Ei@(EeUr'wEeU), |]=ﬂ-(|_ O(u,+,u),1)

e

;YueT;1>0. (5.21)

Then there exists a unique additive mapping Y : T——M which satisfying the functional equation (1.2) and the inequality

a'(A(u)—Y(u),I)=a'u&}®(u,---,u),lj

 A(Efu)
Y (u)= lim 'YueT;l>0. (5.22)

,B‘(A(u)—Y(u),I):ﬂ'[{(lli—_z)}(a(u,---,u),I] o

Proof. The follows from similar tracing Theorem 3.9 with the help of Theorem 5.1.
Corollary 5.4: Let A:T——>M be a function fulfilling the inequalities (5.18). Then there exists a unique additive mapping
Y : T——M which satisfying the functional equation (1.2) and the inequalities (5.19).

V1. Applications
The functional equation (1.2) have the additive solution A(u) =u. By Theorem 3.1, 4.1, 5.1, it follows from (1.2) and

number series formula, that
(Lu+2u+-+Nu)+(Nu+(N=1)u+--+1u)=(N +1)(u+u+--+u)

N(N+1)u=N(N+1)u
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So, the functional equation (1.2) is originating from sum of ascending and descending N natural numbers with additive solution
Natural numbers are the set of numbers that start from the numeral 1 and can extend up to infinity. The alphabet N is
used as a symbol to address natural numbers. The natural number set does not include — negative numbers, fractional numbers,
and decimal numbers. The properties of natural numbers are — closure property, distributive property, associative property, and
commutative property. These properties make the natural number set unique. Natural numbers can be used in everyday activities.
The two predominant daily applications of natural numbers are ordering and counting.
v"In Counting, we have to count the specific amount of objects by assigning the first object to the natural number 1. The
next object will be assigned the number 2 and so on until all the objects are counted. Counting is also known as
enumeration
v"In Ordering is also known as ranking the objects. For orders, we have to first select the object with an extreme value
(example — tallest, smallest, etc.) and we will assign this object with the natural number 1. The next object with the
second-highest or extreme value will be assigned with the number 2 and so on the ranking will continue
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