
© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404A27 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org k201

Abstract—This paper is about LSTM with ADAGRAD & ADAM
optimizers which uses deep learning techniques to provide a unique

method of spectrum sensing in cognitive radio networks. Conventional

technique’s performance is less because they are unable to adjust to

changing radio frequency environments. Our approach enables real-
time spectrum detection by LSTM using ADAGRAD Optimizer

within the Jupyter Notebook environment of Python. We have

evaluated its effectiveness against conventional methods by extensive

experimentation with RF dataset, showing notable increases in
accuracy and adaptability. Our results point to the potential of deep

learning to reduce interference and scarcity of spectrum, improving

network performance and spectrum usage. We also discuss about

potential possibility for future study, such as examining scalable large-
scale cognitive radio networks and advanced structures. In addition to

advancing cognitive radio technology and spectrum sensing, this

research has applications for next-generation wireless communication

systems.

Keywords— Spectrum sensing, Deep Learning, LSTM.

I. INTRODUCTION

Wireless networks rely heavily on spectrum sensing,
especially in dynamic systems where devices compete for
unused frequencies. This technique identifies vacant channels
with enough bandwidth for data transmission. Spectrum sensing
detects the presence or absence of primary users (licensed users)
occupying a specific frequency band. Different approaches exist,
each with varying complexity, accuracy, and computational
needs. When spectrum resources are limited, spectrum sensing
becomes even more crucial for reliable data transfer. Machine
learning models are showing promise in surpassing traditional
methods, and this work proposes a Convolutional Neural
Network (CNN) model for spectrum sensing in environments
with Gaussian noise [3]. This model is specifically designed to
identify the presence of licensed users

Unlike conventional methods that often rely on predefined
algorithms deep learning approaches can automatically learn
relevant features from raw data. deep learning models, when
properly trained, can exhibit robustness to noise and interference,
enhancing their performance in challenging scenarios.
Ultimately, the choice between deep learning and conventional
methods depends on factors such as data availability,
computational resources. Deep learning models may exhibit
better performance in complex and dynamic spectrum
environments due to their ability to capture complex patterns
and dependencies in the data. it's important to note that deep
learning techniques typically require a large amount of labeled
data for training, and they may be relatively intensive, especially
for real-time applications. In contrast, conventional methods
may be simpler to implement and require fewer computational
resources

This model development is done in the Python programming

environment and made possible by the adaptable Jupyter

Notebook platform, offers a favorable environment for the

creation and improvement of advanced spectrum sensing

algorithms. The system's thresholding methods and real-time

spectrum sensing capabilities are designed to improve

flexibility in dynamic radio settings and guarantee quick

identification of available spectrum. In addition, the system

includes capabilities for calculating and displaying

performance data, which facilitates well-informed decision-

making and effective spectrum use strategies.

II. Literature Survey

Among all the studies, recent literature explores

methodologies integrating cognitive radio technology with

EFFECTIVE DATA TRANSMISSION USING

SPECTRUM SENSING FOR WIRELESS

COMMUNICATION
T. Himabindu1**, UG Student, Seshadri Rao Gudlavalleru Engineering College, Gudlavalleru

T. Surya Teja2, UG Student, Seshadri Rao Gudlavalleru Engineering College, Gudlavalleru

Sk. Dil Afroz3, UG Student, Seshadri Rao Gudlavalleru Engineering College, Gudlavalleru

V. Bhavya4, UG Student, Seshadri Rao Gudlavalleru Engineering College, Gudlavalleru

E. Vargil Vijay5, Assistant Professor, Seshadri Rao Gudlavalleru Engineering College, Gudlavalleru

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404A27 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org k202

Long Short-Term Memory (LSTM) deep learning architecture

and SELU/ELU optimizers to enhance spectrum sensing

performance. These approaches combine feature extraction

and deep learning to achieve superior results.

As the Signal-to-Noise Ratio (SNR) increases, the

probability of detection (Pd) rises while the probability of

false alarm (Pf) diminishes. Notably, Pd exceeds 80% and Pf

is below 10% when SNR surpasses -10 dB [4]. Integrating

Energy Detection (ED) with Error Vector Magnitude (EVM)

further improves detection performance, with Pd increasing

from 0.6 at SNR = -24 dB to over 0.95 at SNR = -12 dB,

accompanied by a decrease in FAR [5]. These methods

outperform traditional spectrum sensing techniques,

particularly in low SNR conditions. The proposed CNN-

LSTM spectrum sensing detector excels in capturing signal

energy- correlation features and temporal Primary User (PU)

activity patterns, highlighting superior performance compared

to existing models such as CLDNN. At SNRs lower than -5

dB, it significantly reduces sensing errors, offering potential

enhancements for cognitive radio networks [7].

III. BLOCK DIAGRAM

Fig.1 Proposed diagram based on LSTM

IV. PROPOSED METHODOLOGY

LSTM (Long Short-Term Memory)

In standard RNNs, the back propagation of
gradients regularly meets the issue of diminishing
gradients or explosively large gradients throughout
training. This arises due to the frequent multiplication of
weights over time, which can delay the network's ability
to learn from long sequences of data successfully. To
overcome this problem, LSTM units were enhanced with
advanced gating mechanisms designed to regulate the flow
of information within the network. These mechanisms
include the Input gate, forget gate and Output gate
individually controlled by separate units. These gates
control how much data is stored, separated at each time
stamp, letting the network recollect vital data over lengthy
sequences.

Opposing traditional Recurrent Neural Networks
(RNNs) with a single tanh layer in the hidden state, Long Short-
Term Memory (LSTM) networks address the problem of
vanishing gradients by introducing a gated cell structure. This
cell includes combination of four layers that generate both the
cell output and cell state, which are then approved on to the
following LSTM cell. The key uniqueness in LSTM networks
is their capability to selectively recollect information over time
through gating mechanisms. These gates are realized using
sigmoid and tanh activation functions to control the movement
of information

Input Gate: The input gate picks what current information to

store in the cell state. Regulates how much added information

is extra to the cell state. It is thorough by the input gate unit,

which deliberates the existing input, the preceding output, and

the preceding cell state.

𝑖𝑛𝑡 = 𝜎 (𝑤𝑖𝑛 [ℎ𝑛𝑡−1, 𝑥𝑛𝑡] + 𝑏𝑖𝑛) → (1)

Forget Gate: The forget gate selects what information to throw

away from the cell state. Limits how much of the preceding

cell State should be taken. It is measured by the forget gate

unit, which contemplates the existing input and the preceding

output.

𝑓𝑛𝑡= σ (𝑊𝑓𝑔[ℎ𝑛𝑡−1, 𝑥𝑛𝑡] + 𝑏𝑓𝑔) →(2)

Output Gate: The output gate chooses what the next hidden

state is. Directs how much of the cell state should be output. It

is controlled by the output gate unit, which studies the present

input, the earlier output, and the up-to-date cell state.

𝑂𝑛𝑡 = 𝜎 (𝑤𝑜𝑔 [ℎ𝑛𝑡−1, 𝑥𝑛𝑡] + 𝑏𝑜𝑔) → (3)

Cell State Update: The cell state 𝐶𝑛𝑡 is updated by applying the

forget gate 𝑓𝑛𝑡 to the preceding cell state and accumulation the

outcome of the input gate 𝑖𝑛𝑡 applied to the original candidate

values ascended by a tanh function.

𝐶𝑛𝑡 = 𝑓𝑛𝑡 ∗ 𝐶𝑛𝑡−1 + 𝑖𝑛𝑡 ∗ �̃�𝑛 𝑡 →(4)

andidate Cell state: the candidate cell state �̃�𝑛 𝑡 is a midway

calculation that signifies the new data that might be added to the

cell state 𝐶𝑛𝑡 at given timestamp.

�̃�𝑛 𝑡 = tanh (𝑤𝑐𝑠 [ℎ𝑛𝑡−1, 𝑥𝑛𝑡] + 𝑏𝑐𝑠) → (5)

Hidden State: The hidden state ℎ𝑛𝑡 is the output of the LSTM

cell at the present time step. It comprises information about the

current input and the preceding hidden state.

ℎ𝑛𝑡 = 𝑂𝑛𝑡 ∗ tanh(𝐶𝑛𝑡) → (6)

Where, 𝑖𝑛𝑡 = Input Gate

𝑓𝑛𝑡= Forget Gate

𝑂𝑛𝑡= Output Gate

σ= Sigmoid function

𝑊𝑖𝑛 ,𝑊𝑓𝑔 , 𝑊𝑜𝑔= Weights for respective gate neurons

ℎ𝑛𝑡−1 = Output of previous LSTM Block

(At timestamp nt-1)

𝑥𝑛𝑡= Input at current timestamp

𝑏𝑖𝑛,, 𝑏𝑓𝑔, 𝑏𝑜𝑔= Biases for

 respective gates

𝐶𝑛𝑡= Cell state at timestamp(nt)

 �̃�𝑛 𝑡 = Represents candidate

 for cell state at timestamp (nt)

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404A27 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org k203

ℎ𝑛𝑡 = Hidden state at

 timestamp (nt)

𝑤𝑐𝑠= Weight of respective

 gate neuron

𝑏𝑐𝑠= bias for respective gate

V. METHODOLOGY

The key alteration differs in the gating mechanism. LSTM

introduce three special sigmoid gates and one tanh layer. These

gates act as smart filters, monitoring the flow of information

through the cell. They regulate which information is related for

the next cell and what can be rejected. The gate outputs range

from 0 to 1, with 0 suggesting complete refusal and 1

representing full inclusion.

LSTMs force these gates to perform memory management.
Information considered important is preserved by the cell, while
the gates achieve its flow and prevent unrelated particulars from
collecting over lengthy sequences. This gated memory
architecture permits LSTMs to surpass tasks concerning long-
range dependencies in serial data.

 At each time step 𝑛𝑡, the input vector 𝑥𝑛𝑡, signifies

the spectrum dimensions or features take out from

the received signal. This could contain parameters

such as signal strength, bandwidth usage, etc.

 The hidden state ℎ𝑛𝑡 of the LSTM captures the

temporal dynamics and needs in the spectrum data.

It characterizes the network's memory of past

remarks and is reorganized at each time step based

on the present input and preceding hidden state.

 The cell state 𝐶𝑛𝑡 supports the stable memory of the

LSTM. It stores information about the spectrum

patterns cultured over time and is updated using the

input, forget, and output gates.

 The forget gate 𝑓𝑛𝑡 controls which information

from the preceding cell state 𝐶𝑛𝑡−1 should be

taken or rejected based on the current input 𝑥𝑥𝑥

and earlier hidden state ℎ𝑥𝑥−1. It selects how

much of the past spectrum information should be

over and done.

 The input gate 𝑖𝑛𝑡 and candidate update �̃�𝑛 𝑡

composed choose which new spectrum information

should be combined into the updated cell state 𝐶𝑛𝑡.

The input gate controls the significance of the latest

information, while the candidate update computes

the new candidate values to be added to the cell state.

 The output gate 𝑂𝑛𝑡 regulates which information

from the updated cell state 𝐶𝑛𝑡 should be used to

produce the output ℎ𝑛𝑡. It controls the flow of

information from the LSTM's internal memory to

the output, which could be used for expecting future

spectrum convention or making decisions about

spectrum distribution.

The suggested model's operation is represented in the Fig. 1.

The preprocessing unit receives the data set as input. Noise is

additionally added to the preprocessing unit along with the

dataset. Noise is brought to simulate interference in signal

transmissions. The dataset is then split into two sections:

smooth alerts and noisy indicators. This division allows

thorough analysis of noise outcomes on sign processing

techniques.

Our model architecture begins with an input layer shaped

(128, 2) to accommodate signals. The data progresses through

LSTM layers, the first having 120 units to capture complex

temporal dependencies and returning sequences for further

processing. A MaxPool1D layer with a pool size of 2 reduces

temporal dimensionality. Subsequently, another LSTM layer

with 10 units is employed for additional processing.

GlobalMaxPooling1D diminishes temporal dimensionality,

followed by dense layers with ReLU activation to extract

features. Dropout layers with a dropout rate of 0.1 mitigate

overfitting. Dense layers then gradually decrease feature

dimensionality to 80, 60, 30, and 20 units respectively.

Finally, a sigmoid activation and a single unit in the output

layer perform binary classification, distinguishing between

true and noise signals.

Binary cross-entropy loss is used to compute the difference

among actual labels and predicted probabilities. The

ADAGRAD and ADAM optimizers are utilized for parameter

optimization, dynamically adjusting learning rates to enhance

performance. Compiling the model with binary cross- entropy

loss and ADAGRAD and ADAM optimizers guarantee

effective discrimination between noisy and genuine

indicators.

post-training, the version's performance is evaluated using

assessment strategies to compute accuracy and loss metrics,

supplying insights into generalization and effectiveness.

These metrics are as compared towards thresholds or

benchmarks to make decisions concerning model

improvement or refinement

VI. RESULT

A classification model's performance in a dataset with binary

labels is shown in Fig. 2, 3. For each modulation technique,

such as BPSK, QPSK, 8PSK, and QAM 64 for both

ADAGRAD and ADAM optimizers, the TP, TN, FP, and FN

are represented by the confusion matrix.

8PSK

BPSK

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404A27 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org k204

QPSK

QAM64

Fig.2 ADAGRAD Confusion Matrix for 8PSK, BPSK,

QPSK and QAM 64

8PSK

BPSK

QPSK

QAM64

Fig.2 ADAM Confusion Matrix for 8PSK, BPSK,

QPSK and QAM 64

Based on the TP, TN, FP, and FN values. The precision value

for the modulation approaches was obtained by considering

the SNR values within the range (-20 to 18 dB). This metric is

often shown in Table 1, 2.

The accuracy values obtained indicate that, when compared to

ADAM optimizer, ADAGRAD optimizer performs better in

terms of precision under various modulation strategies.

Fig. 4 displays the accuracy versus SNR charts for the Adagrad

optimizer. For modulation schemes such as BPSK, QPSK,

8PSK, and QAM64, the accuracy is measured at -6 dB SNR. The

results show that BPSK, QPSK, 8PSK, and QAM64 have

accuracy values of 0.82, 0.82, 0.81, and 0.83. This means that

82%, 82%, 81%, and 83% of the test sets samples are

accurately predicted by these methods.

The accuracy versus SNR charts for the ADAM optimizer are

shown in Fig. 5. The accuracy for modulation methods like

QAM64, BPSK, QPSK, and 8PSK is assessed at -6 dB SNR.

The accuracy values for BPSK, QPSK, 8PSK, and QAM64 are

0.91, 0.90, 0.81, and 0.90, according to the results. This

indicates that these approaches accurately predict samples

from 91%, 90%, 81%, and 90% of the test sets.

 QPSK BPSK 8PSK QAM64

-20 1 1 1 1

-16 1 1 1 1

-12 0.94 1 1 1

-10 0.96 0.93 0.95 1

-8 0.96 0.93 0.96 0.96

-6 0.97 0.93 0.97 0.95

-4 0.96 0.94 0.95 0.88

-2 0.89 0.90 0.95 0.36

0 0.95 0.98 0.96 0.96

2 0.95 0.94 0.96 0.96

4 0.86 0.88 0.89 0.91

6 0.90 0.98 0.95 0.95

8 0.88 0.93 0.94 0.94

10 0.94 0.96 0.95 0.96

12 0.84 0.96 0.97 0.97

14 0.96 0.98 0.98 0.94

16 0.85 0.89 0.91 0.92

18 0.93 0.97 0.98 0.98

Table.1 ADAGRAD Precision values

 QPSK BPSK 8PSK QAM64

-20 1 1 1 0.74

-16 0.83 0.83 0.83 0.70

-12 0.75 0.75 0.75 0.72

-10 0.76 0.76 0.76 0.62

-8 0.79 0.79 0.79 0.77

-6 0.89 0.89 0.89 0.89

-4 0.94 0.94 0.94 0.91

-2 0.96 0.96 0.96 0.97

0 0.99 0.99 0.99 0.97

2 0.98 0.98 0.98 0.99

4 0.99 0.99 0.99 1

6 0.98 0.98 0.98 1

8 0.99 0.99 0.99 0.99

10 0.98 0.98 0.98 0.94

12 0.99 0.99 0.99 1

14 0.99 0.99 0.99 0.99

16 0.99 0.99 0.99 1

18 0.98 0.98 0.98 1

Table.2 ADAM Precision values

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404A27 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org k205

By contrasting the accuracy of the Adam and Adagrad

optimizers, it was found that Adam's accuracy is higher than that

of the Adagrad optimizer.

8PSK

BPSK

QPSK

QAM64

Fig. 4 ADAGRAD SNR VS Accuracy

8PSK

BPSK

QPSK

QAM64

Fig .5 ADAM SNR VS ACCURACY

8PSK

BPSK

QPSK

QAM64

Fig.6 ADAGRAD Epochs vs. Accuracy

8PSK

BPSK

QPSK

QAM64

Fig. ADAM Epochs vs. Accuracy

VII. CONCLUSION

Recently, there have been problems with spectrum sensing due

to the increase of wireless network users compared to spectrum

accessibility. The efficient assignment of the spectrum to users

in this article was achieved through of deep learning models,

which calls for a robust and reliable way to designate the

spectrum as unused. To check whether a channel was free in this

instance, the metrics TP, TN, FP, and FN were employed. The

implementation of deep learning into spectrum sensing

methodologies is a vital advancement in wireless

communication. By overcoming the limitations of traditional

approaches and offering a more adaptive and efficient solution,

this article may contributes to the ongoing evolution of cognitive

radio technology.

REFERENCES

[1]Felix Obite a, ∗ , Aliyu D. Usman b, Emmanuel Okafor.

An overview of deep reinforcement learning for spectrum

sensing in cognitive radio networks

[2] S. B. Goyal 1 & Pradeep Bedi 2 & Jugnesh Kumar 3 &

Vijaykumar Varadarajan 4- Deep learning application for

sensing available spectrum for cognitive radio: An

ECRNN approach

[3] Anandakumar Haldorai, 1 Jeevanandham Sivaraj, 2

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org(ISSN-2349-5162)

JETIR2404A27 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org k206

Munivenkatappa Nagabushanam, 3 and Michaelraj

Kingston Roberts CognitiveWireless Networks Based

Spectrum Sensing Strategies: A Comparative Analysis

[4] Geng, Yue, et al. "Spectrum sensing for cognitive radio

based on feature extraction and deep learning." Journal of

Physics: Conference Series. Vol. 2261. No. 1. IOP

Publishing, 2022.

[5] Nasser, Abbass, et al. "A deep neural network model

for hybrid spectrum sensing in cognitive radio." Wireless

Personal 118.1 (2021): 281-299.

[6] Chen, Zhibo, et al. “Deep STFT-CNN for spectrum

sensing in cognitive radio” in IEEE Communications

Letters 25.3, 2020.

[7] Wang, Qian, et al. "ConvLSTM based spectrum

sensing at very low SNR." IEEE Wireless

Communications Letters (2023).

[8]. LIUWEN LI 1, WEI XIE 2, AND XIN ZHOU 3

Cooperative Spectrum Sensing Based on LSTM-CNN

Combination Network in Cognitive Radio System

http://www.jetir.org/

