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Abstract 

The proposed AI image segmentation using the U-Net architecture aims to address the challenge of accurate and efficient medical image 

analysis and Segmentation. Medical image segmentation involves identifying and delineating specific regions of interest within medical 

images, such as tumors, major organs, blood vessels, or other anatomical structures. This task is crucial for clinical diagnosis, treatment 

planning, and monitoring Medical image segmentation is critical in the proper analysis and diagnosis of a wide range of diseases and 

ailments. This project’s approach to medical picture segmentation that makes use of a "U"-shaped convolutional neural network architecture 

known as a U-Net. The proposed U-Net architecture takes advantage of its characteristic "U"-shaped design, which includes a contracting 

path for capturing contextual information and an expansive path for exact localization. This design enables the network to effectively 

recognize complicated structures and boundaries present in medical pictures by facilitating the extraction of both high-level and low-level 

elements. This approach might exhibit extraordinary skill in effectively segmenting medical images by utilizing the power of deep learning 

and neural networks, offering Better, Faster and Accurate results for diagnosis. 
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1. Introduction 

Identifying and isolating particular structures or regions within 

medical images is known as medical image segmentation, and 

it is a crucial step in both healthcare and medical imaging. 

Healthcare experts may precisely identify and localize 

abnormalities in the human body, such as tumors, lesions, or 

organ structures, thanks to medical image segmentation. For 

precise diagnosis and early disease detection, this accuracy is 

essential. Segmentation aids in the planning of treatments after 

a medical issue has been identified. Segmented images help 

surgeons, radiation therapists, and other medical professionals 

plan and carry out procedures precisely while limiting harm to 

healthy tissues. Clinicians can monitor the progression of 

diseases over time thanks to medical image segmentation. By 

contrasting segmented images from several time points, 

medical experts can assess the effectiveness of a treatment and 

make the necessary adjustments. 

Recent advancements in machine learning, especially deep 

learning, have greatly enhanced CAD(Computer aided 

diagnosis) systems. Deep learning models can automatically 

extract complex features from images and perform intricate 

pattern recognition, leading to improved accuracy. The 

integration of artificial intelligence (AI) into CAD is a growing 

trend. AI-powered CAD systems can continuously learn and 

adapt, becoming even more accurate over time.  

1.1 Overview of the proposed U-Net architecture 

The U-Net architecture is a type of convolutional neural 

network (CNN) that was created especially for tasks involving 

semantic segmentation in the study of medical images. In 2015, 

researchers at the University of Freiburg's Department of 

Computer Science presented it. The U-shaped architecture of 

the "U-Net," which comprises an encoding path and a decoding 

path, is where the name "U-Net" originates.  

 

Figure 1:U-net architecture visualized example  

We employed U-net architecture to ensure correct predictions 

and masks which further transfer to better segmentation. But 

before we can segment the image we need to classify if the 
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image has abnormality or not, for that we use a Transformers. 

Transformers is an innovative architecture that was initially 

developed for natural language processing and has found wide 

use in classification tasks across a variety of fields. Input 4 

encoding is the first step in the procedure. Here, inputs like text, 

sequences or images are transformed into embeddings that 

include semantic and positional information. Transformers use 

a multi-layer architecture with feedforward neural networks and 

self-attention to identify complex correlations in the input data. 

Their capacity to distinguish various elements of the input is 

improved by multi-head attention, and the addition of a 

classification head on top of the encoder makes predictions for 

classification tasks more accurate and precise. 

 

Figure 2: Example image of Practical application of working 

of a “U” shaped neural network for a masking segmentation 

task for microscopic images. 

1.2 Purpose and objectives of the research 

1. Medical Diagnosis and Treatment: This AI model's main goal 

is to help doctors diagnose and treat a variety of medical 

diseases. For a precise diagnosis and effective treatment 

planning, biomedical image segmentation can help detect and 

separate particular regions of interest within medical pictures, 

such as tumors, organs, or blood vessels.  

2. Improved Efficiency and Precision: The U-shaped neural 

network design, often known as a U-Net, is particularly suited 

for biomedical image segmentation because it can capture 

minute details while preserving spatial context. This results in 

improved precision and efficiency. The goal is to increase the 

segmentation process' accuracy and effectiveness, lowering its 

margin of error and giving medical practitioners more time.  

3. Automation and Workflow Improvement: AI models can 

improve healthcare practitioners' workflow by automating the 

picture segmentation process. This frees up radiologists and 

other medical specialists from spending a lot of time manually 

defining structures in images and allows them to concentrate on 

higher-level activities, interpretation, and decision-making. 

4. Early Disease Detection: It's important to identify diseases 

and abnormalities as soon as possible. Artificial intelligence 

(AI) models can assist in spotting small alterations in medical 

imaging that may be early indicators of diseases, potentially 

improving patient outcomes.  

5. Personalized Medicine: By customizing treatment strategies 

for individual patients, AI-based image segmentation can 

advance the field of personalized medicine. AI can assist in 

designing treatments that are particular to a patient's individual 

anatomy and condition by carefully studying and segmenting 

photographs.  

Medical image segmentation is a vital subject in the area of 

medical image analysis and it implies the recognition and 

definition of certain structures and regions of interest within 

medical imagery. Accurate segmentation is essential for tasks 

such as sickness diagnosis, treatment planning, and image-

guided therapy 

2. U-Net architecture: Characteristics and applications 

The U-Net architecture is a deep learning convolutional neural 

network (CNN) architecture that was meant for biomedical 

image segmentation but has since acquired applications in a 

range of different fields. U-Net is unique by its distinct design, 

which makes it especially effective for tasks requiring dense 

pixel-wise predictions, among them consider segmentation. 

Following are the main benefits as well as applications of the 

U-Net architecture:  

1. Encoder-Decoder Architecture: U-Net's architecture 

comprises an encoding algorithm route and the decoding route. 

The encoder path captures hierarchical features from the input 

image, diminishing the image's spatial resolution, while the 

decoder path steadily augments and combines features for 

creating a segmentation map.  

2. Skip Connections: One of U-Net's prominent features is the 

wide availability of skip connections. These connections bypass 

layers in the encoding and string together them instantly with 

like layers in the decoder. That allows the U-Net to continue 

preserving fine-grained spatial information, which is required 

in effective segmentation.  

3. Symmetric Architecture: The encoder and decoder paths are 

symmetrical, and which implies that the number of layers and 

feature maps on both sides is nearly the same. This symmetry 

assists in keeping the sense of spatial relationships between 

both input and output.  

4. Convolutional Layers: To extract features, U-Net primarily 

utilizes characteristic layers of convolution, often relying on 

smaller filter sizes. It can additionally utilize techniques which 

include individual normalization and This activation functions 

as well.  

5. The layers with numeric output in from of dimensions and 

features is:  

Initial Input:-  (128, 128, 2)  

Encoder Path(Contracting Path):- (64,64,X) 10 => (32,32,Y) 

=> (16, 16, Z)=> (8, 8, A)  

Bottleneck :- (8, 8, 512)  

Decoder Path (Expanding Path):-  (16, 16, B) => (32, 32, C) => 

(64, 64, D) => (128, 128, E)  

Final Output :- (128, 128, 4) 

3.  Existing challenges in medical image segmentation 

Medical image segmentation is a vital task for various 

healthcare applications, but it is filled with complications due 

to the complicated nature of medical representations and their 

need for high precision as well as dependability. Some of the 

present issues in the segmentation of medical images are 

described below:  

1. Variability in Anatomy and condition: Although human 

anatomy and illness varies extremely between individuals, 

creating one-size-fits-all segmentation models is challenging. 

Models should be adaptable to these changes. To fix this 

problem we re-train our model on a local dataset curated at the 

center of diagnosis or respective hospital or anywhere this 

model may be deemed viable for use. Re-training ensures that 
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the model is able to process and perform with the ailments and 

anomalies specific to the region or place of use.  

2. Annotated Data Scarcity: Annotating medical images is a 

costly and time-consuming activity. A shortage of labeled data 

could prevent the training process of neural network models, 

which often need big datasets. To solve this problem we had to 

find a dataset that was usable and even annotated but we were 

only able to find a dataset that was usable and could be trusted. 

The dataset in question is BRATS 2020.  

 
Figure 3: Usability index of the Dataset used This score is 

calculated by Kaggle.  

3. Imbalanced Datasets: Classification imbalanced issues in 

healthcare imaging are shared, with certain categories or zones 

of interest usually more frequently occurring than others. 

Models trained on biased datasets may struggle to classify 

minority groups effectively. The dataset was divided into a 

proper split of testing and training.  

4. Noisy and Low-Quality images: Medical representations 

may include several kinds of noise, objects of art, and low 

resolution, among other issues which may interfere with 

accuracy when segmenting. Noise treatment and image 

planning have significance but challenging responsibilities. 

 

3.1 How the proposed approach addresses current 

challenges. 

We examined how the suggested approach or solution 

addresses current hurdles or limitations in an identified domain. 

Consider how an eventual proposed procedure could address 

some of the previously mentioned difficulties in the framework 

of medical image segmentation:  

Challenge 1: Imbalanced Datasets. Proposed Approach: Utilize 

loss functions that resolve the problem of class imbalance, such 

as weighted loss or targeted loss, to give minority classes 

greater weight. To balance the dataset, consider methods such 

as oversampling, undersampling, or an equal amount of both of 

them.  

Challenge 2: Images with a lot of distortion and low resolution. 

Approach Proposed: Develop a robust preprocessing pipeline 

that includes noise reduction, contrast enhancement, and 

artifact removal. Increase the model's ability to resist common 

noise patterns and artifacts observed in medical images.  

Challenge 3: Real-time processing. Real-time or near-real-time 

processing of medical representations is often needed in clinical 

settings, putting restrictions on the computational efficiency of 

separation approaches.  

Challenge 4: Data Privacy and Security. The medical images 

contain confidential data about individuals. It can be 

challenging for one to guarantee the security and privacy of data 

if transmitting or employing data from medical imaging for 

investigations.  

Challenge 5: Scalability and generalization . Segmentation 

models that perform well on a specific data set or medical 

facility might not transfer well to other datasets or healthcare 

facilities. Scalability and abstraction are crucial for wide 

adoption. 

Here's an analysis of the approach's advantages, disadvantages, 

and potential effects.  

Benefits:  High Accuracy: U-Net is known for its exceptional 

accuracy in segmenting biomedical images. This is crucial in 

medical applications where precise identification of structures 

and anomalies is essential.  

Quick and Efficient: U-Net architecture allows for fast and 

efficient segmentation of images, making it suitable for real-

time or near-real-time applications, which can be crucial in 

medical decision-making.  

Customizability: U-Net is highly adaptable and can be fine-

tuned for specific biomedical imaging tasks. This flexibility 

makes it a versatile tool for a wide range of medical 

applications.  

Reduced Manual Labor: Using U-Net can significantly reduce 

the need for manual segmentation, saving time and labor for 

medical professionals who can then focus on more complex 

tasks.  

Improved Diagnosis: Accurate segmentation can lead to more 

accurate and earlier disease detection, which can ultimately lead 

to better patient outcomes and improved health. 

4. Methodology 

4.1 Data collection and preprocessing 

4.1.1  Types of medical images used  

All the imaging datasets have been segmented manually, by one 

to four raters, following the same annotation protocol, and their 

annotations were approved by experienced neuro-radiologists. 

Annotations comprise the GD-enhancing tumor (ET — label 4), 

the peritumoral edema (ED — label 2), and the necrotic and 

non-enhancing tumor core (NCR/NET — label 1), as described 

both in the BraTS 2012-2013 TMI paper and in the latest BraTS 

summarizing paper. The provided data are distributed after their 

pre-processing, i.e., co-registered to the same anatomical 

template, interpolated to the same resolution (1 mm^3) and 

skull-stripped.This year we provide the naming convention and 

direct filename mapping between the data of BraTS'20-'17, and 

the TCGA-GBM and TCGA-LGG collections, available 

through The Cancer Imaging Archive (TCIA) to further 

facilitate research beyond the directly BraTS related tasks.[1] 

4.1.2 . Data augmentation techniques 

data_transforms = transforms.Compose([ 

transforms.Resize((224, 224)),  

transforms.RandomHorizontalFlip(), 

transforms.RandomRotation(10),  

transforms.ToTensor(), 

transforms.Normalize(mean=[0.485, 0.456, 0.406], 

std=[0.229, 0.224, 0.225]))]  

Each stage contributes to data augmentation in the following 

ways:  

1) Resize: One frequent preparation step is to resize the image 

to a fixed scale (in this case, 224x224 pixels). It makes certain 

that every image that is supplied has the same dimensions, 

which can be crucial for deep learning models that require an 

input that remains the same size.  

2) Random Horizontal Flip: This transformation has a 50% 

chance of flipping the image horizontally, or mirroring it. By 

making the model invariant to object orientation, horizontal 

flips can enhance the model's capacity to recognize objects 

irrespective of orientation i.e. left or right.  
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3) Random Rotation: This stage rotates the picture at random, 

up to a maximum of 10 degrees in either direction. The model 

may be strengthened against changes in object orientation by 

applying random rotations. For instance, it guarantees that the 

model can identify objects in images independently of how they 

are oriented.  

4) ToTensor: Using this transformation, a PyTorch tensor is 

created from the image in question. Tensors are the standard 

input data format used by deep learning frameworks, thus this 

step is required to get the picture ready for model input.  

5) Normalize: The picture is normalized in the last stage. It 

divides by the standard deviation after deducting the mean. To 

make sure that the input data has a mean of around 0 and a 

standard deviation of roughly 1, this is a standard procedure. 

Normalization speeds up the model's training process and can 

enhance its cross-dataset generalization capabilities.  

6) Cross-dataset generalization capabilities refer to a machine 

learning model's ability to perform well on data from datasets 

that are different from the dataset on which it was originally 

trained. In other words, it measures how well a model can 

generalize its learned knowledge to new, unseen datasets.  

mean = np.array([0.485, 0.456, 0.406])  

std = np.array([0.229, 0.224, 0.225])  

images = (images.numpy().transpose((0, 2, 3, 1)) * std + 

mean).clip(0, 1)  

1)mean and std: During the first data preparation or 

augmentation procedure, the mean and standard deviation of the 

picture data are represented by these arrays. Images are 

normally standardized to have a standard deviation of around 1 

and a mean value of roughly 0. Deep learning models' training 

stability and convergence are frequently enhanced by this 

normalization.  

2) pictures: This variable generally holds a collection of 

normalized and enhanced pictures. 

3) Images from a PyTorch tensor can easily be converted to a 

NumPy array using the images.numpy() function. This is a 

more commonly utilized format for managing and processing 

photos.  

4) transpose((0, 2, 3, 1)): This line flips the NumPy array's 

dimensions, which is usually done to reorder the dimensions. 

To modify the form from (batch_size, channels, height, width) 

to (batch_size, height, width, channels), the dimensions are 

being rearranged in this instance.  

5) * std + mean: This line reverses the previous normalizing 

process. By multiplying the picture pixel values by the standard 

deviation and adding the mean value, it restores the image pixel 

values to their original range. This is significant because, in 

order for deep learning models to properly train and forecast, 

input data frequently has to fall inside a certain range.  

6) .clip(0, 1): This step is used to ensure that pixel values are 

within the valid range of 0 to 1. Values outside this range are 

clipped to 0 or 1. Clipping is necessary to handle any potential 

numerical artifacts introduced during the reverse normalization 

process.  

The Image plot method after completion of all data 

augmentation techniques and normalization and 

denormalization is done to label the image appropriately further 

aiding in diagnosis and anomaly detection.  

 
Figure 4: Image after Loading a batch of images and labels for 

visualization, Converting images to numpy arrays and 

denormalization, Creating a grid of images and Plotting 

images with labels. 

5. Implementation 

5.1 Overview 

U-Net is a convolutional neural network (CNN) architecture 

specifically designed for biomedical image segmentation tasks. 

It was first introduced by Ronneberger et al. in 2015 and has 

become a popular choice in the field due to its effectiveness in 

segmenting structures and objects in medical images, such as 

organs, tumors, cells, and more. 

 
Figure 5: Proposed architecture of Model “U” shaped neural 

network with input and output(illustrative).[2] 

 

5.2  Contracting and expansive paths  

Encoder Phase: In the encoder phase, the network processes the 

input image and gradually reduces the spatial dimensions while 

increasing the number of feature channels. This helps in 

extracting hierarchical features from the input image. In the 

code, the encoder phase is represented by the blocks of 
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convolutional layers followed by max-pooling layers. 

Specifically, the encoder includes conv1, conv2, conv3, conv5, 

and their respective pooling layers (pool, pool1, pool2, pool4). 

The convolutional layers in this phase have the role of capturing 

features at different scales, with each successive block 

capturing more abstract and high-level information.  

def build_unet(inputs, ker_init, dropout):  

conv1 = Conv2D(32, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(inputs)  

conv1 = Conv2D(32, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(conv1) 

pool = MaxPooling2D(pool_size=(2, 2))(conv1) conv = 

Conv2D(64, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(pool)  

conv = Conv2D(64, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(conv)  

pool1 = MaxPooling2D(pool_size=(2, 2))(conv)  

conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(pool1)  

conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(conv2) 

 pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) 

conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(pool2)  

conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(conv3)  

pool4 = MaxPooling2D(pool_size=(2, 2))(conv3) 21 

 conv5 = Conv2D(512, 3, activation = 'relu', padding = 

'same', kernel_initializer = ker_init)(pool4)  

conv5 = Conv2D(512, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(conv5)  

drop5 = Dropout(dropout)(conv5) 

Bottleneck Phase: The bottleneck phase is not explicitly 

labeled, but it is the part of the network that follows the last 

encoder block (conv5) before the decoder phase begins. This 

part acts as a bridge between the encoder and decoder. It 

contains a dropout layer (drop5) that helps regularize the 

network and can prevent overfitting. It is commonly used to 

ensure the network doesn't rely too heavily on a small subset of 

features.  

Decoder Phase: The decoder phase is responsible for 

upsampling the feature maps and restoring the spatial 

dimensions to generate the final segmentation map. It does this 

by mirroring the encoder structure and incorporating skip 

connections from the encoder to preserve fine-grained details. 

In the code, the decoder phase is represented by up7, up8, up9, 

and their corresponding concatenation and convolutional 

layers. The UpSampling2D layers upsample the feature maps, 

and the concatenate layers combine the feature maps from the 

corresponding encoder stage (e.g., conv3 is concatenated with 

up7). The decoder gradually reduces the number of feature 

channels while increasing the spatial dimensions.  

The final layer, conv10, uses a 1x1 convolution with a softmax 

activation to produce the output segmentation map. In this code, 

it is set to have 4 output channels, likely representing different 

classes or categories in the segmentation task.  

up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(UpSampling2D(size = 

(2,2))(drop5))  

merge7 = concatenate([conv3,up7], axis = 3)  

conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(merge7)  

conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(conv7)  

up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(UpSampling2D(size = 

(2,2))(conv7))  

merge8 = concatenate([conv2,up8], axis = 3)  

conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(merge8) conv8 = Conv2D(128, 

3, activation = 'relu', padding = 'same', kernel_initializer = 

ker_init)(conv8)  

up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(UpSampling2D(size = 

(2,2))(conv8))  

merge9 = concatenate([conv,up9], axis = 3)  

conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(merge9)  

conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(conv9)  

up = Conv2D(32, 2, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(UpSampling2D(size = 

(2,2))(conv9))  

merge = concatenate([conv1,up], axis = 3) conv = 

Conv2D(32, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(merge)  

conv = Conv2D(32, 3, activation = 'relu', padding = 'same', 

kernel_initializer = ker_init)(conv) conv10 = Conv2D(4, 

(1,1), activation = 'softmax')(conv)  

return Model(inputs = inputs, outputs = conv10)  

 
Figure 6: “U”-shaped neural network with all three phases viz. 

Encoder, Bottleneck, Decoder.  

 

5.3  Training process 

5.3.1 Loss functions and optimization algorithms 

Define loss function criterion = nn.CrossEntropyLoss()  

Define optimizer with a learning rate of 0.001 and model 

parameters  

optimizer = optim.Adam(model.parameters(), lr=0.001)  

Loss Function: The loss function nn.CrossEntropyLoss() was 

employed in the model's training. When identifying one of 

multiple classes in tumor classification, cross-entropy loss, also 

called log-likelihood loss, is currently used. The cross-entropy 

loss (log-likelihood loss) mathematically: The cross-entropy 

loss (CE) between the true class labels y and the predicted class 

probabilities p is given by: True Class Labels (y),Predicted 

Class Probabilities (p); 

CE(y, p) = -Σ (y_i * log(p_i))  

Where:  CE(y, p) is the cross-entropy loss.  
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y_i is the i-th element of the true class labels vector y (0 or 1). 

p_i is the i-th element of the predicted class probabilities vector 

p. 

It determines the negative log-likelihood of the true class labels 

and the softmax of the model's output (logits). The estimated 

class probabilities are encouraged to approximate the genuine 

class labels by the loss. 

Optimization Algorithm: The optimization algorithm used is 

optim.Adam. Adam (short for Adaptive Moment Estimation) is 

a popular optimization algorithm that combines the benefits of 

two other optimization methods: AdaGrad and RMSprop. It's 

widely used in deep learning for training neural networks. The 

optimizer is configured to optimize the model's parameters 

using the Adam algorithm with a learning rate of 0.001 (as 

specified by lr=0.001). It automatically adapts the learning rate 

during training based on the historical gradient information, 

which often results in faster and more stable convergence. 

5.3.2 Hyperparameter tuning  

Device: This specifies whether the model should be run on a 

CPU or a GPU. Running the model on a GPU can significantly 

accelerate training if a compatible GPU is available. It's a good 

practice to use GPU when available for deep learning tasks as 

it can speed up training times. Specific to our project we have 

decided to use GPU T4 x2 available for use in the Kaggle 

notebook environment. Efficient, high-throughput inference 

depends on a world-class platform. The NVIDIA ® Tesla® T4 

GPU is the world’s most advanced accelerator for all AI 

inference workloads. Powered by NVIDIA Turing™ Tensor 

Cores, T4 provides revolutionary multi-precision inference 

performance to accelerate the diverse applications of modern 

AI[3]. That gave us 32 gb of Graphic Processing unit memory. 

Criterion (Loss Function): It defines the loss function used to 

measure the difference between the predicted class probabilities 

and the actual target labels. In this code, Cross-Entropy Loss is 

used. Cross-Entropy Loss is a common choice for multi-class 

classification problems like tumor classification. It's 

appropriate for the task of classifying tumors into multiple 

categories.  

Optimizer: It specifies the optimization algorithm used to 

update the model's parameters during training. Here, the Adam 

optimizer is used. Adam (short for Adaptive Moment 

Estimation) is a popular choice for optimization in deep 

learning because it combines the benefits of both RMSprop and 

Momentum. It often converges faster and requires less tuning 

compared to other optimizers. The learning rate (lr) was set to 

0.1, which is a reasonable starting point for many tasks. 

However, the learning rate was adjusted during training to find 

the best balance between convergence and avoiding 

overshooting.  

Learning Rate (lr): The learning rate is the step size that the 

optimizer uses to update the model's parameters during training. 

It determines how quickly or slowly the model converges. The 

learning rate of 0.001 is a common starting point for many deep 

learning tasks. Values too high were leading to overshooting 

and slow convergence. 

5.3.3 Evaluation metric 

1. Training accuracy: This metric measures the proportion of 

correctly classified examples in the training dataset during the 

model training process. It indicates how well the model is 

learning from the training data. 

2. Training loss: Training loss represents the error or 

discrepancy between the predicted output and the actual target 

values on the training data. It is typically minimized during the 

training process to improve the model's performance. 

3. Validation accuracy: Validation accuracy assesses the 

model's performance on a separate dataset, known as the 

validation set. It measures the proportion of correctly classified 

examples in the validation set and helps evaluate the model's 

generalization ability. 

4. Validation loss: Similar to training loss, validation loss 

quantifies the difference between the model's predictions and 

the true labels on the validation dataset. It serves as a key 

indicator of how well the model is performing on unseen data. 

 
Figure 7: Jaccard index visualized for This model iteration. 

5. Jaccard index: The Jaccard index, also known as the 

Intersection over Union (IoU), is a metric commonly used for 

evaluating the accuracy of segmentation tasks, such as image 

segmentation or object detection. It calculates the ratio of the 

intersection of the predicted and true segmentation masks to 

their union, providing a measure of overlap or similarity 

between the predicted and ground truth regions of interest. 

Higher Jaccard index values indicate better segmentation 

accuracy. 

6.  Experimental Results 

6.1 Description of the dataset  

BraTS has always been focusing on the evaluation of state-of-

the-art methods for the segmentation of brain tumors in 

multimodal magnetic resonance imaging (MRI) scans. BraTS 

2020 utilizes multi-institutional pre-operative MRI scans and 

primarily focuses on the segmentation (Task 1) of intrinsically 

heterogeneous (in appearance, shape, and histology) brain 

tumors, namely gliomas.  

6.2 Training and validation results 

The results were a 0.7% training loss and training accuracy of 

99.82%. For validation it stood at 0.34% loss and 94.5% 

accuracy. Based on the training and validation data we 

presented, the U-Net model for tumor segmentation performs 

excellently.  

6.3 Qualitative analysis of segmentation outputs  

It is not possible to analyze and go through every image owing 

to the fact that the images are in tens of thousands combined but 

to check the models ability to perform in other organs as well 

we trained our model on a chest image XRay dataset[4]. The 

dataset contains x-rays and corresponding masks. Some masks 

are missing so it is advised to cross-reference the images and 

masks. The outputs of the three datasets we performed 
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segmentation tasks on are as follows: For the first dataset we 

have used BRATS2019 dataset to perform labeling tasks on a 

set of randomly selected images to make sure the model is 

capable of performing on real life data. 

 

6.4 Experiment Results 

 
Figure 8: Labeling task on random images from BRATS2019  

 

 
Figure 9: Multimodal image of a brain in an MRI to check for 

and choose the most relevant image to perform segmentation.  

 

 
Figure 10: Initialization of an MRI and its relevant masking 

task 

 
Figure 11: Actual segmentation task and pointing of the 

Tumor core from 3 different Axis provided in an MRI. 

 

 
Figure 12: The Graph of Accuracy, Loss,DICE coefficient and 

Jaccard index(IoU) of the segmentation done by transfer 

leaning model applied to BRATS2020 dataset. 

 

The training accuracy was 99.4% and validation accuracy was 

99.2%. The training loss was 0.03% and validation loss was 

0.02%. The training IoU was found to be 0.9920 this in the 

jaccard index means that the model was able to match 99.2% to 

the ground truth. Intersection over Union (IoU): The IoU is 

calculated as the ratio of the area of intersection (the overlap) 

between the predicted region and the ground truth region to the 

area of their union (the combined area). Mathematically, it's 

defined as:  

IoU = (Intersection Area) / (Union Area)  

IoU Range: The IoU value can range from 0 to 1. An IoU of 0 

indicates no overlap between the predicted and ground truth 

regions, while an IoU of 1 means a perfect match, where the 

predicted region perfectly aligns with the ground truth. 

Interpretation: In our case, an IoU of 0.9920 is very close to 1. 
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This indicates that the model's predictions are highly accurate 

and closely match the ground truth. In the context of image 

segmentation, this means that the model is doing an excellent 

job of segmenting objects or regions within the image, and there 

is a very high level of agreement between the model's 

predictions and the actual objects in the image.  

For the next illustration of our model working on many more 

images from the BRATS2020 database.[10] 

Then we were able to add and identify a dataset that contained 

good material and had a good usability rating. The database 

contains X-ray images in this data set that have been acquired 

from the tuberculosis control program of the Department of 

Health and Human Services of Montgomery County, MD, 

USA. This set contains 138 posterior-anterior x-rays, of which 

80 x-rays are normal and 58 x-rays are abnormal with 

manifestations of tuberculosis. All images are de-identified and 

available in DICOM format. The set covers a wide range of 

abnormalities, including effusions and military patterns. The 

data set includes radiology readings available as a text 

file.[4,5,6]. 

We also have shown adversarial learning with respect to our 

model. Adversarial learning methods are a promising approach 

to training robust deep networks, and can generate complex 

samples across diverse domains. They also can improve 

recognition despite the presence of domain shift or dataset bias: 

several adversarial approaches to unsupervised domain 

adaptation have recently been introduced, which reduce the 

difference between the training and test domain distributions 

and thus improve generalization performance[7]. 

The loss, DICE coefficient and accuracy were as follows.  

loss: 0.0147 - dice_coef: 0.9831 - accuracy: 0.9931 - val_loss: 

0.0899 - val_dice_coef: 0.9574 - val_accuracy: 0.9789  

Training Loss (0.0147): This is a measure which evaluates how 

well the U-Net model fits the training data. A smaller training 

loss suggests that the model predicts more accurately on the 

training set. A training loss of 0.0147 indicates that the model 

fits the training data quite satisfactorily in this instance.  

Validation Loss (0.0899): This is a metric which evaluates how 

effectively the model generalizes to previously unknown data, 

or the validation set. A reduced validation loss indicates that the 

model generalizes effectively and does not overfit. While 

significantly larger than the training loss, it is still modest, 

showing strong generalization.  

Coefficient Dice (Dice_coef): The Dice Coefficient (0.9831) is 

a measure that is often used for picture segmentation tasks. It 

computes the degree of similarity between the expected and true 

segmentation masks. A number close to 1 implies that the 

expected and actual masks are quite comparable. A training 

Dice 35 Coefficient of 0.9831 suggests that the segmentation 

masks of the model are on an equal basis close to the ground 

truth masks in this situation.  

Dice Coefficient of Validation (0.9574): Similarly, the 

validation Dice Coefficient assesses the similarity between the 

model's predictions and the ground truth in the validation set. A 

result of 0.9574 shows that the model's segmentation 

predictions are extremely similar to the ground truth in the 

validation set.  

Training Accuracy (0.9931): This measures the U-Net model's 

overall accuracy on the training data. It represents the 

percentage of accurately predicted pixels in the training set. An 

accuracy of 0.9931 indicates that the model is making reliable 

forecasts based on the training data.  

Validation Accuracy (0.9789): This is the accuracy of the 

model on the validation set, indicating how well it generalizes. 

A validation data accuracy of 0.9789 indicates that the model is 

making extremely accurate predictions on unseen data. 

 
Figure 14: Graphic representation of evaluation measures of 

the new model for the Chest Xray dataset. 

The outputs of Chest X-ray segmentation are: 

 
Figure 15: Lung X-ray segmentation using Adversarial 

learning and “U” shaped neural network model. 

7. Conclusion 

Our U-Net model is a huge step forward in the field of 

biomedical image segmentation. The potential for clinical 

integration and patient-specific applications is apparent. The 

training accuracy of 99.31% and validation accuracy of 94.50% 

of the model are not simply statistical successes; they represent 

a meaningful step toward extremely accurate and efficient 

diagnosis of diseases. U-Net models are resistant to variation 

because they can manage changes in picture quality, patient-

specific variances, and a wide range of anatomical components. 

Their architecture enables for strong performance by combining 

a contracting path for feature extraction with an expanded path 

for precise localization. 

We established a respectable degree of consistency between our 

model's predictions and the ground truth segmentations, with a 

Jaccard Index of 0.7500, demonstrating the dependability of our 

findings. These findings support the use of deep learning 

techniques in real-world healthcare situations. Our U-Net 

model, as shown in this project, represents an important step 

forward in increasing the diagnostic accuracy and relevance of 
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CAD systems. It demonstrates the promise of AI in boosting 

medical professionals' diagnostic capabilities, aiding early 

illness identification, and eventually improving patient care. 

This research provides the groundwork for more advanced, 

clinically integrated CAD systems, pointing to a future in which 

technology allows healthcare providers to make more accurate, 

fast, and patient-centered diagnostic judgments. Finally, our U-

Net model does not constitute the end result of our study, but 

rather its inception. It demonstrates the power of deep learning 

and its significance in the future of healthcare. We prefer to 

produce a strong tool that may support medical professionals in 

their diagnosis, assuring the greatest degree of precision and 

patient-specific care, as we keep striving to fine-tune our model 

and acquire more different training data. 

Appendix  

A. Detailed network architecture diagrams  

Figure 1:U-net architecture visualized example   

Figure 2:Example image of Practical application of working of 

a “U” shaped neural network for a masking segmentation task 

for microscopic images.  

B. Description of hyperparameters and training settings  

Figure 3:Usability index of the Dataset used This score is 

calculated by Kaggle. C. Additional experimental results and 

figures  

Figure 4: Image after Loading a batch of images and labels for 

visualization, Converting images to numpy arrays and 

denormalization, Creating a grid of images and Plotting images 

with labels.  

Figure 5: Proposed architecture of Model “U” shaped neural 

network with input and output(illustrative).  

Figure 6: “U”-shaped neural network with all three phases viz. 

Encoder, Bottleneck, Decoder.  

Figure 7: Jaccard index visualized for This model iteration. 

Figure 8: Labeling task on random images from BRATS2019.  

Figure 9: Multimodal image of a brain in an MRI to check for 

and choose the most relevant image to perform segmentation.  

Figure 10: Initialization of an MRI and its relevant masking task  

Figure 11: Actual segmentation task and pointing of the Tumor 

core from 3 different Axis provided in an MRI. 46  

Figure 12: the Graph of Accuracy, Loss,DICE coefficient and 

Jaccard index(IoU) of the segmentation done by transfer 

leaning model applied to BRATS2020 dataset 

Figure 13: Brain Image segmentation performed using “U” 

shaped neural network model.  

Figure 14: Graphic representation of evaluation measures of the 

new model on the Chest Xray dataset.  

Figure 15: Lung Xray segmentation using Adversarial learning 

and “U” shaped neural network model. 
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