
© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404891 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i690

User Oriented Software Reliability by Markov

Chain Model

Satish Kumar Nath
Lecturer- Computer Engineering

Board of Technical Education Rajasthan (BTER), Jodhpur

Abstract— User oriented reliability is related to user profile and

usage of the system. A system reliable for one user may not be

reliable for other user. User oriented reliability can be represented as

a function of the reliability of the components and frequency

distribution of utilization of these components. In this work the

Software Reliability of Library Management System module of

SHARP software is calculated. For computation of software

reliability, modular structure of chosen software was presented in

form of Markov Chain Model. Reliabilities of sub modules are based

on data received from end user survey of SHARP Software. Inter

module transition probabilities are also based on this questionnaire.

Effect of individual module over net system reliability is computed.

Along with this criticality of each module is also estimated. Testing of

these modules can be skipped and testing team might have more time

to test more critical modules.

Keywords - Model Based Testing, Markov Chain, Software testing with

reduced test cases, Software testing basis on usage profile, Software

Reliability, User oriented Software Reliability

I. INTRODUCTION

As software gets more complex, gains more features, and is more

interconnected, it becomes more and more difficult to test.

Software testing is difficult because of the large number of effect

parameters. Today software has penetrated daily life of layman.

Software developed now days potentially affects millions of

people, enabling them to do their jobs effectively and efficiently.

So the reliability of software has been an essential quality of it.[1]

Software testing is a process, or a series of processes, designed to

make sure computer code does what it was designed to do and

that it does not do anything unintended. Software should be

predictable and consistent, offering no surprises to users. [2] The

design of test cases for software and other engineered products is

very challenging job. The selection of proper test case is very

important issue for conformance testing in software engineering.

Methods for the development of the test cases have received much

attention in now days with conformance testing of communication

protocols. Here the test cases are intended to determine whether a

given protocol implementation satisfies all properties required by

protocol specification. [3]

The user-oriented reliability of a program (in a certain user

environment) is defined as the probability that the program will

give the correct output with a typical set of input data from that

user environment. Since the sequence of codes executed in a

particular run is dependent on the input data, and an error in the

non-executed statements or branches does not have any effect on

the output of the program, the system reliability depends on the

probability that a bug is activated in the run. The reliability of the

system, therefore, depends on the user profile, which summarizes

the dynamic characteristics of a typical execution of the program

in a particular user environment.

II. MARKOV CHAIN MODEL

The software failure depends on its operation profile. User and its

usage pattern drive the execution path among sub-systems. The

usage of various sub system of a software system can be modeled

using MARKOV chain method. According to usage to particular

module of software system, testing priority and amount of testing

time is decided. One of the important activity in testing

environment is automatic test case generation - description of a

test, independent of the way a given software system is designed.

Markov chain usage models are constructed to specify how a

system to be tested is expected to be used once released into the

field. It can be used to analyze expected use, generate tests,

determine when to stop testing, and reason about the outcome of

testing. Markov chain usage models are directed graphs, in which

states of use are connected by arcs labeled with usage events. A

usage event is an external stimulus applied to the system under

test, while different states of use are used to enable proper

sequencing and relative likelihood of inputs.[19]

It is very difficult to give a formal definition of the term “software

reliability”. One can say that the reliability of a program is equal

to one if correct, and zero if incorrect. However, many such

"incorrect" programs give us the correct answer most of the time.

It is better to evaluate the reliability of the program by a

probabilistic measure as one minus the probability of failure. With

such an understanding, and neglecting the performance

requirements for the time being, the reliability of a piece of

software may be evaluated from two points of view

To measure the reliability of a program, we can rate the reliability

of a program by the "number" of software bugs left in the

program at a particular stage. At other hand, we may also treat the

reliability of a program from the viewpoint of the quality of the

service it provides to a user.

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404891 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i691

III. USER-ORIENTED RELIABILITY

The user-oriented reliability of a program (in a certain user

environment) is defined as the probability that the program will

give the correct output with a typical set of input data from that

user environment. Since the sequence of codes executed in a

particular run is dependent on the input data, and an error in the

non-executed statements or branches does not have any effect on

the output of the program, the system reliability depends on the

probability that a bug is activated in the run. The reliability of the

system, therefore, depends on the user profile, which summarizes

the dynamic characteristics of a typical execution of the program

in a particular user environment.

The definition of user-oriented reliability and its relationship to

the user profile is matter of discussion. A Markov reliability

model is formulated under the assumptions that both module

reliabilities and inter-module control transfers are independent.

The potential applications of the model include reliability

estimation, testing strategy, maintenance philosophy, and

estimation of penalty cost. The concept of user-oriented reliability

and a similar reliability model might also be applicable to

hardware systems.

IV. INTRODUCTION TO SHARP SOFTWARE AND ITS LIBRARY

MANAGEMENT SYSTEM

SHARP is an ERP for Educational Institutes. Its objective is to

manage all resource of an educational institute and perform some

basic operations. SHARP is developed by using VB.NET

(framework 2.1) and MS SQL Server as its database. Its main

modules are as shown in table 1.1:

Table 4.1: Various Sub Module of Library Mgmt System

SN Name of Module Name of Sub Module

1 Login Module -

2
Show Home Screen Along with

Master Menu
-

3 Book Management 3.1 New book

 3.2 Edit/Delete Book

4 Student Management 4.1 New Student

 4.2 Edit/Delete Student

5 Book Issue/Submit -

6 Fine Calculation (Account Tally) -

7 Various MIS Generation (Log) -

8 Print the MIS Report / Log -

9 Log Out -

Library Management System is one of the important modules of

SHARP. Among the various modules of SHARP, I have opted

Library module for applying the User Oriented Reliability Model.

Library module is responsible for computerize management of

Library of an educational institute. Using this model the reliability

of Library module will be predicted. The Library Module is

further divided into various sub modules as shown in table 1.1.

V. APPLYING THE RELIABILITY MODEL ON LIBRARY

MANAGEMENT SYSTEM OF SHARP

As we want to represent the structure of the “Library Management

System” by a digraph where every node Mi represents a Sub-

module and a directed edge (Mi, Mj) represents a possible transfer

of control from module Mi to Mj. Every directed edge (Mi, Mj) is

associated with a “inter module transition probability” Pij.

As result we developed a MARKOV Chain model of Library

Management System. This module has a single entry and a single

exit node. Every node in the graph is state of the Markov process

and initial state (login sub module) is the entry node of the

program digraph. Two terminal states C (correct) and F (failure)

are added to the digraph. With each node Ni, an additional

directed edge (Mi, F) is added with transition 1 - Ri probability. It

represents the occurrence of an error in the successful execution

of module Mi. Through such tool accurate reliability of each

module or sub-module can be calculated. In absence of such tool

in SHARP software reliabilities of each sub module must be

assumed.

Table 5.1: Rel. of Various Sub Modules of Library Mgmt System

Module
Reliability

Assumed
 Module

Reliability

Assumed

M1 R1 = .980 M8 R8 = .910

M2 R2 = .990 M9 R9 = .912

M3 R3 = .950 M10 R10 = .950

M4 R4 = .900 M11 R11 = .975

M5 R5 = .947 M12 R12 = .923

M6 R6 = .922 M13 R13 = .995

M7 R7 = .953

Next parameter is branching Probability. To find out the

probability of transition from one sub-module to another sub-

module, a questionnaire is prepared and distributed to Library

staff of various colleges using SHARP software’s Library Module.

Average branching probabilities between the sub-modules Mi and

Mj are as follows:

P1,2 = 1

P2,3 = .07 P2,4 = .85 P2,5 = .03 P2,6 = .01 P2,7 = .03 P2,13 = .01

P3,2 = .04 P3,8 =.80 P3,9 = .15 P3,13 = .01

P4,2 = .85 P4,13 =.15

P5,2 = .04 P5,10 =.90 P5,11 = .05 P5,13 = .01

P6,2 = .78 P6,12 =.20 P6,13 = .02

P7,2 = .57 P7,12 = .40 P7,13 = .03

P8,2 =.92 P8,13 =.08

P9,2 =.88 P9,13 =.12

P10,2 =.85 P10,13 =.15

P11,2 =.91 P11,13 =.09

P12,2 =.93 P12,13 =.07

Figure 5.1: Inter Module Transition Probabilities of Library Module

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404891 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i692

Using above mentioned module reliabilities and inter module

transition probabilities, a Markov Chain control flow graph is

developed as shown in figure 5.2. Matrix Q is prepared

accordingly and finally reliability of the Library module is

calculated as 76.40%.

VI. RESULT ANALYSIS

For estimating the effect of individual module on overall system

reliability, an experiment has been designed where value of

individual module’s reliability is change from 0 (minimum) to 1

(maximum). Between these two points increment step of 0.1 is

given. For each module total 11 readings had taken. (0, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). With this configuration

system reliability is calculated and drawn a graph for findings.
Figure 5.2: Markov Chain Flow Graph of the Library Module of SHARP

From the figure 6.1 it is clear the Effect of Reliability of Module-

1 over NET Reliability of System is linear. As the Reliability of

Module-1 increases, the NET Reliability of System increases.

Figure 6.1: Effect of Reliability of Module-1 over NET Reliability of System

As shown in the figure 6.2 the Effect of Reliability of Module-2

over NET Reliability of System is of degree four. If Module-2 is

failed to perform its task then, the NET Reliability of System will

become zero. This fact made the module 2 as one of the most

critical module.

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404891 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i693

Figure 6.2: Effect of Reliability of Module-2 over NET Reliability of System

As shown in the figure 6.3 the Effect of Reliability of Module-3

over NET Reliability of System is very less compared to module

1 and module 2. If Module-3 is failed to perform its task then, the

NET Reliability of System will be very less affected.

Figure 6.3: Effect of Reliability of Module-3 over NET Reliability of System

This fact made the module 3 as one of the least critical module.

Therefore these types of modules can be ignored during model

based testing.

Figure 6.4: Effect of all modules on overall System Reliability

In our work module M3, M5, M6, M7, M8, M9, M10, M11 and

M12 has very less effect on net system reliability. At other hand

module M1, M2, M4 and M13 has significant effect on net system

reliability. So testing team can emphasis more on these module

and test case generation is done accordingly. If we are able to

ensure maximum reliability of these modules then net system

reliability will be maintained accordingly.

VII. CALCULATION OF RELATIVE CRITICALITY OF

INDIVIDUAL MODULE

Effect of an individual module on NET system reliability is

measured and represented in various line graphs shown above.

These graphs and trend lines can be used to observe the impact of

that particular module on net system reliability. To compare the

impacts of such modules, criticality of individual module has to

be calculated. For this purpose, two values for each module are

considered. First value (Rx) is net system reliability when an

individual module’s reliability is minimum (Zero value). Second

value (Ry) is net system reliability when individual module’s

reliability is maximum (One value).

Criticality = (Rx – Ry) and

Relative Criticality = (Ry-Rx)/ Total

For each module (from M1 to M13) two values Rx and Ry were

opted. Rx denotes Net System Reliability when particular

module’s reliability assumed lowest as Zero. Similarly Ry denotes

Net System Reliability when particular module’s reliability

assumed highest as one. Criticality can be computed by

subtracting the Rx from Ry. In same fashion criticality for all

modules (M1 to M13) were calculated. All values of Criticality

are added to get a total value. This “total” value is further used to

compute the relative criticality of modules. Figure 7.1 shows a

PIE Chart of relative criticality of all modules. This PIE chart

clearly shows the most critical modules and less critical modules.

Modules that have greater impact on net system reliability are

occupying more space in this PIE chart. Similarly modules that

have less impact on net system reliability are occupying less space.

This new finding can be used in model base testing to reduce the

number of test cases and eventually reduce the testing time.

Modules having less “relative criticality” values and showing with

smaller area in PIE chart should given less focus during testing of

such system. At the other hand modules with higher “relative

criticality” values and showing with larger area in PIE chart

should given more focus during testing.

Figure 7.1: Relative Criticality of Individual Module

VIII. RESULT AND DISCUSSION

In this work we have calculated the Software Reliability of

Library Management System module of SHARP software. For

calculating the Software Reliability using User Oriented Software

Reliability Model we have assumed Reliability value of each

component (sub structure of the “Library Management System” is

represented by a digraph. That took us to the development of

MARKOV Chain model of Library Management System. module)

and assigned inter module transitive probabilities based on survey

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404891 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i694

of software users. Real time values of such parameter had been

acquired from end user of Library module, that is library staff of

various colleges where SHARP- Library module is installed and

being used.

The Experimental results show that not all the modules have

similar impact on the net system reliability. There are some trends

between the reliability and individual module uses. Some of the

modules have high impact on the net system reliability. If testing

has to be done in limited time then testing team can emphasis

more on such module and test case generation can be done

accordingly. If we are able to ensure maximum reliability of such

critical modules then net system reliability will be high

accordingly. In this way number of test can be reduced and

eventually testing time will be reduced.

IX. CONCLUSIONS

In this work, user oriented reliability is computed for Library

Management module of SHARP Education ERP system. For this

a Markov chain model is prepared for which probability of usage

was estimated through survey conducted among prominent users.

This model was used for computing overall system reliability

which is found to be approximate 76.40%. Further, impact of

individual module on overall reliability of the system is computed.

This is done by keeping all sub modules reliability constant and

varying the reliability of candidate module from lowest (0) to

highest (1). The result showed us that 3-4 modules are critical out

of 13 total modules. Criticality of this system is approx 30%

(4/13), which is align to Petro’s rule. In addition to above, this is

also observed that highly critical modules have impact on overall

system reliability at their worst case as well as at best case. This

information can be used to develop a model base testing technique

where testing of few module can be skipped. Such module has

very less effect on the overall system reliability. The testing of

some specific module can be omitted and ensure up to a specific

reliability cut off.

REFERENCES
[1] R.S. Pressman, “Software Engineering: A Practitioner’s Approach”, 6th

Ed., TMH.

[2] Ian Somerville, “Software Engineering”, 7th Ed., Pearson Education.

[3] Susumu Fujiwara, Gregor V. Bochmann, “Test Selection based on Finite

State Model”, IEEE Transaction on Software Engineering, Vol. 17, June

1991.

[4] Roger C. Cheung, “A User-Oriented Software Reliability Model”, IEEE

Transactions on Software Engineering, Vol. SE-6, No. 2, March 1980

[5] Sigrid Eldh, “Software Testing Techniques”

[6] Z. Jelinski and P. B. Moranda, "Software reliability research," Statistica

Computer Performance Evaluation, Freiberger, Ed. New York: Academic,

1972, p. 465-484.

[7] James A. Whittaker, “Stochastic Software Testing”, Annals of Software

Engineering Vol. 4 (1997) 115-131

[8] J. D. Musa, "A theory of software reliability and its application," IEEE

Trans. Software Eng., vol. SE-1, pp. 312-327, Sept. 1975.

[9] M.Prasanna S.N. Sivanandam R.Venkatesan R.Sundarrajan, “A Survey On

Automatic Test Case Generation”, Academic Open Internet Journal,

Volume 15, 2005

[10] James M. Clarke, “Automated Test Generation from a Behavioral Model”,

Software Quality Week Conference, May 1998

[11] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton

B. M. Horowitz, “Model-Based Testing in Practice”, Bellcore

[12] C. V. Ramamoorthy, R. C. Cheung, and K. H. Kim, "Reliability and

integrity of large computer programs," Comput. Syst. Rel., Infotech State of

the Art Rep. 20, 1974.

[13] Ibrahim K. El-Far and James A. Whittaker, “Model-based Software

Testing”, Encyclopedia on Software Engineering (edited by J.J. Marciniak),

Wiley, 2001

[14] Mark Utting, “Position Paper: Model-Based Testing”

[15] Larry Apfelbaum, John Doyle, “Model Based Testing”, Software Quality

Week Conference in May, 1997

[16] Ji Zhang, Betty H.C. Cheng, “Model-Based Development of Dynamically

Adaptive Software”,

[17] Manfred Broy, Bengt Jonsson, “Model-Based Testing of Reactive Systems”,

Springer-Verlag Berlin Heidelberg 2005

[18] B. Littlewood, "How to measure software reliability and how not to. . . ," in

Proc. 3rd Int. Conf. Software Eng., May 1978, pp. 37-45.

[19] Stacy Prowell, “State of the Art of Model-Based Testing with Markov

Chain Usage Models”

[20] Ydo Wexler & Dan Geiger, “Markov Chain Tutorials”.

[21] Kenneth M. Hanson, “Tutorial on Markov Chain Monte Carlo”, Bayesian

and MaxEnt Workshop, LA-UR-05-5680

[22] D. J. Hatfield, "Experiments of page size, program access, patterns and

virtual memory performance," IBM J. Res. Develop., pp. 58-66, Jan. 1972.

[23] Andrew W. Moore, “Markov Systems, Markov Decision Processes, and

Dynamic Programming”

[24] C. V. Ramamoorthy, "The analytic design of a dynamic look ahead and

program segmenting system for multiprogrammed computers," in Proc. Ass.

Comput. Mach. Nat. Conf., 1966, pp. 229-239.

[25] Md. Shazzad Hosain, Md. Shamsul Alam, “Software Reliability Using

Markov Chain Usage Model”, 3rd International Conference on Electrical &

Computer Engineering ICECE 2004

[26] J. G. Kemeny, J. L. Snell, G. L. Thompson, “Introduction to Finite

Mathematics”, 3rd ed. (Englewood Cli®s, NJ: Prentice-Hall, 1974).

[27] T. B. Pinkerton, "Program behavior and control in virtual storage computer

systems," Ass. Comput. Mach., Univ. Michigan, Ann Arbor, Tech. Rep. 4,

1968.

[28] D. J. Hatfield and J. Gerald, "Program restructuring for virtual memory,"

IBMSyst. J., vol. 10, no. 3, pp. 168-192, 1971.

http://www.jetir.org/

