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Abstract: Available Transfer Capability (ATC) between two points of a power system 

determines the maximum incremental power transfer that is possible while considering circuit 

limitations. It is estimated via a combination of existing commitments of transmission (ETC), 

total transfer capability (TTC) and transmission reliability margin (TRM), which are controlled 

via generator participation factors. Thus, efficient control of these participation factors can assist 

in improving ATC between different points of electrical circuits. Researchers have proposed 

multiple optimization models to perform this task, but most of these models use static rules, thus 

cannot be deployed for dynamically changing load requirements. To overcome this limitation, a 

novel Genetic Model for Maximization of ATC via optimum selection of participation factors is 

proposed in this text. The model uses line data, source bus, destination bus, and minimum 

participation needed for different sources in order to train a dynamic Genetic Model (GM), 

which assists in estimation of participation factors. These factors are optimized via continuous 

evaluation of Power Transfer Distribution Factor (PTDF), which is estimated by stochastic 

differential power factor calculations. Based on these stochastic calculations, different 

participation factors (PFs) for obtaining Maximum ATC levels are estimated, and each of these 

PFs are further evaluated for quality maximization under different bus configurations. The model 

also proposes a novel Learning Rate (LR) optimization method, which assists in selection of 

circuit-specific GM parameters. Due to use of the LR optimization method, transmission system 

designers can directly reconfigure underlying GM model by providing circuit parameters. This 

further reduces delay needed to identify optimum PF values for different circuit types. The 

model was tested & deployed under different standard bus configurations, and its efficiency was 

evaluated in terms of ATC improvement, Total Harmonic Distortion (THD), Power Efficiency, 

and computational delay performance. Based on this evaluation, the model was compared with 

various state-of-the-art models, and it was observed that the proposed model showcased 8.5% 

better ATC, 3.8% lower THD, 8.3% better power efficiency, and 19.2% lower delay under 

different configurations. This performance was observed to be consistent across different bus 

systems, thereby suggesting that the proposed model has high scalability, and can be used for a 

wide variety of deployments.  

Keywords: Available, Transfer, Capacity, Genetic, Optimization, Learning, Rate, PTDF, 

Participation, Factor, ETC, TRM, TTC 

 

 

1. Introduction 

Multiple bus power systems require efficient 

transmission of power between different circuit 

points with maximum power efficiency. To 

achieve this task, a series of multidomain 

models are deployed, which include line flow 

calculations, active & reactive power 

estimation, wheeling transaction analysis, 

environment-specific evaluations, etc. A typical 

ATC estimation model deployed under CEED 
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(combined economic emission dispatch) 

environment can be observed from figure 1, 

wherein initially base-case load flows are used 

to determine optimal settings of generators [1]. 

These settings are combined with wheeling 

transactions, generalized distribution factors, 

line current flows, power limits, etc. for 

dispatching efficient transactions. Based on 

these dispatches ATC is evaluated via equation 

1, 

𝐴𝑇𝐶 = 𝑀𝑡(𝑇𝑅𝑀, 𝑇𝑇𝐶, 𝐶𝐵𝑀) … (1) 

 

Figure 1. A typical ATC estimation model for 

CEED environments 

Where, 𝑇𝑇𝐶 represents total transfer capability 

(TTC), and is evaluated via equation 2, TRM 

represents transmission reliability margin and is 

estimated using equation 3, while CBR 

represents capacity benefit margin, and is 

estimated using equation 4 as follows, 

𝑇𝑇𝐶 = (∑ 𝐵𝑇𝑖
+ 𝐶𝑇𝑖

𝑁𝑇

𝑖=1

) + 𝐸𝑇𝐶 … (2) 

𝑇𝑅𝑀 = 𝑃𝑈 ∗ 𝑇𝑇𝐶 … (3) 

𝐶𝐵𝑀 = 𝐿𝑒𝑥𝑝 ∗ 𝐿𝐹 … (4) 

In these equations, 𝐵𝑇𝑖
 & 𝐶𝑇𝑖

 represents base 

case, and commercial network transfers, 𝑁𝑇 

represents count of transfers, 𝐸𝑇𝐶 represents 

existing transfer commitments, which are 

evaluated by checking number of transfers 

remaining in the network, 𝑃𝑈 represents 

probability of load uncertainty, while, 

𝐿𝑒𝑥𝑝, & 𝐿𝐹 represents load expected, & loss 

function for the underlying circuit deployments. 

Models that utilize these calculations [2, 3, 4] 

for optimization of ATC levels, along with their 

circuit-specific nuances, model specific 

advantages, application specific limitations, and 

future research scopes are discussed in the next 

section of this text. Based on this discussion, it 

was observed that most of these models use 

static rules, thus cannot be deployed for 

dynamically changing load requirements. To 

overcome this limitation, section 3 proposes 

design of Genetic Model to Maximize Available 

Transfer Capability via optimum Participation 

Factor selection, that can be used for multiple 

types of power transfer circuits. The proposed 

model’s performance was evaluated in section 

4, wherein ATC improvement, Total Harmonic 

Distortion (THD), Power Efficiency, and 

computational delay were compared with 

various state-of-the-art methods. Finally, this 

text concludes with some circuit-specific 

observations about the proposed model, and 

recommends model specific optimizations to 

improve their performance under different bus 

types. 

2. Literature Review 

A wide variety of models are proposed by 

researchers for maximization of ATC levels, 

and each of these models have their own 

characteristics and deployment capabilities. For 

instance, work in [1, 2, 3] propose use of 

particle swarm optimization (PSO), Newton-

Raphson with Holomorphic embedding load 

flow (NR HELF), and Grey Wolf Optimization 

Algorithm (GWO) which assist in stochastic 

selection of internal components for efficient 

estimation of ATC levels. These models 

showcase lower error performance than linear 

estimation models, and thus can be used for a 

wide variety of large-scale application 

deployments. Similarly, work in [4, 5, 6], 

http://www.jetir.org/


© 2024 JETIR April 2024, Volume 11, Issue 4                                               www.jetir.org(ISSN-2349-5162) 

  

JETIR2404881 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i613 
 

propose use of sequential quadratic 

programming with gradient sampling (SQPGS), 

Machine Learning Methods (MLMs), and 

Online Power Control which enable controlled 

estimation of ATC under static load 

requirements. These models are capable of 

showcasing lower THD performance, but 

cannot be scaled to larger deployments. To 

overcome this limitation, work in [7] proposes 

use of Teaching Learning based Optimization 

(TLbO) for estimation of voltage stability under 

dynamic bus configurations. The model is 

capable of achieving high efficiency and low 

error ATC estimation performance with better 

stability analysis. Extensions to this model are 

discussed in [8, 9, 10], wherein use of optimal 

power flow (OPF) with its variants, and 

production capacity-based optimizations are 

discussed by researchers. These models are 

highly context-sensitive and cannot be scaled to 

different bus configurations.  

To improve scalability of ATC maximization 

models, work in [11, 12, 13] propose use of 

probabilistic day ahead dynamic ATC (PDA-

DATC), canonical low-rank approximation 

(LRA), and performance index (PI) with 

particle swarm optimisation (PSO), and deep 

belief network (DBN), which assist in capturing 

large-scale load variations, and estimate ATC 

levels with good efficiency. These models 

require large delays due to their complex 

internal working characteristics. To reduce this 

complexity, work in [14, 15, 16] proposes use 

of active distribution network (ADN), Adaptive 

Particle Swarm Optimization (APSO), and big-

M model which assist in improving 

computation speed via redundancy reduction 

under different bus configurations. Similar 

models that include novel data-driven sparse 

polynomial chaos expansion (DDSPCE) [17, 

18], reliability test system (RTS) [19], energy 

injection [20], Sequential Game-Theory [21], 

Optimal Bayesian Transfer Learning (OBTL) 

[22], and hybrid Genetic Algorithm (GA) with 

Firefly (FF) [23, 24] are discussed & deployed 

for a large number of applications. These 

models are capable of solving ATC issues under 

static loads, but cannot be extended to dynamic 

loads due to their internal characteristics. To 

overcome this limitation, next section proposes 

a Genetic Model to Maximize Available 

Transfer Capability via optimum Participation 

Factor selection, which can be applied to small, 

medium & large-scale loads. Performance of 

the model was also evaluated under different 

bus configurations, and compared with various 

state-of-the-art methods under different 

scenarios. 

3. Proposed Genetic Model to Maximize 

Available Transfer Capability via optimum 

Participation Factor selection 

Based on the literature review it can be 

observed that existing models for selection of 

participation factor use static allocation rules, 

thus cannot be deployed for dynamically 

changing load requirements. Due to this 

limitation, existing models are not useful for 

loads that have frequent temporally changing 

current requirements. To overcome this 

limitation, a novel Genetic Model for 

Maximization of ATC via optimum selection of 

participation factors is proposed in this text. The 

model processes ratings of source bus, 

destination bus, line current requirements, and 

minimum participation per bus which is needed 

for different sources. This information is used to 

train a Genetic Model (GM), which assists in 

optimum estimation of participation factors. 

Overall flow of the model is depicted in figure 

2, wherein it can be observed that these factors 

are optimized via continuous evaluation of 

Power Transfer Distribution Factor (PTDF) 

levels.  

These levels are estimated via stochastic 

differential power factor calculations which 

assist in evaluation of different participation 

factors (PFs) to obtain Maximum ATC levels. 

The model also proposes a novel Learning Rate 

(LR) optimization method, which assists in 

selection of circuit-specific GM parameters. 

Due to use of the LR optimization method, 

transmission system designers can directly 

reconfigure underlying GM model by providing 

circuit parameters. This further reduces delay 

needed to identify optimum PF values for 

different circuit types. The model design is 

segregated into different sub modules, and each 

of these modules are described in different sub-

sections of this text. 
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Figure 2. Overall flow of the proposed model 

Readers can refer these sub sections to 

implement the underlying model in part(s) or as 

a whole, depending upon their circuit 

requirements. 

3.1. Design of the Genetic Optimization Model 

for estimation of participation factors 

The proposed Genetic Optimization model uses 

bus connections, reactance between buses, and 

their power specifications in order to estimate 

initial participation factors. This initial 

estimation model works via the following 

process, 

 Initialize Genetic Optimization Parameters, 

o Source Bus (𝑆𝑏𝑢𝑠) 

o Destination Bus (𝐷𝑏𝑢𝑠) 

o Maximum power capacity of the circuit 

(𝑀𝑎𝑥(𝑃)) 

o Minimum participation factor of each generator 

(𝑀𝑖𝑛(𝑃𝐹)) 

o Number of Iterations (𝑁𝑖) 

o Number of Solutions (𝑁𝑠) 

o Initial Learning Rate (𝐿𝑟) 

 Initially mark all solutions as ‘to be mutated’ 

 For each solution in 1 to 𝑁𝑠, perform the 

following tasks, 

o For each iteration in 1 to 𝑁𝑖, perform the 

following tasks, 

 If solution is marked as ‘not to be mutated’, 

then go to the next solution, else generate new 

solution via the following process, 

 Stochastically select participation factors (PF) 

for all generators via equation 4, 

𝑃𝐹(𝑖) = 𝑆𝑇𝑂𝐶𝐻(𝑀𝑖𝑛(𝑃𝐹), 1)𝑖 … (4) 

Where, 𝑆𝑇𝑂𝐶𝐻 & 𝑁𝑢𝑚𝐺𝑒𝑛 represents a 

stochastic Markovian process, and number of 

generators respectively. 

 For the final generator, calculate participation 

factor via equation 5, 

𝑃𝐹(𝑁𝑢𝑚𝐺𝑒𝑛) = 1 − ∑ 𝑃𝐹(𝑖) … (5)

𝑁𝑢𝑚𝐺𝑒𝑛−1

𝑖=1

 

 Based on these factors, evaluate residual bus 

power (RP) via equation 6, 

𝑅𝑃 = 𝑃𝐹 ± 0.1 … (6) 

 Using this residual power, evaluate PTDF via 

equation 7, 

𝑃𝑇𝐷𝐹 = (𝑃𝐹2 − 𝑃𝐹1) ∗ 𝑀𝑎𝑥(𝑃) … (7) 

Where, 𝑃𝐹1 & 𝑃𝐹2 represent updated power 

factors, and are estimated via equation 8 as 

follows, 

𝑃𝐹𝑖 = 𝑃𝑖 ∗ 𝑅𝑃𝑖 … (8) 

 Estimate solution fitness via equation 9, 

𝑓 = max [
𝐿 − 𝑃𝐹1

𝑃𝑇𝐷𝐹
] … (9) 

Where, 𝐿 represents line power between the 

buses which are selected for power transfers. 

 Based on this evaluation, estimate fitness 

threshold via equation 10, 

http://www.jetir.org/


© 2024 JETIR April 2024, Volume 11, Issue 4                                               www.jetir.org(ISSN-2349-5162) 

  

JETIR2404881 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i615 
 

𝑓𝑡ℎ = ∑ 𝑓𝑖 ∗
𝐿𝑟

𝑁𝑠

𝑁𝑠

𝑖=1

… (10) 

o At the end of each iteration, identify solutions 

where 𝑓𝑖 < 𝑓𝑡ℎ, and mark them as ‘to be 

mutated’, while mark all others as ‘not to be 

mutated’ 

 Repeat this process for all iterations, and select 

solution with maximum fitness 

The selected solution contains initial 

participation factors for each generator, which 

are further optimized via quality checks and 

learning rate optimizations. Design of these 

tasks is discussed in the next section of this text. 

3.2. Design of the Quality check layer for 

learning rate optimization 

Upon estimation of initial participation factors, 

an iterative Quality check process is used to fine 

tune these factors. This process uses a 

continuous Q-Learning model which assists in 

optimization of Genetic Optimization learning 

rate, thereby improving selection of 

participation factors. This model works via the 

following process, 

 Iterate the Genetic Optimization Model with 2 

stochastic learning rates, and estimate their 

fitness levels. 

 Based on these levels, evaluate Q factor via 

equation 11, 

𝑄 = 𝐹2 + 𝜕[𝑟 + ∅ ∗ max(𝐹1, 𝐹2) − 𝐹1] … (11) 

Where, 𝜕 represents learning rates, 𝑟 represents 

reward factor, ∅ represents discount factor, 

𝐹1 & 𝐹2 represents consecutive fitness values 

estimated for different stochastic levels. 

 Based on this Q value, estimate new learning 

rate via equation 12, 

𝐿𝑅(𝑁𝑒𝑤) =
𝐿𝑅𝑜𝑙𝑑

𝑄
… (12) 

 Using the new 𝐿𝑅 value estimate participation 

factors & new fitness value 𝐹3, and re-evaluate 

𝑄 value via equation 13, 

𝑄(𝑁𝑒𝑤)
= 𝑀𝑎𝑥(𝐹3, 𝐹2)

+ 𝜕[𝑟 + ∅

∗ max(𝑀𝑎𝑥(𝐹1, 𝐹2), 𝑀𝑎𝑥(𝐹3, 𝐹2))

− 𝑀𝑎𝑥(𝐹1, 𝐹2)] … (13) 

 Repeat this process if 𝑄(𝑁𝑒𝑤) < 𝑄, else use 

the same value of learning rate which was 

evaluated via equation 12 to find optimum 

participation factors. 

This process is used to continuously tune 

learning rate for evaluation of optimum 

participation factors. These factors were used to 

estimate ATC levels for different bus 

configurations. Results of these estimations are 

discussed in the next section of this text. 

4. Result analysis & comparison 

The proposed model uses a combination of 

Genetic Optimization with Learning Rate 

estimation to evaluate participation factors for 

evaluation of available transfer capability 

(ATC) levels. To estimate performance of the 

proposed model, it was tested on IEEE 14 Bus, 

IEEE 30 Bus, and IEEE 57 Bus configurations. 

Based on these configurations, values for 

percentage estimation error, processing delay, 

and total harmonic distortion (THD) were 

averaged and compared with GWO [3], SQP 

GS [4], and DBN [13] models under same 

configurations. These values for percentage 

estimation error (E) are tabulated in table 1, 

where source buses & destination buses 

combinations (NBC) were varied between 1 to 

1000, which indicates all possible combinations 

of power transfer instances. 

NBC E (%) 

GWO 

[3] 

E (%) 

SQP 

GS [4] 

E (%) 

DBN 

[13] 

E (%) 

GMMA 

TPCF 

2 2.93 1.55 10.24 1.14 

5 3.03 1.58 10.46 1.17 

7 3.18 1.61 10.69 1.21 

11 3.30 1.64 10.92 1.23 
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23 3.24 1.64 10.90 1.21 

34 3.17 1.63 10.84 1.21 

46 3.22 1.65 10.96 1.22 

69 3.25 1.67 11.06 1.23 

92 3.26 1.68 11.13 1.23 

115 3.26 1.69 11.18 1.24 

172 3.26 1.70 11.23 1.24 

207 3.28 1.71 11.31 1.25 

230 3.30 1.72 11.39 1.26 

276 3.31 1.74 11.46 1.26 

322 3.32 1.75 11.52 1.27 

368 3.33 1.76 11.59 1.27 

414 3.34 1.77 11.67 1.28 

460 3.35 1.78 11.74 1.28 

506 3.36 1.79 11.81 1.29 

552 3.37 1.80 11.88 1.30 

598 3.38 1.82 11.95 1.30 

644 3.40 1.83 12.03 1.31 

690 3.41 1.84 12.10 1.31 

747 3.42 1.85 12.17 1.32 

805 3.43 1.87 12.25 1.33 

862 3.44 1.88 12.32 1.33 

920 3.45 1.89 12.40 1.34 

943 3.46 1.90 12.47 1.34 

989 3.48 1.92 12.55 1.35 

1000 3.50 1.93 12.63 1.41 

Table 1. Average ATC estimation error for 

different models 

 

Figure 3. Average ATC estimation error for 

different models 

Based on this evaluation, and figure 3, it can be 

observed that the proposed model showcases an 

error reduction of 18.5% when compared with 

GWO [3], 8.3% when compared with SQP GS 

[4], and 26.8% when compared with DBN [13], 

under different operating conditions. The reason 

for this enhancement is use of Genetic 

Optimization with continuous learning with 

assists in estimation of optimal participation 

factors for better circuit response under 

different deployment scenarios. Similar 

observations were made for computational 

delay, and can be observed from table 2 as 

follows, 

NBC D (ms) 

GWO 

[3] 

D (ms) 

SQP 

GS [4] 

D 

(ms) 

DBN 

[13] 

D (ms) 

GMMA 

TPCF 

 

0 5 10 15

2

7

23

46

92

172

230

322

414

506

598

690

805

920

989

GMMA TPCF DBN [13] SQP GS [4] GWO [3]
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2 7.66 10.66 7.38 4.61 

5 7.75 10.78 7.45 4.65 

7 7.82 10.88 7.51 4.69 

11 7.87 10.95 7.55 4.72 

23 7.90 11.00 7.59 4.74 

34 7.94 11.06 7.63 4.77 

46 8.00 11.14 7.69 4.80 

69 8.05 11.22 7.73 4.83 

92 8.10 11.29 7.78 4.86 

115 8.15 11.36 7.83 4.89 

172 8.20 11.43 7.88 4.92 

207 8.25 11.51 7.92 4.95 

230 8.30 11.58 7.97 4.98 

276 8.35 11.66 8.02 5.02 

322 8.40 11.73 8.07 5.05 

368 8.45 11.80 8.12 5.08 

414 8.50 11.88 8.17 5.11 

460 8.56 11.96 8.22 5.14 

506 8.61 12.03 8.27 5.18 

552 8.66 12.11 8.32 5.21 

598 8.71 12.19 8.37 5.24 

644 8.77 12.27 8.42 5.27 

690 8.82 12.35 8.47 5.31 

747 8.87 12.42 8.52 5.34 

805 8.93 12.50 8.58 5.37 

862 8.98 12.58 8.62 5.41 

920 9.04 12.67 8.66 5.44 

943 9.09 12.75 8.70 5.48 

989 9.15 12.83 8.75 5.51 

1000 9.19 12.89 8.80 5.53 

Table 2. Computation delay for different 

models 

Based on this evaluation, and figure 4, it can be 

observed that the proposed model reduces 

computational delay by 19.4% when compared 

with GWO [3], 23.5% when compared with 

SQP GS [4], and 19.8% when compared with 

DBN [13], under different operating conditions.  
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Figure 4. Computation delay for different 

models 

The reason for this reduction in delay is use of 

incremental learning that assists in evaluation of 

optimum learning rates for efficient estimation 

of participation factors, which provide better 

circuit response under different deployment 

scenarios. Similar observations were made for 

THD levels, and can be observed from table 3 

as follows, 

NBC THD 

GWO 

[3] 

THD 

SQP 

GS [4] 

THD 

DBN 

[13] 

THD 

GMMA 

TPCF 

 

2 2.55 3.27 1.84 1.41 

5 2.58 3.31 1.86 1.43 

7 2.60 3.34 1.87 1.44 

11 2.62 3.36 1.89 1.45 

23 2.63 3.38 1.89 1.46 

34 2.64 3.40 1.90 1.46 

46 2.66 3.42 1.92 1.47 

69 2.68 3.45 1.93 1.48 

92 2.69 3.47 1.94 1.49 

115 2.71 3.49 1.95 1.50 

172 2.73 3.51 1.97 1.51 

207 2.74 3.53 1.98 1.52 

230 2.76 3.56 1.99 1.53 

276 2.78 3.58 2.00 1.54 

322 2.79 3.60 2.01 1.55 

368 2.81 3.62 2.03 1.56 

414 2.83 3.65 2.04 1.57 

460 2.85 3.67 2.05 1.58 

506 2.86 3.70 2.06 1.59 

552 2.88 3.72 2.08 1.60 

598 2.90 3.74 2.09 1.61 

644 2.92 3.77 2.10 1.62 

690 2.93 3.79 2.11 1.63 

747 2.95 3.82 2.13 1.64 

805 2.97 3.84 2.14 1.65 

0 5 10 15

2

5

7

11

23

34

46

69

92

115

172

207

230

276

322

368

414

460

506

552

598

644

690

747

805

862

920

943

989

1000

GMMA TPCF DBN [13]

SQP GS [4] GWO [3]
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862 2.99 3.86 2.15 1.66 

920 3.01 3.89 2.16 1.67 

943 3.03 3.92 2.17 1.68 

989 3.04 3.94 2.18 1.69 

1000 3.06 3.96 2.20 1.70 

Table 3. Average THD levels for different 

models 

 

Table 5. Average THD levels for different 

models 

From this evaluation and figure 5, it can be 

observed that the proposed model reduces THD 

by 7.5% when compared with GWO [3], 8.3% 

when compared with SQP GS [4], and 6.5% 

when compared with DBN [13], under different 

operating conditions. The reason for this 

reduction in THD is use of Genetic 

Optimization with incremental learning that 

assists in evaluation of optimum learning rates 

for efficient estimation of participation factors, 

which provide better circuit response under 

different deployment scenarios. Thus, the 

proposed model has lower error, faster 

response, and lower THD levels when 

compared with existing models, which makes it 

highly useful for a wide variety of power 

system applications. 

5. Conclusion and future scope 

The proposed GMMATCPF model uses a 

combination of continuous learning with 

Genetic Optimization for estimation of 

generator participation factors. The proposed 

model was tested under IEEE 14 Bus, IEEE 30 

Bus, and IEEE 57 Bus configurations to 

estimate ATC calculation error, computational 

delay, and THD performance. Based on this 

evaluation, it was observed that the proposed 

model showcased an error reduction of 18.5% 

when compared with GWO [3], 8.3% when 

compared with SQP GS [4], and 26.8% when 

compared with DBN [13], it also showcased 

reduction in computational delay by 19.4% 

when compared with GWO [3], 23.5% when 

compared with SQP GS [4], and 19.8% when 

compared with DBN [13], while, the proposed 

model was observed to reduce THD by 7.5% 

when compared with GWO [3], 8.3% when 

compared with SQP GS [4], and 6.5% when 

compared with DBN [13], under different 

operating conditions. Thus, making the 

proposed model highly useful for a wide variety 

of real-time deployments. Performance of this 

model must be validated for other bus systems 

in order to estimate its scalability & 

applicability for larger configurations. In future, 

researchers can replace Genetic Optimization 

by other bioinspired models like Grey Wolf 

Optimization (GWO), Bacterial Foraging 

Optimization (BFO), Firefly Optimization, etc. 

and estimate their performance under various 

circuit conditions. Researchers can also 

incorporate deep learning methods including 

Long-Short-Term-Memory (LSTM), & Gated 

Recurrent Unit (GRU) to further optimize 

circuit performance under dynamic load 

requirements & circuit conditions. 
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