JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

OPTIMUM PERCENTAGE OF TREE COVER TO ACHIEVE THERMAL COMFORT

¹Anushtha Dwivedi, ²Dr.Farheen Bano,

¹ M.Arch Student, Faculty of Architecture and Planning, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, ² Associate Professor, Faculty of Architecture and Planning, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, ¹Faculty of Architecture and Planning,

¹Dr. A. P.J.Abdul Kalam

Technical University, Lucknow, India.

Abstract: Urbanization trends worldwide have led to a multitude of challenges, including increased air pollution, rising temperatures, and diminishing green spaces. Trees play a multifaceted role in promoting environmental sustainability by acting as carbon sinks, filtering pollutants, and contributing to urban biodiversity. Their presence contributes to improved air quality, as they absorb pollutants and release oxygen, thereby fostering a healthier living environment. While acknowledging the myriad benefits of urban trees, it is crucial to consider the potential drawbacks associated with dense tree cover. The question which arises here is that what is the optimum tree cover to achieve thermal comfort, avail maximum benefits of the trees and reduce the potential drawbacks. While the integration of trees in urban environments offers a plethora of advantages, this abstract delves into the potential disadvantages associated with dense tree cover in urban areas. While trees contribute significantly to environmental sustainability and human well-being, an excess of tree density may pose challenges to urban infrastructure and management. This research will help in determining the optimum tree cover to achieve thermal comfort. The study is conducted in four different sites in Lucknow with different tree covers, considering various aspects like temperature, relative humidity, CO2 concentration, air velocity, sky-view factor. The study intends to understand the benefits and drawbacks on each site and provide with the optimum percentage of tree cover to achieve thermal comfort.

IndexTerms -: wet bulb temperature, relative humidity, CO2 concentration, air velocity, sky-view factor.

I. INTRODUCTION

1.1.Background

Urban trees support urban sustainability by contributing to the environmental, economic, and social health of urban communities through provision of key ecosystem services. Thus, enhancing and protecting urban trees is necessary to make cities inclusive, safe, and resilient. Trees behave in different ways on microclimate due to mainly distinct features of each species and planting strategies especially in the tropics. Assessing the role of urban green space on the health of city residents is a grand environmental challenge.

Global trends in urbanization have brought about a number of problems, such as a rise in air pollution, an increase in temperature, and a reduction in green space. Trees are important for environmental sustainability because they absorb carbon dioxide, filter pollutants, and increase biodiversity in metropolitan areas. Because they emit oxygen into the atmosphere and absorb contaminants, their presence helps to enhance the quality of the air, making living spaces healthier. Even though urban trees have many advantages, it's important to take into account any potential disadvantages that come with a high canopy of trees. What is the ideal tree cover in this situation to maximize tree benefits, minimize potential negative effects, and attain thermal comfort.

1.2. Aim

The aim of the study is to determine the optimum percentage of tree cover in order to have the impact on reducing the heat island effect and improving the micro-climate of the site.

1.3. Objectives

- Identification of four different sites with different percentage of tree cover in Lucknow.
- Collection of data on WBGT, CO2 concentration, Sky-view factor and air velocity every site with the help of devices.
- Analysis and comparison of data collected on the sites.
- Finding out the optimum percentage of tree cover which helps in reducing the heat island effect on site through the data collected.

1.4. Methodology

In this study, the percentage of tree cover in four different sites were examined by focusing on WBGT, air velocity, sky-view factor, CO2 concentration and humidity. The selected cases represent different percentage of tree cover in different sites in Lucknow. The data was collected using different instruments like Heat Index WBGT meter, Surface Temperature, Multifunctional Air Quality Detector, Digital Anemometer. The data collected was analysed and compared which led to the conclusion.

1.5. Scope and Limitations

- The parameters which will be considered are WBGT, Relative humidity, CO2 concentration, Sky-view factor and air velocity
- The sites were selected on the basis of different % of tree cover in a single neighbourhood.
- The data will be collected on site with the use of devices.
- No survey will be conducted

II. LITERATURE STUDY

2.1. Introduction

This chapter provides a review of the literature and secondary data that already exists in relation to the optimum tree cover in urban area, the various parameters that relate to this, and how they can be applied to obtain optimum thermal comfort in outdoors. Accordingly, this chapter will initially discuss the components associated with urban tree cover, it will then move on to describe and analyse the parameters like air velocity, CO2 concentration Relative Humidity, Temperature, etc. This chapter will also provide an analysis of urban tree cover and its effects on outdoor environmental quality.

2.2.Definitions and Components related to Tree Canopy

Urban open space provides various benefits to citizens, but the thermal environment of this space is impacted by global warming and urban heat islands. (Lai et al., 2019) Tree planting is a powerful ecological restoration method that is frequently used around the world (Cao et al., 2017) to decrease the effect of global warming and reduce urban heat islands. Urban trees ameliorate heat stress for urban dwellers (Chen et al., 2021). However, there are several aspects that contribute to advantages or disadvantages of trees in urban form.

2.2.1. Temperature

Trees effectively reduce thermal radiation in urban open spaces. By reflection and absorption, trees can remove a great amount of incoming short-wave solar radiation.(Lai et al., 2019) Reduction of thermal radiation helps in reduction of air temperature and provide thermal comfort. The air temperature reduction of an unshaded and tree-shaded area in a high SVF domain was found to differ significantly, despite the fact that the differences with medium-low SVF were not statistically significant.(Morakinyo et al., 2020) Surface temperature is also affected by the tree canopy.

Clusters of trees can mitigate temperatures to a greater extent compared with individual trees. Trees release water vapour through a process called transpiration. This evaporative cooling can further lower temperatures in the surrounding area. The combination of shade and evapotranspiration contributes to the creation of cooler microclimates. In urban environments, trees play a crucial role in mitigating the urban heat island effect. They provide shade, absorb solar radiation, and release moisture through transpiration, collectively helping to cool the air and surfaces in built-up areas.

2.2.2. Air Velocity

Urban trees reduce air velocity. The highest outdoor thermal stress is observed during clear

sunny days with calm wind in the summer season.(Srivanit & Hokao, 2013)Tree coverage can have a significant impact on air velocity in outdoor environments. Trees act as natural windbreaks, slowing down the speed of the wind as it passes through their leaves and branches. Tree coverage contributes to the creation of microclimates. In sheltered areas with dense tree cover, the air velocity may be lower compared to open areas. Sidewalk trees could reduce wind speed under the canopy by up to 51% (Chen et al., 2021). The more open the urban form, the more exposed it is to wind increasing the velocity. Studies have shown that buildings can enhance or buffer winds, thus changing wind patterns(Gregory McPherson David Nowak Rowan A Rowntree McPherson et al., 1994)

2.2.3. Relative Humidity

Tree cover can influence relative humidity in the outdoor environment through various mechanisms, primarily related to the trees' role in water vapor exchange. Tree canopies provide shade, which helps to cool the surrounding air. Cooler air has a reduced capacity to hold water vapor, leading to an increase in relative humidity. Trees act as windbreaks, reducing wind speed at ground level. Slower-moving air allows for better moisture retention, and as a result, relative humidity can increase. This effect is particularly noticeable in sheltered areas with dense tree cover.

2.2.4. Carbon Dioxide Concentration

The presence of trees can create microclimates, and the effect on CO2 concentration at night can be influenced by factors such as temperature, wind patterns, and the overall density of vegetation. In sheltered areas with dense tree cover, the mixing of air may be reduced, potentially leading to higher localized CO2 concentrations. While trees release CO2 through respiration at night, their overall contribution to nighttime CO2 concentrations needs to be considered in the broader context of their positive impact during the daytime. The balance between daytime carbon sequestration and nighttime respiration is essential for understanding the overall role of tree cover in regulating carbon dioxide concentrations.

2.2.5. Skyview Factor

The sky view factor (SVF) refers to the ratio of the visible sky area to the entire hemisphere above a specific location. It is often used to quantify the openness or obstruction of the sky as perceived from a particular point on the ground. Dense tree cover, with a thick canopy of leaves and branches, obstructs the view of the sky from ground level. The dense foliage limits the visible portion of the sky, leading to a lower sky view factor. In urban environments, dense tree cover in parks or green spaces can

influence the SVF. The presence of tall buildings and dense vegetation can create areas with lower SVF, affecting the perception of the sky and sunlight availability.

2.3. Conclusion

Tree coverage can both reduce and enhance air velocity in outdoor environments, depending on various factors. The specific characteristics of the tree cover, local topography, and weather conditions all play a role in determining the impact on air movement. It can significantly influence outdoor temperatures by providing shade, reducing wind speed, releasing moisture, and contributing to the overall thermal regulation of an environment. It's important to note that the impact of tree cover on relative humidity is context-dependent and can vary based on factors such as tree species, local climate, and the overall environmental conditions. While trees contribute to higher humidity levels in some situations, the specific effects may differ across different regions and ecosystems. While trees have a positive impact on reducing CO2 concentrations, the overall balance depends on factors such as tree species, density, and the environmental context. Dense tree cover generally leads to a lower sky view factor due to the obstruction of the sky by the canopy. The extent of this effect depends on factors such as the density of the tree cover, the specific characteristics of the vegetation, and the local microclimate conditions. While dense tree cover may limit the visible sky, it also contributes to various ecological, aesthetic, and microclimatic benefits in outdoor environments.

III.CASE STUDY

In a research study focused on determining the optimum percentage of tree cover to achieve outdoor thermal comfort, incorporating case studies can enhance the depth and applicability of the research.

3.1. Identification and selection criteria

The case studies are selected by considering the following parameters in different papers:

- WBGT
- Relative Humidity
- Sky view factor
- Air velocity
- CO2 concentration

3.2. Case Study 1: Effects of tree plantings and aspect ratios on pedestrian visual and thermal comfort using scaled outdoor experiments

In Guangzhou, large-scale outdoor trials were carried out to look into how planting trees affects pedestrians' thermal and visual comfort in street canyons with different aspect ratios..(Chen et al., 2021)

Measurement site and period

Between October and November 2019, the experimental study was conducted using the SOMUCH platform in Panyu, Guangzhou, P.R. China

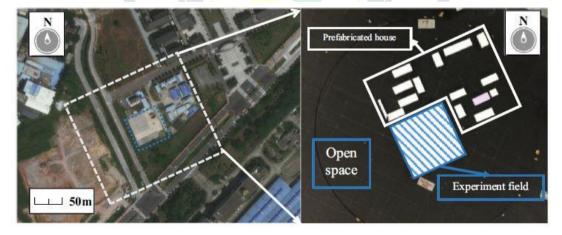


Figure 1.Selected experiment field in the suburb of Guangzhou, showing the surrounding buildings and open space

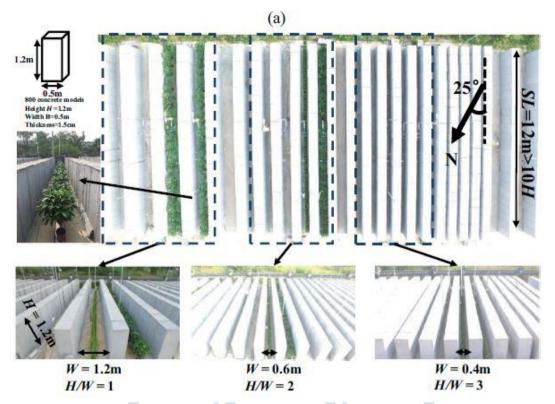


Figure 2.Top view of the experiment site of scaled outdoor field and street canyons with three aspect ratios H/W=1, 2, 3.

Tools used for study

- 3D ultrasonic anemometers,
- omni-direction hot-ball anemometers,
- · thermocouples,
- light and humidity sensors,
- a sun tracker to measure the wind speed and turbulence,
- · air temperature,
- globe temperature,
- surface temperature,
- illuminance,
- relative humidity,
- · background global
- · net radiation

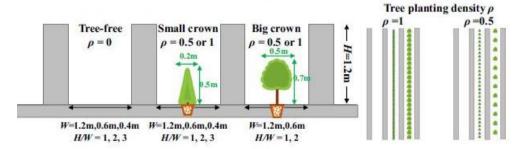


Figure 3.Detailed study on site

Conclusion

This study develops an outdoor experiment at a realistic scale to examine the effects of urban architecture and plants on thermal and visual comfort. According to the results, big crown trees should be planted in streets to efficiently cool the pedestrian area throughout the day, enhancing body and eye comfort. The wider the roadway canyon, the greater the cooling effect. We do not recommend planting trees at a lower density because doing so may decrease their capacity to shade an area. Urban planners may choose to plant little crown trees to provide some shade when giant crown trees are not an option in tight roadway canyons (such H/W = 2, 3).

3.3. Case Study 2: Tree effects on urban microclimate: Diurnal, seasonal, and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects

The effects of trees are investigated over a one-year period in four cities with radically different climates: Phoenix, Singapore, Melbourne, and Zurich. To ascertain the background climatic forcing, UT&C requires meteorological input time series above building height, which were accessible in Phoenix, Singapore, and Melbourne. Since the meteorological input forcing in Zurich was measured at 2 m height (10 m for wind speed), there is some degree of uncertainty in the absolute simulated air temperature at 2 m height in the Zurich scenario.(Meili et al., 2021)

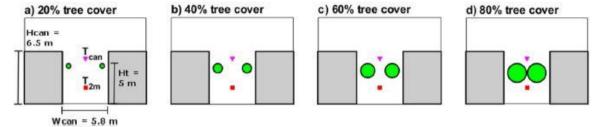


Figure 4.Modelled urban geometry with a) 20 %, b) 40 %, c) 60 %, and d) 80 % tree cover within the urban canyon of a compact low-rise residential neighbourhood

Parameters considered

- Direct and diffuse shortwave radiation,
- · Long-wave radiation,
- · air temperature,
- · humidity,
- wind speed,
- · precipitation, and
- · air pressure

Conclusion

This study measures the impacts of well-watered urban trees on air temperature below and above the tree canopy, as well as the radiation, evapotranspiration, and aerodynamic urban roughness alteration effects. The effects' partitioning enables the explanation of discrepancies in the air temperature changes that trees are observed to cause for various seasons, times of day, and climatic background circumstances. In all of the climates examined by simulations, tree evapotranspiration has the potential to lower urban canopy layer air temperature. However, this effect is only partially realized during the hottest times of the year, particularly in arid climates where stomatal conductance is significantly decreased at high VPD.

3.4. Case Study 3: Thermal comfort in urban spaces: impact of vegetation growth Case study: Piazza della Scienza, Milan, Italy

This paper describes a study on the effects of plants on evolution in a freshly constructed square in Milan that was designed by V. Gregotti. The work's objective is to assess how consumers' comfort is affected by vegetation growth. The methodology used includes a simplified thermal comfort evaluation using the energy budget method COMFA, a scenario for the growth of vegetation, and sets of field measurements (air and radiant temperature, wind velocity, and relative humidity). As trees reach adulthood, several phenomena become apparent. Even with a high air temperature, the shading effect under an old tree canopy clearly demonstrates a reduction of the absorbed radiation by users, creating an energy budget very close to comfort (around 50 W/m2). (Picot, 2004)

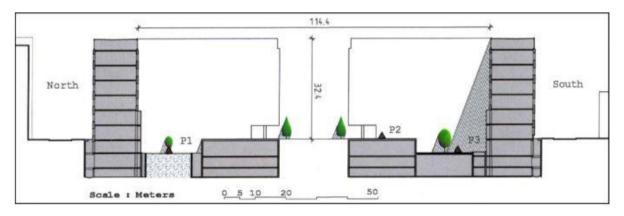


Figure 5.Section of the square: year 2002

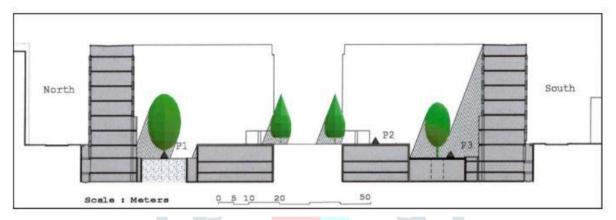


Figure 6.Section of the square: year 2032

Conclusion

The findings demonstrate that vegetation—which in the current case study becomes a reality when trees reach their adult dimensions—should be viewed as a practical instrument for controlling the microclimatic conditions in external spaces. A tree's ability to both absorb and reflect solar energy is greatest. When using vegetation as a tool for microclimatic control, it is important to consider how the vegetation's shading performance evolves over time and ultimately offer temporary and complementary screening solutions. These can be included into the projects in a number of ways, such as using artificial canopies that serve as shade structures, seasonal fabric.

3.5. Conclusion

Tree canopies play a crucial role in providing shade, reducing the direct impact of sunlight on the ground. This leads to a decrease in surface temperatures in shaded areas, creating a more comfortable microclimate. Trees release moisture into the air through transpiration, influencing local humidity levels. This can be particularly beneficial in arid regions where increased humidity contributes to a more balanced and comfortable outdoor environment. The presence of trees can create localized microclimates with higher humidity levels, impacting not only human comfort but also affecting plant and animal life in the vicinity. The arrangement and density of trees can act as natural windbreaks, reducing wind speed at ground level. This is especially important in windy areas where excessive wind can contribute to discomfort and even damage structures. The distance between trees can influence how air flows through a space. A well-designed arrangement of trees can channel and direct air, promoting better air circulation and reducing stagnant areas.

Table 1. Case study table

Case Study	WBGT	Air Velocity	Sky view factor	CO2 Concentration	Humidity
Effects of tree plantings and aspect ratios on pedestrian visual and thermal comfort using scaled outdoor experiments	Big crown trees reduce daytime PET (4.0 °C) and ITS (285 W) to improve thermal comfort.				
Tree effects on urban microclimate: Diurnal, seasonal,	Tree effects on urban microclimate: Diurnal, seasonal,	Air velocity increase with less trees.			Humidity increases with the increased no of trees

and climatic	and climatic		
temperature	temperature		
differences	differences		
explained by	explained by		
separating	separating		
radiation,	radiation,		
evapotranspiration,	evapotranspiration,		
and roughness	and roughness		
effects	effects		
Thermal comfort	Shading provided		
in urban spaces:	with fully grown		
impact of	trees decreases		
vegetation growth			
Case study: Piazza	*		
della Scienza,	comfort		
Milan, Italy			
	_		

IV.SITE SELECTION

4.1. Introduction

Selecting sites for research study, requires a nuanced understanding of the requirements of study. Among these, the percentage of tree cover emerges as a critical factor influencing the overall health and functionality of a site. Trees, with their myriad ecological benefits and impact on microclimates, contribute significantly to the well-being of both natural and urban environments. In this chapter, different four sites have been selected according to the percentage of tree cover on site. By exploring the diverse effects that tree cover can have on factors such as temperature, humidity, and air quality, we aim to underscore the importance of considering this aspect in decision-making processes related to land use and development. As the study navigates through the complexities of site selection, it becomes apparent that trees are not just aesthetic additions to a landscape; they are indispensable components that shape the very fabric of our surroundings.

4.2. Site Selection

In this study four different sites with different percentage of tree cover were identified. In situ experiment was conducted using different instruments on various parameters like wet bulb temperature, air velocity, relative humidity, carbon dioxide concentration and sky-view factor.

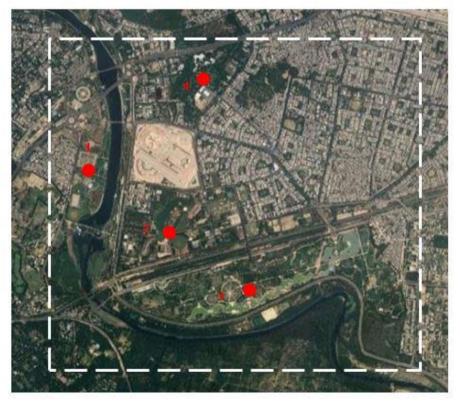


Figure 7. Site Selection

Site 1: With almost 30% of tree cover-Rosia Park, Gomti River Front

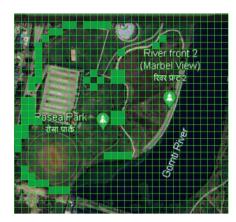


Figure 8. Green cover in Rosia Park

First site selected was of Rosia Park, Gomti River Front, it has almost 30% of tree cover. The tree cover is not dense all over the site with native and exotic tree species.

Site 2: With almost 50% of tree cover- Sahara Saher.

Figure 9. Green cover in Sahara Saher

Second site selected was of Sahara Saher, Lucknow. It has almost 50% of dense tree cover. The trees that are planted all over the site are of native species.

Site 3: With almost 70% of tree cover- Janeshwar Mishra Park

Figure 10. Green Cover in Janeshwar Mishra Park

Third site selected was of Janeshwar Mishra Park. It has almost 70% of dense tree cover. The trees that are planted all over the site are of native species.

Site 4: With almost 90% of tree cover- Dr. Ram Manohar Lohia Park

Figure 11. Green cover in Janeshwar Mishra Park

Fourth site was selected of Dr. Ram Manohar Lohia Park. It has almost 90% of tree cover with native species of trees.

V.DATA COLLECTION

5.1. Introduction

Within the pages that follow, comprehensive measurement of wet bulb temperature, a key indicator of thermal comfort, and relative humidity has been recorded. The narrative unfolds further to encompass carbon dioxide concentration—a vigilant sentinel monitoring air quality and revealing the subtle nuances of natural and anthropogenic influences.

Air velocity, like a rhythmic dance, takes center stage, offering valuable insights into ventilation, air quality, and thermal comfort. As the exploration progresses, the sky view factor, often overshadowed yet undeniably influential, emerges as a critical factor in understanding how the built environment shapes the microclimate and, consequently, the thermal experiences of outdoor spaces. Throughout this chapter, the focus is not merely on data collection but on fostering a profound comprehension of the intricate

Throughout this chapter, the focus is not merely on data collection but on fostering a profound comprehension of the intricate relationships between these parameters. Each recorded measurement, conducted with precision, becomes a thread woven into the fabric of knowledge, enriching our understanding of the nuanced environmental conditions at a given site.

Heat Index WBGT Meter

Surface Temperature

Multi-Functional Air Quality Detector

Digital Anemometer

Table 2.List of instruments used to record data on site

5.2. Site 1: Rosia Park, Gomti River Front

An in-situ experimental study was conducted using different instruments. Temperature data i.e. Wet bulb temperature and relative humidity was recorded on the site using a heat index WBGT meter in two conditions :

- 1. In the sun
- 2. In the shade

The data was collected for four days in a month with a weeks interval.

26.8

26.4

27.4

26.4

27.1

25.8

28

25.4

27.4

Table 3. Temperature in sun (Day 1)Rosia Park

1 aoic 3. Temperature in sun (Day 1)Rosia i ark														
Temp °C	26.7	26.8	26.7	27.3	27.3	27.3	27.4	28.1	28.2	28.4	28.8	28.9	29	29.2
% RH	21.6	22.6	25.1	26.1	22.7	26.7	27.2	27.5	25.7	27.1	26.7	25.4	25.7	25.5
Table 4.Temperature in shade (Day 1)Rosia Park														
Temp °C	28.7	28	27.7	27.2	27.3	26.9	26.5	25.8	25.2	24.8	24.2	24.2	23.9	23.9
% RH	25.5	25.7	25.8	26.1	26.5	26.8	27.3	27.5	28.1	28.3	28.7	28.8	29	29.5
				Table 5	.Tempe	rature ii	n sun (E	ay 2) R	Rosia Pa	rk				
Temp °C	25.1	25.6	26.2	26.4	26.6	27.1	27.2	26.8	27.2	27.1	27.3	27.5	27	27.1
% RH 26.8 27.5 27.4 27.1 28 27.4 26.1 26.7 26.4 26.9 25.2 25.2 25.3 25.7														
Table 6.Temperature in shade (Day 2) Rosia Park														

Temp °C

% RH

25.1

26.1

24.8

26.7

24.5

26.4

26.9

23.5

23.1

23

23 9

Table 7. Temperature in sun (Day 3) Rosia Park

Temp °C	24	24.5	25.2	25.9	26.2	26.2	26.5	26.9	27	27	27.1	27.2	27.2	27.2
% RH	19	19.5	19.9	20.5	20.8	21.7	22	22.5	22.9	23.2	23.6	23.6	23.9	24

Table 8. Temperature in shade (Day 3) Rosia Park

Temp °C	27.8	27.5	27	27.1	26.9	26.7	26.2	25.9	25.4	25.2	24.9	24.7	24.2	24
% RH	19	19.5	19.9	20.5	20.8	21.7	22	22.5	22.9	23.2	23.6	23.6	23.9	24

Table 9. Temperature in Sun (Day 4) Rosia Park

Temp °C	23.5	24.3	25.9	25.6	26.1	26	25.7	25.3	25.5	25.4	26.4	26.3	27.5	26.9
% RH	29.9	28.5	34.1	30.2	28.1	26.1	26.6	26.8	27.8	25.7	26.9	25.1	25	30.6

Table 10. Temperature in shade (Day 4) Rosia Park

Temp °C	26.9	26.4	25.9	25.3	25.1	25.1	24.9	24.7	24.3	24.1	24	23.8	23.4	23
% RH	29.9	28.5	34.1	30.2	28.1	26.1	26.6	26.8	27.8	25.7	26.9	25.1	25	30.6

CO2 Concentration was recorded using multi-functional air quality detector for 7 days in the evening.

Table 11.Co2 Concentration in rosia park(under tree cover)

CO2	875	823	857	880	940	920	860
Concentration/							
ppm							

Table 12.CO2 Concentration in Rosia Park

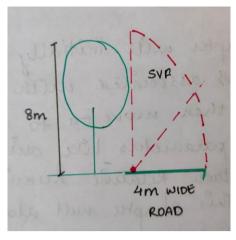
CO2	871	819	847	870	925	915	852
Concentration/							
ppm							

Air velocity using the digital anemometer was recorded for 7 days on the site.

Table 13.Air Velocity in Rosia Park (under tree cover)

Air	0.2	0.2	0.1	0.1	0.0	0.1	0.4
Velocity/m/s							

Table 14. Air Velocity in Rosia Park


Air	0.4	0.4	0.2	0.1	0.0	0.2	0.4
Velocity/m	ı/s						

Sky view factor was calculated using the formula $SVF = \pi 1 \times \sum_{i=1}^{N} n(di2hi)$ for four streets on the site.

- n is the number of visible trees,
- *h hi* is the height of each tree,
- *di* is the distance from the observed point to each tree.

Table 15.Sky View factor of different streets in Rosia Park.

Street	Street 1	Street 2	Street 3	Street 4
Sky view factor	0.159	0.032	0.128	0.032

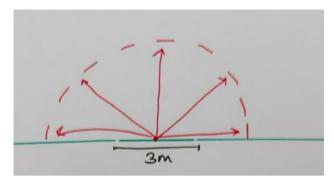
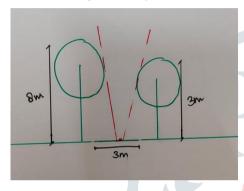



Figure 12.Sky View factor in Rosia Park

Figure 13.Sky view factor street 2

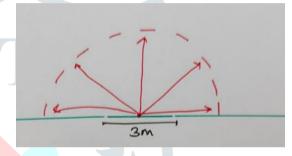


Figure 14.Street 3

Figure 15.Street 4

5.3. Site 2:Sahara Saher, Lucknow

An in-situ experimental study was conducted using different instruments. Temperature data i.e. Wet bulb temperature and relative humidity was recorded on the site using a heat index WBGT meter in two conditions:

- 1. In the sun
- 2. In the shade

The data was collected for four days in a month with a weeks interval.

Table 16. Temperature in sun (Day 1) Sahara Saher

	Temp °C	25.8	26.3	27.7	26.9	27.4	28.9	27.9	26.5	25.6	27.6	28.7	28	29.1	27.8
ſ	% RH	28	30	29	23.4	22.6	21.7	30.6	28.2	29.7	27	23.1	17.3	17	19

Table 17. Temperature in shade (Day 1) Sahara Saher

Temp °C	27.8	27.2	27	26.9	26.7	26.2	25.9	25.4	25.4	24.8	24.8	24.2	24	24
% RH	28	30	29	23.4	22.6	21.7	30.6	28.2	29.7	27	23.1	17.3	17	19

Table 18. Temperature in sun (Day 2) Sahara Saher

Temp °C	24	24.5	25.2	25.9	26.2	26.2	26.5	26.9	27	27	27.1	27.2	27.2	27.2
% RH	19	19.5	19.9	20.5	20.8	21.7	22	22.5	22.9	23.2	23.6	23.6	23.9	24

Table 19. Temperature in shade (Day 2) Sahara Saher

I	Temp °C	27.8	27.5	27	27.1	26.9	26.7	26.2	25.9	25.4	25.2	24.9	24.7	24.2	24
	% RH	19	19.5	19.9	20.5	20.8	21.7	22	22.5	22.9	23.2	23.6	23.6	23.9	24

Table 20.Temperature in sun(Day 3) Sahara Saher

Temp °C	23	23.5	23.9	24.3	24.7	24.9	24.9	25.2	25.6	25.9	26.3	26.9	27	27.3
% RH	23.4	25.3	24.4	26	27.5	27.9	29.3	30.8	29.7	28.9	32.3	30.8	29.8	29.5

Table 21. Temperarture in shade (Day 3) Sahara Saher

Temp °C	25.8	24.8	24.5	23.7	23.1	23.5	22.4	22.4	22.3	22.3	22.9	22.2	22.4	22
% RH	23.4	25.3	24.4	26	27.5	27.9	29.3	30.8	29.7	28.9	32.3	30.8	29.8	29.5

Table 22. Temperature in sun (Day 4) Sahara Saher

Tem	p °C	23.2	23.5	23.2	24	23.9	24.1	23.9	23.9	23.8	23.7	24.1	25	25.1	25.1
%	RH	27.4	27.7	26	26.5	25.9	26.9	27.7	27.6	26.3	27.3	27.1	28.4	28.4	28.3

Table 23. Temperature in shade (Day 4) Sahara Saher

Temp °C	25.1	25.1	24.9	24.6	24.2	23.9	23.5	23.2	23.1	23.1	22.9	22.7	22.5	22.2
% RH	27.4	27.7	26	26.5	25.9	26.9	27.7	27.6	26.3	27.3	27.1	28.4	28.4	28.3

CO2 Concentration was recorded using multi-functional air quality detector for 7 days in the evening.

Table 24.CO2 concentration in Sahara Saher (under tree cover)

CO2	677	690	595	650	710	670	680
Concentration/							
ppm							

Table 25.CO2 concentration in Sahara Saher

CO2	671	687	584	638	700	661	675
Concentration/							
ppm							

Air velocity using the digital anemometer was recorded for 7 days on the site.

Table 26.Air velocity in Sahara Saher(under tree)

Air	0.0	0.1	0.1	0.1	0.1	0.0	0.0
Velocity/m/s							

Table 27. Air velocity in Sahara Saher


Air	0.2	0.2	0.1	0.1	0.0	0.1	0.1
Velocity/m/s							

Sky view factor was calculated using the formula $SVF = \pi 1 \times \sum_{i=1}^{n} n(di2hi)$ for four streets on the site.

- *n* is the number of visible trees,
- *h hi* is the height of each tree,
- *di* is the distance from the observed point to each tree.

Table 28.Sky view factor in Sahara Saher

Street	Street 1	Street 2	Street 3	Street 4
Sky view factor	0.258	0.419	0.438	0.280

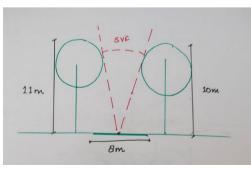
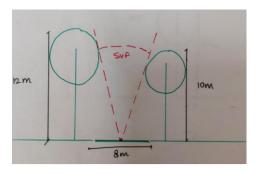



Figure 16. Sky view factor in sahara saher

Figure 17.Street 2

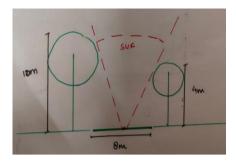


Figure 18.Street 3

Figure 19.Street 4

5.4. Site 3:Janeshwar Mishra Park, Lucknow

An in-situ experimental study was conducted using different instruments. Temperature data i.e. Wet bulb temperature and relative humidity was recorded on the site using a heat index WBGT meter in two conditions:

- 1. In the sun
- 2. In the shade

The data was collected for four days in a month with a week's interval.

Table 29. Temperature in sun (Day 1) Janeshwar Mishra

Temp °C	23.5	24.3	25.9	25.6	26.1	26	25.7	25.3	25.5	25.4	26.4	26.3	27.5	26.9
% RH	29.9	28.5	34.1	30.2	28.1	26.1	26.6	26.8	27.8	25.7	26.9	25.1	25	30.6

Table 30. Temperature in Shade (Day 1) Janeshwar Mishra

Temp °C	26.9	26.4	25.9	25.3	25.1	25.1	24.9	24.7	24.3	24.1	24	23.8	23.4	23
% RH	29.9	28.5	34.1	30.2	28.1	26.1	26.6	26.8	27.8	25.7	26.9	25.1	25	30.6

Table 31. Temperature in sun (Day 2) Janeshwar Mishra

Temp °C	19	19.3	19.7	19.9	20.1	20.1	20.5	20.7	20.9	21.5	21.9	22.3	22.5	23.3
% RH	28.5	28.9	28.8	30.8	34	30.8	32.4	33.1	32.6	34.8	35.4	35.8	35.8	33.2

Table 32. Temperature in Shade (Day 2) Janeshwar Mishra

Temp °C	23.3	23	22.6	22.6	23.1	22.5	22.5	22.5	22.8	23.1	23.1	22.9	23	22.6
% RH	28.5	28.9	28.8	30.8	34	30.8	32.4	33.1	32.6	34.8	35.4	35.8	35.8	33.2

Table 33. Temperature in sun (Day 3)

Temp °C	21.1	21.2	21.3	21.4	21.5	21.6	21.7	22	22	22.2	22.3	22.4	22.5	22.5
% RH	29.7	29.7	29.3	30.2	30	30.2	29.7	29.7	29.7	30.2	31.2	30.3	30.5	30.5

Table 34. Temperature in Shade (Day 3) Janeshwar Mishra

Temp °C	22.5	22.5	22.2	22.1	22.1	21.9	21.8	21.2	20.9	20.5	20.2	19.8	19.5	19.1
% RH	29.7	29.7	29.3	30.2	30	30.2	29.7	29.7	29.7	30.2	31.2	30.3	30.5	30.5

Table 35. Temperature in Sun (Day 4) Janeshwar Mishra

	Temp °C	18.6	18.9	20.8	20.2	20.3	19.9	19.6	19.7	19.7	20	21.1	21.2	21.3	21.4
I	% RH	34.4	33.7	32.5	31.4	31.2	31	32.1	31.8	31.7	32	32.5	32.5	32.6	32.6

Table 36. Temperature in Shade (Day 4) Janeshwar Mishra

Temp °C	22	21.8	21.4	21	21	20.9	20.5	20.1	20.1	19.8	19.7	19.5	19.1	18.5
% RH	34.4	33.7	32.5	31.4	31.2	31	32.1	31.8	31.7	32	32.5	32.5	32.6	32.6

CO2 Concentration was recorded using multi-functional air quality detector for 7 days in the evening.

.

Table 37.CO2 Concentration in Janeshwar Mishra (Under tree)

CO2	1015	1021	1010	980	1111	1201	999
Concentration/							
ppm							

Table 38.CO2 Concentration in Janeshwar Mishra

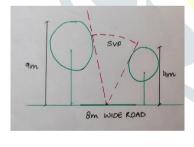
CO2	980	990	984	950	1001	1147	875
Concentration/							
ppm							

Air velocity using the digital anemometer was recorded for 7 days on the site.

Table 39. Air Velocity in Janeshwar Mishra (Under tree)

Velocity/m/s	Air	0.0	0.0	0.0	0.1	0.0	0.0	0.0
	Volocity/m/c							

Table 40. Air Velocity in Janeshwar Mishra


Air	0.1	0.1	0.0	0.1	0.1	0.0	0.0
Velocity/m/s							

Sky view factor was calculated using the formula $SVF = \pi 1 \times \sum_{i=1}^{N} n(di2hi)$ for four streets on the site.

- *n* is the number of visible trees,
- *h hi* is the height of each tree,
- *di* is the distance from the observed point to each tree.

Table 41. Sky view factor in Janeshwar Mishra

Street	Street 1	Street 2	Street 3	Street 4
Sky view factor	0.419	0.032	0.954	0.530

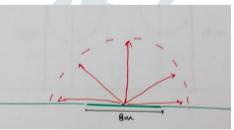
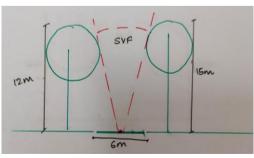



Figure 20.Sky view factor in Janeshwar Mishra

Figure 21.street 2

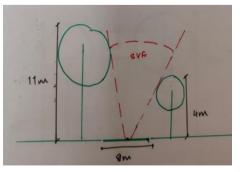


Figure 23.Street 4

5.5. Site 4:Dr. Ram Manohar Lohia Park, Lucknow

An in-situ experimental study was conducted using different instruments. Temperature data i.e. Wet bulb temperature and relative humidity was recorded on the site using a heat index WBGT meter in two conditions :

- 1. In the sun
- 2. In the shade

The data was collected for four days in a month with a week's interval.

Table 42. Temperature in sun (Day 1) RML Park

Temp°C	23.5	23.4	25.1	25.6	26.2	26.4	26.6	27.1	27.2	26.8	27.2	27.3	27.5	27.6
% RH	38.2	38.3	37.7	34.7	34	32.3	32	31.8	30.5	29.4	29.9	28.9	27.5	29.1

Table 43. Temperature in shade (Day 1) RML Park

Temp°C	27.6	27.1	26.9	26.4	26.1	26.1	25.9	25.4	25.1	24.8	24.5	24.2	23.8	23.4
% RH	38.2	38.3	37.7	34.7	34	32.3	32	31.8	30.5	29.4	29.9	28.9	27.5	29.1

Table 44. Temperature in sun (Day 2) RML Park

Temp °C	19.5	19.9	20.1	20.6	20.9	21.5	21.9	22.3	22.9	23.1	23.5	23.9	24	24.5
% RH	35.1	36.1	36.5	36.8	37	36.6	36.6	36.4	37	37.5	37.6	37.3	37.7	38.2

Table 45. Temperature in shade (Day 2) RML Park

Temp °C	24.7	24.1	23.9	23.8	23.8	23.9	23.8	23.8	23.6	23.4	23.4	23.5	23.5	23.4
% RH	35.1	36.1	36.5	36.8	37	36.6	36.6	36.4	37	37.5	37.6	37.3	37.7	38.2

Table 46. Temperature in sun (Day 3) RML Park

Temp °C	19.1	19.2	19.2	19.7	19.9	19.8	19.8	19.5	20	19.8	19.8	19.9	19.9	20
% RH	43.8	44.1	39.5	43.4	45.1	43	42	39.5	41.3	38.8	39.6	39.3	39.2	38.2

Table 47. Temperature in shade (Day 3) RML Park

Temp °C	21.2	21.1	20.9	20.5	20.1	19.9	19.5	19.1	18.9	18.7	18.2	18.1	18	18
% RH	43.8	44.1	39.5	43.4	45.1	43	42	39.5	41.3	38.8	39.6	39.3	39.2	38.2

Table 48. Temperature in sun (Day 4) RML Park

Temp °C	18.4	18.1	18	18.2	18.3	18.4	18.5	18.6	18.9	18.9	19	19.1	19.2	19.4
% RH	31.7	31	31	30.6	30.4	30.4	30.5	30.6	30.7	30.7	30.5	30.6	30.3	30.3

Table 49. Temperature in shade (Day 4) RML Park

Temp °C	20	19.9	19.5	19.1	19	18.9	18.5	18.1	17.9	17.5	17.2	17	17	16.9
% RH	31.7	31	31	30.6	30.4	30.4	30.5	30.6	30.7	30.7	30.5	30.6	30.3	30.3

CO2 Concentration was recorded using multi-functional air quality detector for 7 days in the evening.

Table 50.CO2 Concentration in RML Park (Under tree)

CO2	1817	1627	1780	1720	1801	1627	1556
Concentration/							
ppm							

Table 51.CO2 Concentration in RML Park

CO2	1750	1548	1652	1587	1754	1548	1244
Concentration/							
ppm							

Air velocity using the digital anemometer was recorded for 7 days on the site.

Table 52.Air velocity in RML Park (under tree)

Air	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Velocity/m/s							

Table 53.Air Velocity in RML Park

Air	0.0	0.0	0.0	0.1	0.1	0.0	0.0
Velocity/m/s							

Sky view factor was calculated using the formula $SVF = \pi 1 \times \sum_{i=1}^{N} n(di2hi)$ for four streets on the site.

- *n* is the number of visible trees,
- *h hi* is the height of each tree,
- *di* is the distance from the observed point to each tree.

Table 54.Sky view factor in RML Park

Street	Street 1	Street 2	Street 3	Street 4
Sky view factor	0.419	0.032	0.954	0.530

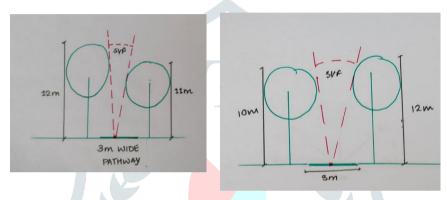


Figure 24. Sky view factor in RML park

Figure 25.Street 2

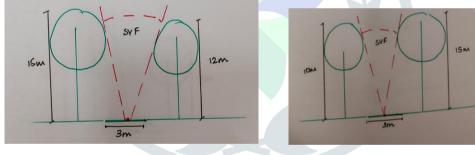


Figure 26.Street 3

Figure 27.Street 4

V.RESULTS AND DISCUSSION

6.1.Introduction

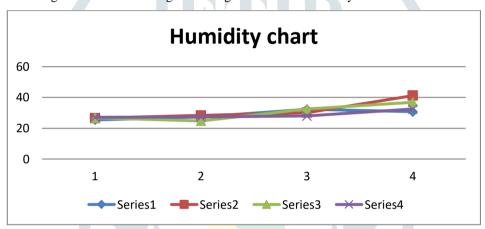
In this chapter, the results and discussions that have emerged from a meticulous study aimed at determining the optimum percentage of tree cover for enhancing thermal comfort within urban environments. The exploration navigates through the delicate balance between the benefits of shading and the potential trade-offs, considering factors such as solar access, wind flow, and overall urban aesthetics. This chapter aims to contribute to the evolving dialogue on sustainable urban planning. The discussions herein not only shed light on the optimal balance of greenery but also consider the broader implications for energy efficiency, air quality, and the overall well-being of urban inhabitants.

6.2. Results and Discussions

6.2.1. Temperature

30
25
20
—site 1
15
—site 2
10
—site 3
—site 4

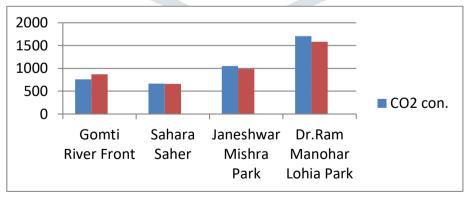
Figure 28. Chart showing the average temperatures of different sites


This chart shows the average of the wet bulb temperature recorded on all the four sites using the Heat Index WBGT meter. As we can see there is not much variations in the temperature recorded on the different sites because the data was collected in the month of October and November.

3

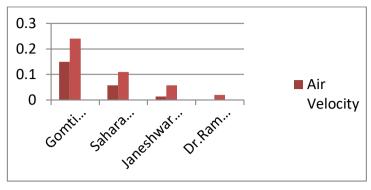
2

6.2.2. Relative Humidity


Figure 29. Chart showing the average of Relative Humidity on different sites

This chart shows the average of the relative humidity recorded on all the four sites using the Heat Index WBGT meter. As we can see there is not much variations in the relative humidity recorded on the different sites because the data was collected in the month of October and November.

6.2.3.CO2 Concentration


Figure 30. Chart of average of CO2 Concentration

This chart shows the average of CO2 Concentration recorded in all the four sites using a multi-functional air quality detector. It states that Dr Ram Manohar Lohia Park has the most CO2 concentration with is extremely unhealthy, Janeshwar Mishra also has high concentration but less than RML Park which is also unhealthy. Sahara Saher and Gomti River Front have acceptable and healthy amount of concentration.

6.2.4. Air Velocity

Figure 31. Chart shows the average of air velocity

This chart shows the average of air velocity recorded in all the four sites using a digital anemometer. It states that Dr Ram Manohar Lohia Park has the least air velocity, Janeshwar Mishra also has low air velocity more than RML Park which is also unhealthy. Sahara Saher and Gomti River Front have acceptable and healthy air velocity.

6.2.5. Surface Temperature

Figure 32. Chart Shows the average of surface temperatures

This chart shows the average of surface temperature on grass recorded in all the four sites using a digital anemometer. It states that Dr Ram Manohar Lohia Park has the least surface temperature, Janeshwar Mishra also has low surface temperature more than RML Park . Sahara Saher and Gomti River Front have high surface temperature with Gomti river front the highest.

6.3. Conclusion

From the above data collection and discussion, it can be seen that Sahara Saher which has approx. 50% of tree cover has the most thermally comfortable atmosphere as compared to the other sites with different percentage of tree covers. Therefore it can be concluded that:

- 1. 50% of tree cover is optimum to achieve thermal comfort.
- 2. Native trees should be planted to make a site more sustainable.
- 3. Trees should be planted at a specified distance to achieve more comfort.

REFERENCES

- Cao, S., Lu, C., & Yue, H. (2017). Optimal tree canopy cover during ecological restoration: A case study of possible ecological thresholds in Changting, China. In *BioScience* (Vol. 67, Issue 3, pp. 221–232). Oxford University Press. https://doi.org/10.1093/biosci/biw157
- Chen, T., Pan, H., Lu, M., Hang, J., Lam, C. K. C., Yuan, C., & Pearlmutter, D. (2021). Effects of tree plantings and aspect ratios on pedestrian visual and thermal comfort using scaled outdoor experiments. *Science of the Total Environment*, 801. https://doi.org/10.1016/j.scitotenv.2021.149527
- de Abreu-Harbich, L. V., Labaki, L. C., & Matzarakis, A. (2015). Effect of tree planting design and tree species on human thermal comfort in the tropics. *Landscape and Urban Planning*, *138*, 99–109. https://doi.org/10.1016/j.landurbplan.2015.02.008
- Galagoda, R. U., Jayasinghe, G. Y., Halwatura, R. U., & Rupasinghe, H. T. (2018). The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort. *Urban Forestry and Urban Greening*, 34, 1–9. https://doi.org/10.1016/j.ufug.2018.05.008
- Gregory McPherson David Nowak Rowan A Rowntree McPherson, E. J., Gregory, E., & Gregory McPherson David Nowak Rowan A Rowntree, E. J. (1994). *Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project*.
- Jennings, V., Gragg, R. S., Brown, C. P., Hartel, D., Kuehler, E., Sinykin, A., Johnson, E., & Kondo, M. (2019). Structural Characteristics of Tree Cover and the Association with Cardiovascular and Respiratory Health in Tampa, FL. *Journal of Urban Health*, 96(5), 669–681. https://doi.org/10.1007/s11524-019-00380-2
- Lai, D., Liu, W., Gan, T., Liu, K., & Chen, Q. (2019). A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. In *Science of the Total Environment* (Vol. 661, pp. 337–353). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.01.062
- Meili, N., Manoli, G., Burlando, P., Carmeliet, J., Chow, W. T. L., Coutts, A. M., Roth, M., Velasco, E., Vivoni, E. R., & Fatichi, S. (2021). Tree effects on urban microclimate: Diurnal, seasonal, and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects. *Urban Forestry and Urban Greening*, 58. https://doi.org/10.1016/i.ufug.2020.126970
- Morakinyo, T. E., Ouyang, W., Lau, K. K. L., Ren, C., & Ng, E. (2020). Right tree, right place (urban canyon): Tree species selection approach for optimum urban heat mitigation development and evaluation. *Science of the Total Environment*, 719. https://doi.org/10.1016/j.scitotenv.2020.137461
- Nowak, D. J., Rowntree, R. A., Mcpherson, E. G., Sisinni, S. M., Kerkmann, E. R., & Stevens, J. C. (1996). LANDSCAPE AND URBAN PLANNING Measuring and analyzing urban tree cover. In *Landscape and Urban Planning* (Vol. 36).
- Ordóñez, C., Labib, S. M., Chung, L., & Conway, T. M. (2023). Satisfaction with urban trees associates with tree canopy cover and tree visibility around the home. *Npj Urban Sustainability*, *3*(1). https://doi.org/10.1038/s42949-023-00119-8
- Picot, X. (2004). Thermal comfort in urban spaces: Impact of vegetation growth. Case study: Piazza della Scienza, Milan, Italy. *Energy and Buildings*, *36*(4), 329–334. https://doi.org/10.1016/j.enbuild.2004.01.044
- Srivanit, M., & Hokao, K. (2013). Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. *Building and Environment*, 66, 158–172. https://doi.org/10.1016/j.buildenv.2013.04.012
- Timilsina, S., Aryal, J., & Kirkpatrick, J. B. (2020). Mapping urban tree cover changes using object-based convolution neural network (OB-CNN). *Remote Sensing*, *12*(18). https://doi.org/10.3390/RS12183017
- Xue, S., Chao, X., Wang, K., Wang, J., Xu, J., Liu, M., & Ma, Y. (2023). Impact of Canopy Coverage and Morphological Characteristics of Trees in Urban Park on Summer Thermal Comfort Based on Orthogonal Experiment Design: A Case Study of Lvyin Park in Zhengzhou, China. *Forests*, 14(10). https://doi.org/10.3390/f14102098

APPENDIX 1: Literature study table

Author	Objective	Climate	Parameters	Analysis	Methodology	Simulation tools	Conclusion
		and					
		Location					
Camilo	This	Continen	Calculation	We found	Theoretical	Rv.4.2.1.	In conclusion, this
Ordóñez	research	tal	of NDVI,	that	framework,	Satellite images	research examined
S. M.	examined	climate.	canopy	canopy	Survey,	GVIR Package.	the relationship
Labib	whether	Toronto,	cover,	cover and	Greenness		between people's
Lincoln	people's	Canada,	and VGVI at	VGVI had	assessment,		satisfaction with
Chung	satisfaction		three	a positive	Data Analysis.		urban trees and
Tenley	with urban		neighbourho	association			objective measures
M.	trees and		od sizes.	with			of greenness, such
Conway(satisfaction			satisfaction			as the Normalized
Ordóñez	with the			with urban			Difference
et al.,	manageme			trees.			Vegetation Index
2023)	nt of those						(NDVI), percent
	trees were						tree canopy cover,
	related to						and the Viewshed
	objective						Greenness Visibility
	measures						Index (VGVI). The
	of greenery						study found that
	such as the						satisfaction with
	Normalize						urban trees was

	d Difference Vegetation Index (NDVI), percent tree canopy cover, and the Viewshed Greenness Visibility Index					positively associated with canopy cover and VGVI, particularly at larger neighbourhood scales. However, there were no significant associations with NDVI or satisfaction with the management of urban trees.
	(VGVI) for					
	trees.					
David J.	This paper	United		Although	Methods for	Average city tree
Nowak,	reviews	States		many	determining	cover ranges from
Rowan A.	several			factors	urban tree	55% in Baton
A. Rowntre	methods for			may influence	cover: Crown cover	Rouge, Louisiana, to 0.4% in
e,	determinin			urban tree	scale, transect	Lancaster,
E.	g			cover	method, Dot	California,
Gregory	urban		U .	(Sanders,	method,	while percent total
McPhers	cover from			19841, two	scanning	green space ranges
on,	aerial			dominant	method.	from 93% in
Susan M.	photograph			factors		Coachella,
Sisinni,	s. Urban			affecting	3 4.	California, to 38%
Esther R.	tree-cover			the extent	34	in Chicago, Illinois.
Kerkman	data are			and		Percent canopy
n, Jack C.	presented from North			distributio n of urban		greenspace also showed
Stevens(America			tree cover		wide variation,
Nowak et	and			are		ranging from 68%
al., 1996)	Europe,			the		in Atherton,
	and			sur <mark>round</mark> in		California,
	relationshi			g <mark>natura</mark> l		to 1% in Lancaster,
	ps among	T		environme		California
	urban tree			nt and the		
	cover, city,			land		
	and			use.		
	environme					
	ntal attributes					
	within US					
	cities are					
	discussed.					
Dayi Lai,	The		air	The paper	The	The paper
Wenyu	objective		temperature,	is a	methodology	concludes that
Liu,	of this		thermal	comprehen	included a	urban open spaces
Tingting	paper is to		radiation,	sive and	literature search	with a suitable
Gan,	conduct a		wind speed,	systematic	to identify	thermal
Kuixing	comprehen sive and		and	review of the	related review	environment attract citizens and boost
Liu, Qingyan	sive and systematic		humidity, surface	effectivene	articles, screening of the	the vitality of cities.
Chen(Lai	review of		temperature,	ss of	studies to ensure	The thermal
et al.,	the		mean radiant	various	the quality of	environment in
2019)	effectivene ss of		temperature,	strategies	the selected studies, and	outdoor spaces can
	various		PET, UTCI, long-wave	improving	analysis of the	be decomposed into air temperature,
	strategies		radiation,	the urban	data from the	thermal radiation,
	in		short-wave	thermal	selected studies.	wind speed, and
	improving		radiation.	environme	service studies.	humidity.
	the urban			nt and		,
	thermal			thermal		
	environme			comfort.		
	nt and			The review		

		1	Т		T		T
	thermal			analyzes			
	comfort.			the data			
				from			
				various			
				studies and			
				provides a			
				compariso			
				n of the			
				results			
Loyde	The	Hot and	The study	The study	To quantify the	RayMan software	These results
Vieira de	objective	dry	examined	examined	thermal comfort		demonstrate that
Abreu-	of this	climate,	the cooling	the cooling	provided by		clusters of trees can
Harbich,	paper is to	city of	effects of	effects of	shade of trees,		mitigate
Lucila	study the	Campina	different tree	different	meteorological		temperatures to a
Chebel	cooling	s, Brazil	species and	tree	data (air		greater extent
Labaki,	efficiency	~,	clusters of	species and	temperature, air		compared with
Andreas	of urban		trees in	clusters of	humidity, wind		individual trees.
Matzarak	landscape		reducing air	trees in	speed and		Tree shade qualities
	•		_		•		
is(de	strategies		temperature.	reducing	global radiation)		are also influenced
Abreu-	in a hot dry			air	collected from		by the individuality
Harbich	climate.			temperatur	field		of trunks and of
et al.,				e.	measurements		leaves, which
2015)					were used to		should be
					calculate PET		considered.
					with the		
		N.			assistance of		
			4		RayMan		
					software		
DII	TI.	T	411	T1 1		D D 11.	T1 1
R.U.	The	Tropical	thermal	The study	The study	Design Builder	The study
Galagoda	objective	climate,	performance	analyzed	consisted of an	version 5.0.3.7	concludes that the
, G.Y.	of this	Colombo	, relative	the data	in-situ		VGS can be an
Jayasing	paper is to	metropol	humidity,	collected	experimental		effective passive
he, R.U.	evaluate	itan area	and CO2	from the	study,		cooling strategy for
Halwatur	the thermal	in Sri	concentratio	in-situ	simulation, and		tropical urban
a, H.T.	performan	Lanka	n of three	experiment	questionnaire		buildings to
Rupasing	ce, relative		types of	al study,	survey.		improve the indoor
he(Galag	humidity,		green	simulation,	survey.		thermal comfort
oda et	and CO2		infrastructur	and survey			and reduce the
				to evaluate			
al., 2018)	concentrati		es (living				energy consumption
	on of three		walls,	the			of air conditioning
	types of		indirect	effectivene			systems.
	green		green	ss of the			
	infrastruct		facades, and	vertical			
	ures (living		direct green	greenery			
	walls,		facades) in	systems on			
	indirect		tropical	external			
	green		urban	wall			
	facades,		environment	surface			
	and direct		S.	temperatur			
			3.	_			
	green			e modulations			
	facades) in			reductions			
	tropical			and human			
	urban			thermal			
	environme			comfort.			
	nts, and to						
1	determine						
	their						
	impact on						
	human						
	thermal						
	comfort						
01. * *			Tana 11	The	TP1	Daniel C	A 4
Shirisa	The aim of		Topographic	The paper	The paper	Remote Sensing	A net tree cover
Timilsina	this		and climatic	discusses	presents a	Technologies,	loss was
,	research is		variables,	the	methodology	Object-Based	measured in the
Jagannat	to		such as	mapping	using object-	Image Analysis	study area of
h Aryal,	effectively		slope,	and	based	(OBIA),	Greater Hobart
Jamie B.	map urban		elevation,	monitoring	convolutional	Convolutional	between 2005 and

TZ: .1	4	I		"£1.		Manuel M. (2015/16 771
Kirkpatri	tree cover		aspect, solar	of urban	neural network	Neural Network	2015/16. This
ck(Timil sina et	changes and model		radiation, geology and	tree	(CNN) and	(CNN),	finding may motivate
al., 2020)	the		precipitation	coverage	object-based image analysis		local councils to
al., 2020)	relationshi		precipitation	using remote	(OBIA) to map		make plans and
	p of such			sensing	and monitor		policies to reverse
	changes			technologi	urban tree cover		this tendency, such
	with			es. It	changes		as increasing tree
	socioecono			highlights	between 2005		planting on
	mic			the	and 2015/16.		public lands.
	variables.			benefits of	The accuracy of		public lands.
	variables.			urban trees	the tree cover		
				and the	extraction using		
				need for	this method is		
				effective	reported to be		
				manageme	96% for 2005		
				nt of tree	images and 98%		
				coverage	for 2015/16		
				in cities.	images.		
Sihan	significanc	temperat	tree canopy	Results	This study	ENVI-met	The study's
Xue,	e of	e	coverage	show that	employed an		findings reveal that
Xinfeng	optimizing	continent	(TCC) and	the	orthogonal		TCC and tree
Chao,	the	al	its	contributio	experiment		morphological
Kun	configurati	climate	morphologic -	n ratio of	design and		elements, including
Wang,	on of trees	zone,	al elements,	various	ENVI-met		LAI, TH, and CD,
Jingxian	in creating		including	elements to	software to		all have the
Wang,	a more		leaf area	the thermal	simulate the		potential to improve
Jingyang	comfortabl		index (LAI),	environme	microclimate of		outdoor thermal
Xu,	e and		trunk height	nt vary	various multi-		comfort during the
Ming	inviting		(TH), and	over time.	factor		summer,
Liu, Yue	space for		crown		combination		particularly during
Ma(Xue	human		diameter		models in the		the midday period
et al.,	activities.		(CD)		case of a typical		when their impact
2023)					urban park in a		is most pronounced.
					temperate continental		
					climate zone in		
					China,		
					analysing the		
					simulated result		
					through		
					physiological		
					equivalent		
					temperature		
					(PET).		
Shixiong	The	Changtin	Tree canopy	In the study,	The researchers	Steel tape, Auger,	The study suggests
Cao,	objective of	g, China	cover, soil	the	used a	Tipping-bucket	that there may be an
Chenxi	the paper is		nutrient	researchers	combination of	rain gauges,	ecological threshold
Lu, And	to		content, soil	conducted	field	Sedimentation	for tree canopy
Hui	determine		microorganis	an analysis	measurements	Pond, Oxidation	cover, and
Yue(Cao	the optimal		m	to	and laboratory	with potassium	maintaining canopy
et al.,	tree canopy		populations,	determine	analysis to	dichromate,	cover at an optimal
2017)	cover for		plant species	whether an	determine the	EViews	level can promote
	ecological		richness, soil	ecological	relationship	quantitative	ecosystem
	restoration in		erosion.	threshold existed for	between tree	analysis software	sustainability during ecological
	Changting,			the effect of	canopy cover and various factors		restoration. The
	China.			tree canopy	such as soil		findings highlight the
	Cima.			cover on	erosion,		importance of long-
				soil and site	vegetation cover,		term research to
				parameters	and microbial		monitor the effects of
				over time.	activity.		ecological restoration
							activities.
Viniece	This	Warm	Health data,	The study	The	i-Tree Eco Plots,	The study examined
Jennings,	project	climate,	census data,	used	methodology of	Satellite	the relationship
Richard	extends	City of	tree cover	adjusted	the paper	Imagery,	between tree cover
Schulterb	prior	Tampa	data,	logistic	involved the use		and cardiovascular

randt	studies by		regression	of i-Tree Eco	Ordinary	and respiratory
Gragg	integrating		models to	plots and	Kriging, Spatial	health outcomes in
III, C.	structural		assess the	satellite imagery	Analyst	Tampa, FL. The
Perry	factors of		relationshi	to assess tree	Technique,	findings suggest
Brown,	tree cover		p between	cover and its	Geographic	that higher tree
Dudley	and		urban tree	impact on	Information	density is
Hartel,	exploring		canopy	cardiovascular	Systems (GIS)	associated with
Eric	their		cover and	and respiratory	Systems (G18)	fewer cases of
Kuehler(relationshi		rates of	health in Tampa,		respiratory and
Jennings	p		respiratory	FL. Two		cardiovascular
et al.,	to		and	hundred and one		admissions.
2019)	respiratory		cardiovasc	plots were		However, the
	and		ular-related	distributed		presence of tree
	cardiovasc		hospital	across the city		cover does not
	ular health		admissions	using random		guarantee physical
	outcomes			sampling with a		activity that
	across			hexagon grid		promotes
	socio-			and inventoried.		cardiovascular
	demograph			Structural		health.
	ic groups.			features of the		
				trees, such as		
				tree condition		
				and leaf area		
				index, were		
				assessed.		

