JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Comprehensive Cancer Detection From Histopathological Images Through Advanced Deep Learning Analysis

¹SabariSuganya. G, ²Nandhini. A, ³Nithyasri. M, ⁴Sasirekha. R

¹Assistant Professor, ²Student, ³Student, ⁴Student ¹Computer Science and Engineering, ¹Paavai Engineering college, Namakkal, India.

ABSTRACT: Histopathological study provides microscopic insights into tissue morphology and is essential for both cancer diagnosis and prognosis. Utilizing cutting-edge deep learning methods, especially convolutional neural networks (CNNs), has shown promise in automating the identification of cancer from histopathology pictures. This project provides a thorough review of the approaches and developments in applying deep learning to this use case. In order to identify areas of interest (ROIs), pathologists first acquire and preprocess data. They next standardize and annotate histopathological and brain MRI images. In order to reduce data scarcity and enhance generalization, various strategies such as transfer learning and data augmentation are utilized during the model training process. We are able to put the Sequential Framework CNN algorithm into practice. Deep learning models, once trained, segment histopathological pictures into non-cancerous and malignant regions using learnt features. Model performance is evaluated using metrics like accuracy, precision, recall, and AUC-ROC; validation techniques make sure the model can be applied to new sets of data. Collaboration with healthcare providers and strict clinical validation are necessary for integration into clinical procedures. Notwithstanding the advancements, many obstacles persist, such as the interpretability of deep learning models, image quality variability, unequal distribution of classes, and ethical problems. Prospective study avenues encompass augmenting interpretability, amalgamating multi-modal data, and tackling privacy apprehensions via federated learning.

Index terms: Deep learning, Multi type cancer, Convolutional neural network, Histopathological image, MRI image

1. INTRODUCTION

Cancer is a major worldwide health concern, and better patient outcomes and successful treatment depend on early identification. A crucial component of cancer diagnosis is still microscopic inspection of tissue samples, or histopathological investigation. However, the need for automated and objective cancer detection methods is highlighted by the labor-intensive, subjective, and sometimes error-prone nature of this procedure. Convolutional neural networks (CNNs), in particular, have shown impressive skills in deep learning in recent years in a variety of image processing applications, including medical image interpretation. Researchers have been investigating techniques to automate the interpretation of histopathology images for cancer screening by utilizing deep learning capabilities. The field of oncology, artificial intelligence, and medical imaging intersect to form the foundation of this work. Traditionally, pathologists' competence in manually examining slides under a microscope has played a major role in the diagnosis of cancer from histopathological images. Time-consuming and susceptible to inter-observer variability is this method. Furthermore, more effective and precise diagnostic techniques are required due to the growing amount of medical data and the complexity of cancer pathophysiology. Deep learning-based methods have the ability to provide automated and impartial interpretation of histopathology images, which may help to overcome these difficulties. Deep learning models can extract discriminative features directly from the images by utilizing big datasets and advanced neural network designs, which may improve diagnostic efficiency and accuracy. The backdrop also includes developments in CNN structures, optimization algorithms, and model interpretability

techniques that have contributed to the evolution of deep learning techniques. These developments have led to the creation of deeper learning models for medical image analysis—including the identification of cancer from histopathology images—that are more reliable and efficient. Furthermore, the backdrop entails comprehending the subtleties of histological imaging, such as the intricate morphological and structural traits of malignant tissues. In order to identify subtle patterns and abnormalities suggestive of cancer, deep learning models need to be trained taking into consideration differences in staining, tissue preparation, and image quality. Overall, the work's background highlights the urgent need for automated and precise cancer detection techniques in histopathology, the potential of deep learning to meet these challenges, and the unique challenges and complexities involved in applying advanced deep learning techniques to the analysis of histopathological images. Fig 1 shows the multi types cancer

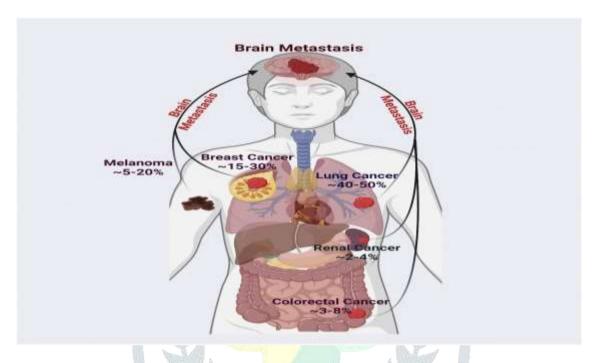


Fig 1: Multi types of cancer

2. RELATED WORK

Matteo tortora, et.al,...[1] presented a multimodal late fusion framework combing radiomics, pathomics and clinical data to predict radiation therapy treatment outcomes for NSCLC patients. We fed the proposed framework with hand-crafted features extracted from the aforementioned data sources. Here, we explored the combinations of eight different late fusion rules (i.e., product, maximum, minimum, mean, decision template, Dempster-Shafer, majority voting, and confidence rule) with two samples' patient-wise aggregation rules (i.e., feature mean and score mean) implemented to have a single classification per patient and consistent sample fusion, for a total 64 experiments. The take-home message emerging from this work is that the multimodal learning framework leads to a significant improvement of a learning system in terms of performance. Indeed, in this work the simultaneous fusion of the three modalities is the best approach and it significantly differs from all the models fed with the stand-alone data flows. While our work demonstrates the potential of the multimodal framework to predict radiotherapy outcomes, some limitations must be acknowledged. Although handcrafted features still show remarkable performance in lowdimensional datasets, such as the one in our study, they may be prone to human biases, which could adversely affect the accuracy and limit the generalisability of the results.

Muntasir mamun, et.al,...[2] developed the system for analysed the Lung cancer is one of the most deadly and devastating types of cancer in the world. It is challenging to detect cancer, and its symptoms only become noticeable in the final stages. Although this cancer's death rate could be decreased by early detection and appropriate treatment for patients. Lung cancer often starts in the lungs; however, it occasionally appears as early symptoms prior to spread. In recent years, numerous techniques have been developed, and research is ongoing to effectively identify lung cancer. The greatest imaging method for early diagnosis of lung cancer will be CT scan images, although it can be challenging for medical professionals to interpret and detect cancer from CT scan images. Although it cannot be prevented, a quick diagnosis can help the patient live longer than expected. In North America and other industrialized nations, lung cancer is the primary reason for cancer-

related mortality. Lung cancer is at the top of the priority list because it frequently isn't discovered until the disease is well along. Therefore, despite substantial advancement over the past years, early diagnosis is still not reliable. In our research, we proposed CNN based deep learning model for the early detection of lung cancer using CT scan images. If we detect early-stage in cancer, it might be possible to cure cancer with proper treatment and care. To detect cancer, predict the outcome of cancer treatment, and increase patient survival after a diagnosis of cancer, a variety of methods are being explored.

Sadaf khademi, et.al,...[3] proposed a hybrid transformer-based framework, referred to as the CAET-SWin, to accurately and reliably predict the invasiveness of lung adenocarcinoma subsolid nodules from non-thin 3D CT scans. The proposed CAET-SWin model achieves this objective by combining spatial (within-slice) and temporal (inter-slice) features extracted by its two constituent parallel paths (the CAET and SWin paths) designed based on the self-attention mechanism. The CAET-SWin significantly improved reliability of the invasiveness prediction task compared to its radiomics-based counterpart while increasing the accuracy by 1.65% and sensitivity by 3.66%. The paper proposes a novel hybrid discovery Radiomics framework that simultaneously integrates temporal and spatial features extracted from non-thin chest Computed Tomography (CT) slices to predict Lung Adenocarcinoma (LUAC) malignancy with minimum expert involvement. Lung cancer is the leading cause of mortality from cancer worldwide and has various histologic types, among which LUAC has recently been the most prevalent. LUACs are classified as preinvasive, minimally invasive, and invasive adenocarcinomas. Timely and accurate knowledge of the lung nodules malignancy leads to a proper treatment plan and reduces the risk of unnecessary or late surgeries. Transformer architecture constitutes the main component of the two parallel paths of the CAET-SWin framework, which uses a self-attention mechanism to capture dependencies among various instances of the input sequence

Muntasir mamun, et.al,...[4] reviewed some previous studies related to lung cancer prediction models and compared the performances to our models. We developed four types of ensemble learning techniques: XGBoost, LightGBM, AdaBoost, and bagging, to predict lung cancer using the lung cancer dataset. The dataset was unbalanced, and an oversampling method by SMOTE was used to make it balanced and suitable for the analysis. Besides, we chose K-fold 10 cross-validation for the model validation process. According to our overall analysis, XGBoost outperformed all the models and is considered our proposed model. Proper lung cancer prediction is conducted by appropriately using attributes, where the attributes describe the symptoms. The predictive attributes are gender, age, smoking, yellow fingers, anxiety, peer pressure, chronic disease, fatigue, allergy, wheezing, alcohol, coughing, shortness of breath, swallowing difficulty and chest pain, respectively and the class attribute is lung cancer. In this research work, we used four types of ensemble learning: XGBoost, LightGBM, AdaBoost and Bagging classifier techniques, and we compared the results in terms of accuracy, precision, recall, F1-score and AUC.

Mohammad a. Alzubaidi, et.al,...[5] diagnosed and detect lung cancer, including blood tests, radiology tests, endoscopy procedures and biopsies. Each type of test has some advantages, disadvantages, and some special applications. CT (Computed Tomography) scanning can provide a fast test result without pain, and it provides information about the tumor shape, size, and location. A CT scan is a 3-D image of the inside of the body, produced by an x-ray machine that takes multiple images of the same anatomical location from different angles. In addition, a CT scan helps to evaluate intrathoracic pathological conditions. To detect lung cancer, specialists typically perform a CT scan with a contrast enhancing medium injected into the blood. This shows the details in the lung more clearly. Such a CT scan provides detailed images of the patient's chest, to allow for better detection of lung cancer. This work proposed a comprehensive and comparative global and local feature extraction framework for lung cancer detection using CT scan images. It compared between six well-known machine learning algorithms, and ten image feature extraction methods, using global and local feature extraction approaches. Image warping was performed to allow for anatomically-based local feature extraction and model learning. This suggests that using SVM with Gabor Filter feature extraction could be useful for detecting suspicious regions within CT scan images, to assist radiologists in detecting lung cancer.

3. EXISITNG METHODOLOGIES

The existing system for cancer detection from histopathological images typically relies on manual interpretation by expert pathologists, which is time-consuming, subjective, and prone to inter-observer variability. Pathologists visually examine tissue samples under a microscope, identifying cancerous regions based on morphological features such as cell shape, size, and arrangement.

Support Vector Machines (SVM): SVM is a supervised learning algorithm used for classification tasks. It works by finding the optimal hyperplane that separates data points into different classes. SVM has been applied in cancer detection tasks, particularly in analyzing gene expression data and identifying cancer subtypes.

Random Forest: Random Forest is an ensemble learning algorithm that constructs a multitude of decision trees during training and outputs the class that is the mode of the classes of the individual trees. It is robust against overfitting and noise, making it suitable for analyzing complex cancer datasets with high-dimensional features.

Artificial Neural Networks (ANN): ANN, particularly deep learning models like Recurrent Neural Networks (RNNs), have shown promise in cancer detection tasks, especially in analyzing medical images such as MRI, CT, and histopathological images. RNNs are adept at learning hierarchical features from images, while RNNs are suitable for sequential data analysis, such as genomic sequences.

4. PROPOSED METHODOLOGIES

The proposed work presents a systematic approach to tackle the challenges associated with comprehensive cancer detection from histopathological images. Initially, the dataset will undergo meticulous preprocessing steps to ensure its quality and enhance the variability of the data. This includes standardizing image intensities and color spaces, as well as employing augmentation techniques to augment dataset variability, thereby improving the robustness of the deep learning models. Subsequently, a sophisticated Convolutional Neural Network (CNN) architecture will be meticulously designed and implemented. This deep learning model will be specifically tailored for the task of image classification, with a keen focus on capturing intricate features crucial for identifying cancerous regions accurately. The architecture will be optimized to handle multi-class classification, facilitating the precise differentiation between normal tissue and various cancer types. The proposed work involves a systematic approach to address the challenges associated with comprehensive cancer detection from histopathological images. Firstly, the dataset will undergo thorough preprocessing steps, including standardization of image intensities and color spaces, as well as augmentation techniques to enhance dataset variability. Subsequently, a sophisticated Convolutional Neural Network (CNN) architecture will be designed and implemented. This deep learning model will be specifically tailored for the task of image classification, with a focus on capturing intricate features crucial for identifying cancerous regions. The architecture will be optimized to handle multi-class classification, enabling the accurate differentiation between normal tissue and various cancer types. The proposed system architecture can be shown in fig 2.

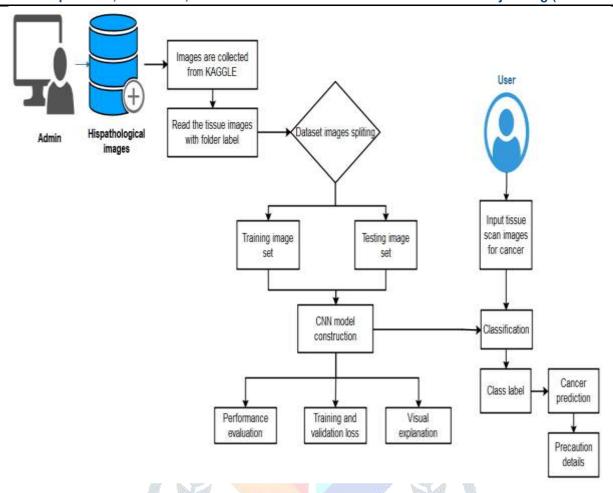


Fig 2: Proposed architecture

CNN BASED DISEASE PREDICTION

To leverage the Convolutional model for cancer detection, the process begins with assembling a dataset of histo pathological images and MRI images, each accurately labeled to denote the presence or absence of cancer. The dataset undergoes meticulous preprocessing to ensure uniformity in dimensions, contrast adjustments, and normalization of intensity values, enhancing the model's ability to discern relevant features.

A Convolutional Neural Network (CNN) is a deep learning model specifically designed for processing structured grid-like data, such as images. It consists of multiple layers, each serving a specific purpose in feature extraction and classification. Here's an overview of the typical architecture of a CNN model:

Input Layer: This layer represents the input data, usually an image or a set of images. Each image is represented as a grid of pixel values.

Convolutional Layers: These layers are the core building blocks of a CNN. They consist of filters (also known as kernels) that slide over the input image, performing element-wise multiplications and summations to extract feature maps. Convolutional layers help the network learn hierarchical features at different spatial scales.

Activation Function: After each convolution operation, an activation function is applied to introduce non-linearity into the network. Common choices include ReLU (Rectified Linear Unit), which helps the network learn complex patterns more efficiently.

Pooling Layers: Pooling layers downsample the feature maps obtained from the convolutional layers, reducing their spatial dimensions while retaining important features. Max pooling is a common pooling operation, which retains the maximum value within each pooling region.

Fully Connected Layers (Dense Layers): These layers take the flattened output from the last pooling layer and perform classification based on the learned features. Each neuron in the fully connected layer is connected to every neuron in the previous layer, allowing the network to learn complex decision boundaries.

Output Layer: The output layer produces the final predictions. The number of neurons in this layer corresponds to the number of classes in the classification task. The softmax activation function is often used to convert the raw output scores into probabilities, making it suitable for multi-class classification. During training, the CNN learns to minimize a predefined loss function (e.g., categorical cross-entropy) by adjusting the weights of its neurons using optimization algorithms like stochastic gradient descent (SGD) or Adam.

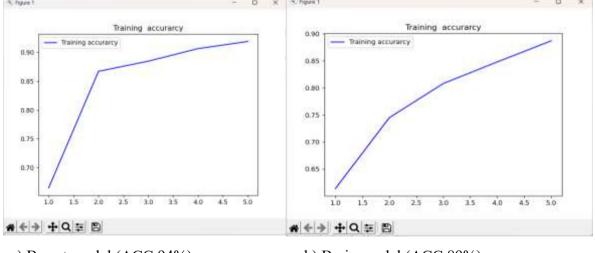
5. EXPERIMENTAL RESULTS

In this study, we can collect the datasets for multiple cancer types such as breast, lung and brain cancer. The datasets details are shown in following table 1.

IMAGES	Count details
brain_glioma	2081
brain_menin	1939
brain_tumor	2155
breast_benign	2120
breast_malignant	2101
lung_aca	2382
lung_bnt	2219
lung_scc	2275

Table 1: Datasets description

Brain images are in the form of MRI, breast and lung images are in the form of Histopathological images. The performance of the system can be evaluated using training accuracy measurements. Training accuracy refers to the accuracy of a machine learning model on the training dataset, which is the portion of data used to train the model. It measures how well the model fits the training data and indicates the ability of the model to learn the underlying patterns and relationships in the data. Training accuracy is typically calculated by comparing the predictions made by the model to the actual labels or outcomes in the training dataset. For classification tasks, it represents the percentage of correctly classified instances, while for regression tasks, it measures the closeness of the predicted values to the actual values.



- a) Breast model (ACC 94%)
- b) Brain model (ACC 89%)

c) Lung model (ACC 95%) Fig 3: Performance chart

From the above figure, proposed system achieves high level accuracy nearly 90% in disease classification. Then disease prediction page shows the results for lung cancer

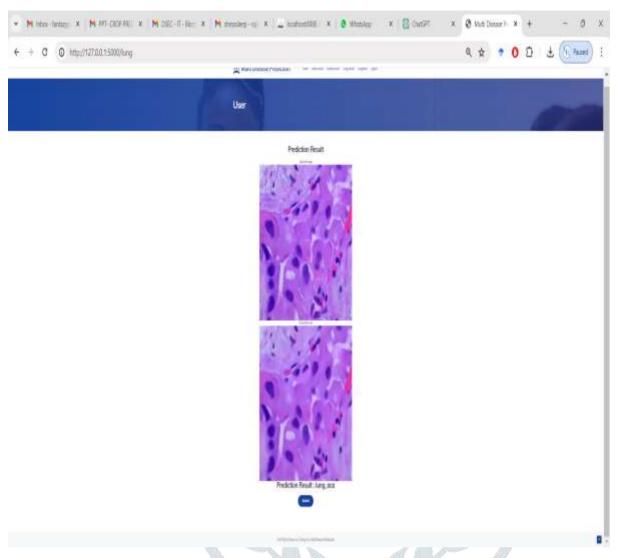


Fig 4: Disease Prediction

6. CONCLUSION

In summary, building robust machine learning models for lung cancer detection and classification requires first creating a dataset comprising histopathological pictures of lung tissue and brain MRI images labeled with information about the presence or absence of malignant tissue. Researchers can create a complete dataset that captures the variety inherent in varied cancer pathologies by sourcing diverse lung tissue samples and carefully annotating regions of interest containing malignant growth. The compilation of annotated histopathology and MRI image collections for lung cancer research not only makes machine learning models easier to create, but it also promotes collaboration and knowledge sharing among scientists. These databases allow researchers to compare outcomes and pinpoint best practices by providing consistent benchmarks for assessing the effectiveness of various algorithms and methodologies. Furthermore, multidisciplinary collaboration between pathologists, radiologists, computer scientists, and other professionals is encouraged by the availability of annotated datasets, which promotes creative approaches to the diagnosis and treatment of lung cancer.

REFERENCES

- [1] Tortora, Matteo, et al. "RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for Adaptive Radiotherapy." IEEE Access (2023).
- [2] Mamun, Muntasir, et al. "Lcdctcnn: Lung cancer diagnosis of ct scan images using cnn based model." 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2023.
- [3] Khademi, Sadaf, et al. "Spatio-Temporal Hybrid Fusion of CAE and SWin Transformers for Lung Cancer Malignancy Prediction." ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023.

- [4] Mamun, Muntasir, et al. "Lung cancer prediction model using ensemble learning techniques and a systematic review analysis." 2022 IEEE World AI IoT Congress (AIIoT). IEEE, 2022.
- [5] Alzubaidi, Mohammad A., Mwaffaq Otoom, and Hamza Jaradat. "Comprehensive and comparative global and local feature extraction framework for lung cancer detection using ct scan images." IEEE Access 9 (2021): 158140-158154.
- [6] Chen, Ying, et al. "LDNNET: Towards robust classification of lung nodule and cancer using lung dense neural network." IEEE Access 9 (2021): 50301-50320.
- [7] Silva, Francisco, et al. "EGFR assessment in lung cancer CT images: analysis of local and holistic regions of interest using deep unsupervised transfer learning." IEEE Access 9 (2021): 58667-58676.
- [8] Chang, Liu, et al. "AI-driven synthetic biology for non-small cell lung cancer drug effectiveness-cost analysis in intelligent assisted medical systems." IEEE Journal of Biomedical and Health Informatics 26.10 (2021): 5055-5066.
- [9] Aonpong, Panyanat, et al. "Genotype-guided radiomics signatures for recurrence prediction of non-small cell lung cancer." IEEE Access 9 (2021): 90244-90254.
- [10] Fu, Xiaohang, et al. "Multimodal spatial attention module for targeting multimodal PET-CT lung tumor segmentation." IEEE Journal of Biomedical and Health Informatics 25.9 (2021): 3507-3516.

