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Abstract—This paper is about LSTM with ADAGRAD & ADAM 
optimizers which uses deep learning techniques to provide a unique 

method of spectrum sensing in cognitive radio networks. Conventional 

technique’s performance is less because they are unable to adjust to 

changing radio frequency environments. Our approach enables real-
time spectrum detection by LSTM using ADAGRAD Optimizer 

within the Jupyter Notebook environment of Python. We have 

evaluated its effectiveness against conventional methods by extensive 

experimentation with RF dataset, showing notable increases in 
accuracy and adaptability. Our results point to the potential of deep 

learning to reduce interference and scarcity of spectrum, improving 

network performance and spectrum usage. We also discuss about 

potential possibility for future study, such as examining scalable large- 
scale cognitive radio networks and advanced structures. In addition to 

advancing cognitive radio technology and spectrum sensing, this 

research has applications for next-generation wireless communication 

systems.  

Keywords— Spectrum sensing, Deep Learning, LSTM. 

I. INTRODUCTION 

Wireless networks rely heavily on spectrum sensing, 
especially in dynamic systems where devices compete for 
unused frequencies. This technique identifies vacant channels 
with enough bandwidth for data transmission. Spectrum sensing 
detects the presence or absence of primary users (licensed users) 
occupying a specific frequency band. Different approaches exist, 
each with varying complexity, accuracy, and computational 
needs. When spectrum resources are limited, spectrum sensing 
becomes even more crucial for reliable data transfer. Machine 
learning models are showing promise in surpassing traditional 
methods, and this work proposes a Convolutional Neural 
Network (CNN) model for spectrum sensing in environments 
with Gaussian noise [3]. This model is specifically designed to 
identify the presence of licensed users 

Unlike conventional methods that often rely on predefined 
algorithms deep learning approaches can automatically learn 
relevant features from raw data. deep learning models, when 
properly trained, can exhibit robustness to noise and interference, 
enhancing their performance in challenging scenarios. 
Ultimately, the choice between deep learning and conventional 
methods depends on factors such as data availability, 
computational resources. Deep learning models may exhibit 
better performance in complex and dynamic spectrum 
environments due to their ability to capture complex patterns 
and dependencies in the data. it's important to note that deep 
learning techniques typically require a large amount of labeled 
data for training, and they may be relatively intensive, especially 
for real-time applications. In contrast, conventional methods 
may be simpler to implement and require fewer computational 
resources 

This model development is done in the Python programming 

environment and made possible by the adaptable Jupyter 

Notebook platform, offers a favorable environment for the 

creation and improvement of advanced spectrum sensing 

algorithms. The system's thresholding methods and real-time 

spectrum sensing capabilities are designed to improve 

flexibility in dynamic radio settings and guarantee quick 

identification of available spectrum. In addition, the system 

includes capabilities for calculating and displaying 

performance data, which facilitates well-informed decision-

making and effective spectrum use strategies. 

II. Literature Survey 

Among all the studies, recent literature explores 

methodologies integrating cognitive radio technology with 
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Long Short-Term Memory (LSTM) deep learning architecture 

and SELU/ELU optimizers to enhance spectrum sensing 

performance. These approaches combine feature extraction 

and deep learning to achieve superior results.  

As the Signal-to-Noise Ratio (SNR) increases, the 

probability of detection (Pd) rises while the probability of 

false alarm (Pf) diminishes. Notably, Pd exceeds 80% and Pf 

is below 10% when SNR surpasses -10 dB [4]. Integrating 

Energy Detection (ED) with Error Vector Magnitude (EVM) 

further improves detection performance, with Pd increasing 

from 0.6 at SNR = -24 dB to over 0.95 at SNR = -12 dB, 

accompanied by a decrease in FAR [5]. These methods 

outperform traditional spectrum sensing techniques, 

particularly in low SNR conditions. The proposed CNN-

LSTM spectrum sensing detector excels in capturing signal 

energy- correlation features and temporal Primary User (PU) 

activity patterns, highlighting superior performance compared 

to existing models such as CLDNN. At SNRs lower than -5 

dB, it significantly reduces sensing errors, offering potential 

enhancements for cognitive radio networks [7]. 
 

III. BLOCK DIAGRAM 

 

Fig.1 Proposed diagram based on LSTM 

IV. PROPOSED METHODOLOGY 

LSTM (Long Short-Term Memory) 

In standard RNNs, the back propagation of 
gradients regularly meets the issue of diminishing 
gradients or explosively large gradients throughout 
training. This arises due to the frequent multiplication of 
weights over time, which can delay the network's ability 
to learn from long sequences of data successfully. To 
overcome this problem, LSTM units were enhanced with 
advanced gating mechanisms designed to regulate the flow 
of information within the network. These mechanisms 
include the Input gate, forget gate and Output gate 
individually controlled by separate units. These gates 
control how much data is stored, separated at each time 
stamp, letting the network recollect vital data over lengthy 
sequences. 

Opposing traditional Recurrent Neural Networks 
(RNNs) with a single tanh layer in the hidden state, Long Short-
Term Memory (LSTM) networks address the problem of 
vanishing gradients by introducing a gated cell structure. This 
cell includes combination of four layers that generate both the 
cell output and cell state, which are then approved on to the 
following LSTM cell. The key uniqueness in LSTM networks 
is their capability to selectively recollect information over time 
through gating mechanisms. These gates are realized using 
sigmoid and tanh activation functions to control the movement 
of information 

Input Gate: The input gate picks what current information to 

store in the cell state. Regulates how much added information 

is extra to the cell state. It is thorough by the input gate unit, 

which deliberates the existing input, the preceding output, and 

the preceding cell state. 

𝑖𝑛𝑡 = 𝜎 (𝑤𝑖𝑛 [ℎ𝑛𝑡−1, 𝑥𝑛𝑡] + 𝑏𝑖𝑛) → (1) 

Forget Gate: The forget gate selects what information to throw 

away from the cell state. Limits how much of the preceding 

cell State should be taken. It is measured by the forget gate 

unit, which contemplates the existing input and the preceding 

output. 

 
𝑓𝑛𝑡= σ (𝑊𝑓𝑔[ℎ𝑛𝑡−1, 𝑥𝑛𝑡]  + 𝑏𝑓𝑔)   →(2) 

Output Gate: The output gate chooses what the next hidden 

state is. Directs how much of the cell state should be output. It 

is controlled by the output gate unit, which studies the present 

input, the earlier output, and the up-to-date cell state. 

𝑂𝑛𝑡 = 𝜎 (𝑤𝑜𝑔 [ℎ𝑛𝑡−1, 𝑥𝑛𝑡] + 𝑏𝑜𝑔) → (3) 

Cell State Update: The cell state 𝐶𝑛𝑡 is updated by applying the 

forget gate 𝑓𝑛𝑡 to the preceding cell state and accumulation the 

outcome of the input gate 𝑖𝑛𝑡 applied to the original candidate 

values ascended by a tanh function. 

𝐶𝑛𝑡 = 𝑓𝑛𝑡 ∗ 𝐶𝑛𝑡−1 + 𝑖𝑛𝑡 ∗ �̃�𝑛 𝑡   →(4)  

andidate Cell state: the candidate cell state �̃�𝑛 𝑡  is a midway 

calculation that signifies the new data that might be added to the 

cell state 𝐶𝑛𝑡 at given timestamp. 

�̃�𝑛 𝑡  = tanh (𝑤𝑐𝑠 [ℎ𝑛𝑡−1, 𝑥𝑛𝑡] + 𝑏𝑐𝑠) → (5) 

Hidden State: The hidden state ℎ𝑛𝑡 is the output of the LSTM 

cell at the present time step. It comprises information about the 

current input and the preceding hidden state. 

ℎ𝑛𝑡 = 𝑂𝑛𝑡 ∗ tanh(𝐶𝑛𝑡) → (6) 

Where,   𝑖𝑛𝑡 = Input Gate 

𝑓𝑛𝑡= Forget Gate 

𝑂𝑛𝑡= Output Gate 

σ= Sigmoid function 

𝑊𝑖𝑛 ,𝑊𝑓𝑔 , 𝑊𝑜𝑔= Weights for respective gate neurons 

ℎ𝑛𝑡−1 = Output of previous LSTM Block 

(At timestamp nt-1) 

𝑥𝑛𝑡= Input at current timestamp 

𝑏𝑖𝑛,, 𝑏𝑓𝑔, 𝑏𝑜𝑔= Biases for  

  respective gates 

𝐶𝑛𝑡= Cell state at timestamp(nt) 

 �̃�𝑛 𝑡  = Represents candidate 

  for cell state at timestamp (nt) 
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ℎ𝑛𝑡 = Hidden state at  

  timestamp (nt) 

𝑤𝑐𝑠= Weight of respective  

  gate neuron 

𝑏𝑐𝑠= bias for respective gate 

V. METHODOLOGY 

The key alteration differs in the gating mechanism. LSTM 

introduce three special sigmoid gates and one tanh layer. These 

gates act as smart filters, monitoring the flow of information 

through the cell. They regulate which information is related for 

the next cell and what can be rejected. The gate outputs range 

from 0 to 1, with 0 suggesting complete refusal and 1 

representing full inclusion. 

LSTMs force these gates to perform memory management. 
Information considered important is preserved by the cell, while 
the gates achieve its flow and prevent unrelated particulars from 
collecting over lengthy sequences.  This gated memory 
architecture permits LSTMs to surpass tasks concerning long- 
range dependencies in serial data. 

 At each time step 𝑛𝑡, the input vector 𝑥𝑛𝑡, signifies 

the spectrum dimensions or features take out from 

the received signal. This could contain parameters 

such as signal strength, bandwidth usage, etc. 

 The hidden state ℎ𝑛𝑡 of the LSTM captures the 

temporal dynamics and needs in the spectrum data. 

It characterizes the network's memory of past 

remarks and is reorganized at each time step based 

on the present input and preceding hidden state. 

 The cell state 𝐶𝑛𝑡 supports the stable memory of the 

LSTM. It stores information about the spectrum 

patterns cultured over time and is updated using the 

input, forget, and output gates. 

 The forget gate 𝑓𝑛𝑡 controls which information 

from the preceding cell state 𝐶𝑛𝑡−1 should be 

taken or rejected based on the current input 𝑥𝑥𝑥 

and earlier hidden state ℎ𝑥𝑥−1. It selects how 

much of the past spectrum information should be 

over and done. 

 The input gate 𝑖𝑛𝑡 and candidate update �̃�𝑛 𝑡  

composed choose which new spectrum information 

should be combined into the updated cell state 𝐶𝑛𝑡. 

The input gate controls the significance of the latest 

information, while the candidate update computes 

the new candidate values to be added to the cell state. 

 The output gate 𝑂𝑛𝑡 regulates which information 

from the updated cell state 𝐶𝑛𝑡 should be used to 

produce the output ℎ𝑛𝑡. It controls the flow of 

information from the LSTM's internal memory to 

the output, which could be used for expecting future 

spectrum convention or making decisions about 

spectrum distribution. 

The suggested model's operation is represented in the Fig. 1. 

The preprocessing unit receives the data set as input. Noise is 

additionally added to the preprocessing unit along with the 

dataset. Noise is brought to simulate interference in signal 

transmissions. The dataset is then split into two sections: 

smooth alerts and noisy indicators. This division allows 

thorough analysis of noise outcomes on sign processing 

techniques. 

Our model architecture begins with an input layer shaped 

(128, 2) to accommodate signals. The data progresses through 

LSTM layers, the first having 120 units to capture complex 

temporal dependencies and returning sequences for further 

processing. A MaxPool1D layer with a pool size of 2 reduces 

temporal dimensionality. Subsequently, another LSTM layer 

with 10 units is employed for additional processing. 

GlobalMaxPooling1D diminishes temporal dimensionality, 

followed by dense layers with ReLU activation to extract 

features. Dropout layers with a dropout rate of 0.1 mitigate 

overfitting. Dense layers then gradually decrease feature 

dimensionality to 80, 60, 30, and 20 units respectively. 

Finally, a sigmoid activation and a single unit in the output 

layer perform binary classification, distinguishing between 

true and noise signals. 

Binary cross-entropy loss is used to compute the difference 

among actual labels and predicted probabilities. The 

ADAGRAD and ADAM optimizers are utilized for parameter 

optimization, dynamically adjusting learning rates to enhance 

performance. Compiling the model with binary cross- entropy 

loss and ADAGRAD and ADAM optimizers guarantee 

effective discrimination between noisy and genuine 

indicators. 

post-training, the version's performance is evaluated using 

assessment strategies to compute accuracy and loss metrics, 

supplying insights into generalization and effectiveness. 

These metrics are as compared towards thresholds or 

benchmarks to make decisions concerning model 

improvement or refinement 

VI. RESULT 

A classification model's performance in a dataset with binary 

labels is shown in Fig. 2, 3. For each modulation technique, 

such as BPSK, QPSK, 8PSK, and QAM 64 for both 

ADAGRAD and ADAM optimizers, the TP, TN, FP, and FN 

are represented by the confusion matrix. 
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Fig.2 ADAGRAD Confusion Matrix for 8PSK, BPSK, 

QPSK and QAM 64 
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Fig.2 ADAM Confusion Matrix for 8PSK, BPSK, 

QPSK and QAM 64 

Based on the TP, TN, FP, and FN values. The precision value 

for the modulation approaches was obtained by considering 

the SNR values within the range (-20 to 18 dB). This metric is 

often shown in Table 1, 2. 

The accuracy values obtained indicate that, when compared to 

ADAM optimizer, ADAGRAD optimizer performs better in 

terms of precision under various modulation strategies. 

Fig. 4 displays the accuracy versus SNR charts for the Adagrad 

optimizer. For modulation schemes such as BPSK, QPSK, 

8PSK, and QAM64, the accuracy is measured at -6 dB SNR. The 

results show that BPSK, QPSK, 8PSK, and QAM64 have 

accuracy values of 0.82, 0.82, 0.81, and 0.83. This means that 

82%, 82%, 81%, and 83% of the test sets samples are 

accurately predicted by these methods. 

The accuracy versus SNR charts for the ADAM optimizer are 

shown in Fig. 5. The accuracy for modulation methods like 

QAM64, BPSK, QPSK, and 8PSK is assessed at -6 dB SNR. 

The accuracy values for BPSK, QPSK, 8PSK, and QAM64 are 

0.91, 0.90, 0.81, and 0.90, according to the results. This 

indicates that these approaches accurately predict samples 

from 91%, 90%, 81%, and 90% of the test sets. 

 

 QPSK BPSK 8PSK QAM64 

-20 1 1 1 1 

-16 1 1 1 1 

-12 0.94 1 1 1 

-10 0.96 0.93 0.95 1 

-8 0.96 0.93 0.96 0.96 

-6 0.97 0.93 0.97 0.95 

-4 0.96 0.94 0.95 0.88 

-2 0.89 0.90 0.95 0.36 

0 0.95 0.98 0.96 0.96 

2 0.95 0.94 0.96 0.96 

4 0.86 0.88 0.89 0.91 

6 0.90 0.98 0.95 0.95 

8 0.88 0.93 0.94 0.94 

10 0.94 0.96 0.95 0.96 

12 0.84 0.96 0.97 0.97 

14 0.96 0.98 0.98 0.94 

16 0.85 0.89 0.91 0.92 

18 0.93 0.97 0.98 0.98 

Table.1 ADAGRAD Precision values 

 

 QPSK BPSK 8PSK QAM64 

-20 1 1 1 0.74 

-16 0.83 0.83 0.83 0.70 

-12 0.75 0.75 0.75 0.72 

-10 0.76 0.76 0.76 0.62 

-8 0.79 0.79 0.79 0.77 

-6 0.89 0.89 0.89 0.89 

-4 0.94 0.94 0.94 0.91 

-2 0.96 0.96 0.96 0.97 

0 0.99 0.99 0.99 0.97 

2 0.98 0.98 0.98 0.99 

4 0.99 0.99 0.99 1 

6 0.98 0.98 0.98 1 

8 0.99 0.99 0.99 0.99 

10 0.98 0.98 0.98 0.94 

12 0.99 0.99 0.99 1 

14 0.99 0.99 0.99 0.99 

16 0.99 0.99 0.99 1 

18 0.98 0.98 0.98 1 

Table.2 ADAM Precision values 
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By contrasting the accuracy of the Adam and Adagrad 

optimizers, it was found that Adam's accuracy is higher than that 

of the Adagrad optimizer. 
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Fig. 4 ADAGRAD SNR VS Accuracy 
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Fig .5 ADAM SNR VS ACCURACY 
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Fig.6 ADAGRAD Epochs vs. Accuracy 
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Fig. ADAM Epochs vs. Accuracy 

VII. CONCLUSION 

Recently, there have been problems with spectrum sensing due 

to the increase of wireless network users compared to spectrum 

accessibility. The efficient assignment of the spectrum to users 

in this article was achieved through  of deep learning models, 

which calls for a robust and reliable way to designate the 

spectrum as unused. To check whether a channel was free in this 

instance, the metrics TP, TN, FP, and FN were employed. The 

implementation of deep learning into spectrum sensing 

methodologies is a vital advancement in wireless 

communication. By overcoming the limitations of traditional 

approaches and offering a more adaptive and efficient solution, 

this article may contributes to the ongoing evolution of cognitive 

radio technology. 
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