JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Idealized concepts of PN Junction diode

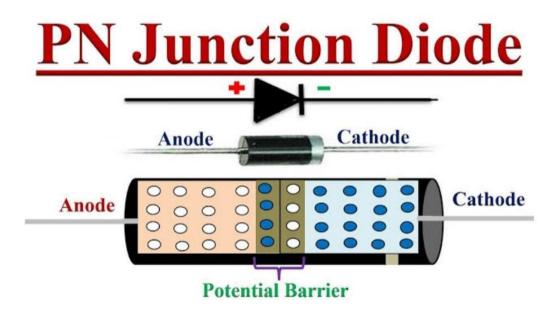
Sunny Kumar¹, Inamul Haq Wani²

Department of Physics Govt. Maulana Azad Memorial College Jammu, Jammu and Kashmir, India

ABSTRACT: The pn junction diode is a fundamental semiconductor device with diverse applications in electronic circuits. This paper provides an overview of the operation, characteristics, and applications of pn junction diodes. It discusses the formation of the pn junction, the behavior of charge carriers under forward and reverse bias conditions, and the resulting current-voltage characteristics. Additionally, various applications of pn junction diodes in rectification, signal modulation, voltage regulation, and light emission are explored. The importance of understanding the behavior of pn junction diodes in circuit design and optimization is emphasized throughout the paper.

Keywords: Pn junction diode ,Rectification, voltage regulation, Clipping And clamping, signal demodulation, Light emission, Photo voltaic, formation of pn junction diode, Forward and reverse pn junction diode, Characteristics of pn junction diode.

Introduction to Pn junction diode.


A PN junction diode forms the cornerstone of modern electronics, serving as a fundamental building block in countless electronic circuits. At its core, it's a semiconductor device composed of two types of semiconductor material: P-type, which is positively charged due to an excess of "holes" (positively charged carriers), and N-type, negatively charged due to an excess of electrons (negatively charged carriers). When these two materials are brought into contact, they form a junction.

The behavior of a PN junction diode is governed by the movement of charge carriers across this junction. When a forward bias voltage is applied across the diode (positive voltage to the P-side and negative voltage to the N-side), it allows current to flow freely through the diode. This is because the positive voltage attracts the excess electrons from the N-side toward the

junction, while the negative voltage attracts the holes from the P-side, effectively reducing the width of the depletion region and allowing current to pass.

Conversely, when a reverse bias voltage is applied (positive voltage to the N-side and negative voltage to the P-side), it creates a wider depletion region, preventing significant current flow across the junction. However, a small leakage current, called the reverse saturation current, does flow due to minority carriers crossing the junction.

Symbolic diagram of PN junction diode:

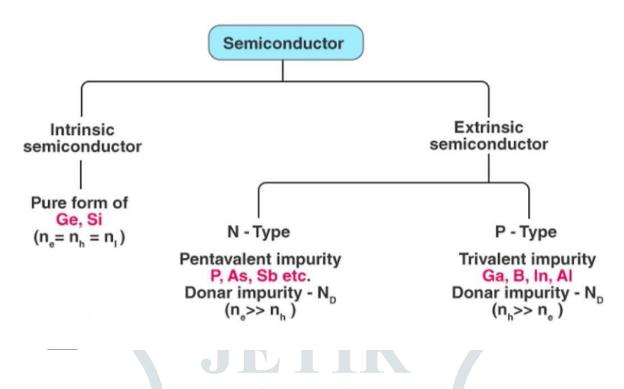
Basic definition and structure of Pn junction diode.

A PN junction diode is a semiconductor device formed by joining together a P-type semiconductor material (with positively charged "holes") and an N-type semiconductor material (with negatively charged electrons). This junction create a depletion region where charge carriers are absent . The basic structure consists of two regions: the P-type region and the N-type region, separated by the PN junction

Important and Application of Pn junction diode in electronics circuit in detail.

A PN junction diode is a fundamental component in electronic circuits with various important applications. Here's a detailed breakdown:

1. **Rectification**: PN junction diodes are commonly used to convert alternating current (AC) to direct current (DC) in rectifier circuits. This process involves allowing current to flow in only one direction, blocking the reverse current. This is crucial in power supplies and battery charging circuits.


- 2. **Voltage Regulation**: Zener diodes, a type of PN junction diode operated in the reverse breakdown region, are used for voltage regulation. They maintain a constant voltage across their terminals, making them useful in stabilizing voltage in electronic circuits.
- 3. **Clipping and Clamping:** PN junction diodes are used for signal clipping and clamping in electronic circuits. Clipping circuits remove portions of input waveform above or below a certain voltage level, while clamping circuits shift the DC level of a waveform to a desired level.
- 4. **Signal Demodulation**: In radio and communication systems, PN junction diodes are used in demodulation circuits to extract the original information signal from a modulated carrier wave.
- 5. **Light Emission**: Light-emitting diodes (LEDs) are a type of PN junction diode that emits light when current flows through it. LEDs are widely used in various applications such as indicator lights, display panels, and lighting systems.
- 6. **Photovoltaic Effect**: When exposed to light, PN junction diodes generate a voltage potential across their terminals due to the photovoltaic effect. This principle is the basis of solar cells, which convert light energy into electrical energy.
- 7. **Temperature Sensing**: PN junction diodes exhibit a temperature-dependent voltage drop, making them useful as temperature sensors in electronic circuits.
- 8. **Switching**: PN junction diodes can act as simple electronic switches in digital logic circuits and signal conditioning circuits. They allow or block current flow based on the biasing conditions applied to them.

Overall, PN junction diodes play a crucial role in various electronic circuits, enabling a wide range of applications from power conversion to signal processing and sensing.

Theory of semiconductor and it types explain.

Semiconductors are materials with conductivity between conductors (like metals) and insulators (like rubber). The behavior is explained by quantum mechanics. They're crucial in electronics. Types include:

There are two main types of semiconductors.

- 1. **Intrinsic Semiconductor**: Pure semiconductors like silicon or germanium. They have equal numbers of electrons and holes, and conductivity is low.
- **2. Extrinsic Semiconductor**: Doped semiconductors. Doping introduces impurities to alter conductivity:

N-type:Doped with elements like phosphorus, adding extra electrons, increasing conductivity.

P-type:Doped with elements like boron, creating holes in the crystal structure, aiding electron movement, also increasing conductivity.

These types form the basis of semiconductor devices like diodes and transistors, enabling modern electronics.

PN junction formation: p type and n-type semiconductor junction.

1. Formation of PN Junction:

A PN junction is formed when a P-type semiconductor, which has excess positive charge carriers (holes), is joined with an N-type semiconductor, which has excess negative charge carriers (electrons).

When the two materials are brought into contact, electrons from the N-type material diffuse across the junction into the P-type material, and holes from the P-type material diffuse across the junction into the N-type material.

As a result, a region near the junction becomes depleted of majority carriers and contains fixed charges, forming a depletion region or barrier region.

2. P-Type Semiconductor:

P-type semiconductor is doped with acceptor impurities, which create holes as majority carriers.

These acceptor impurities create energy levels just above the valence band, making it easier for electrons to transition into these levels, leaving behind holes.

Examples of acceptor impurities include boron (B) in silicon (Si) crystal lattice.

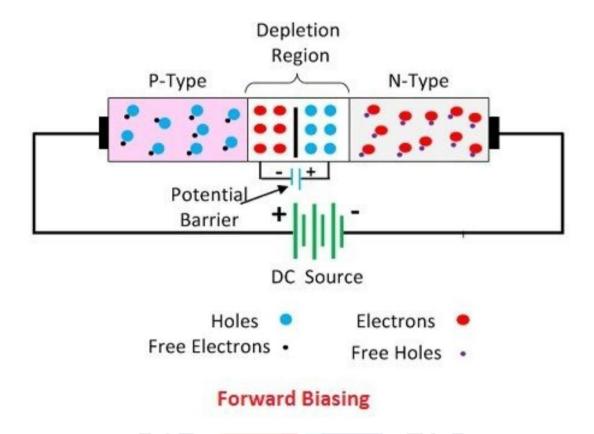
3. N-Type Semiconductor:

N-type semiconductor is doped with donor impurities, which create excess free electrons as majority carriers.

These donor impurities create energy levels just below the conduction band, making it easier for electrons to transition into the conduction band, thus increasing the number of free electrons.

Examples of donor impurities include phosphorus (P) in silicon (Si) crystal lattice.

4. Junction Behavior:

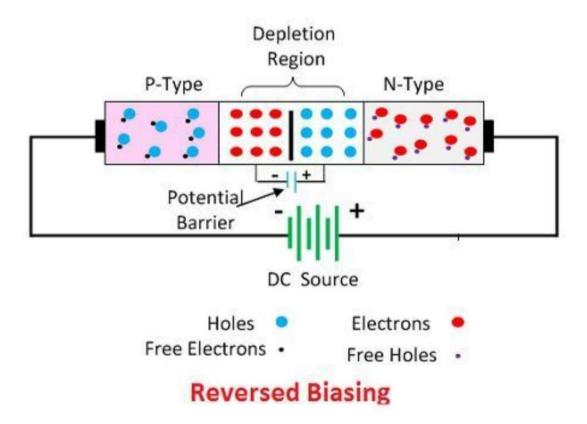

After the formation of the PN junction, a built-in potential is established across the junction due to the diffusion of charge carriers.

This built-in potential creates an electric field that opposes further diffusion of carriers, leading to the formation of a depletion region.

The resulting electric field causes the drift of majority carriers across the junction, which leads to the flow of current when an external voltage is applied.

Overall, the PN junction plays a crucial role in semiconductor devices like diodes and transistors, where its behavior can be controlled to regulate the flow of current.

Forward biased pn junction diode.


When a PN junction diode is forward biased, it means that the positive terminal of the voltage source is connected to the P-type material and the negative terminal is connected to the N-type material. This causes an external electric field to be applied across the junction, which opposes the built-in electric field.

- 1. **Electron and Hole Movement:** Electrons from the N-type material and holes from the P-type material are pushed towards the junction due to the applied voltage. The positive terminal repels holes in the P-type material, while the negative terminal repels electrons in the N-type material.
- 2. **Reduction of Depletion Region**: The applied voltage reduces the width of the depletion region, which is the region depleted of mobile charge carriers near the junction. As a result, the barrier potential decreases.
- 3. **Carrier Injection**: As the barrier potential decreases, electrons from the N-type material and holes from the P-type material are able to overcome the potential barrier and cross the junction, injecting minority carriers into the opposite material.
- 4. **Conduction**: With enough applied voltage, the injected minority carriers contribute to conduction across the junction. Electrons from the N-type material and holes

from the P-type material now move freely across the junction, resulting in current flow.

- 5. **Low Resistance**: In forward bias, the resistance of the diode decreases significantly, allowing a large current to flow for a relatively small increase in voltage.
- 6. **Characteristics**: The forward current (IF) increases exponentially with forward voltage (VF), according to the diode equation: IF = IS * (e^(VF / (n * VT)) 1), where IS is the reverse saturation current, VF is the forward voltage, n is the ideality factor, and VT is the thermal voltage (approximately 26 mV at room temperature).

Reverse biased pn junction diode.

In a reverse-biased PN junction diode, the P-type semiconductor is connected to the negative terminal of the voltage source, and the N-type semiconductor is connected to the positive terminal. This arrangement creates a potential barrier that opposes the flow of current. detailed explanation:

1. **Initial Conditions**: Initially, when no external voltage is applied, a depletion region forms at the junction due to the diffusion of majority charge carriers (holes from Pregion and electrons from N-region) across the junction, leaving behind immobile ions. This creates a potential barrier.

- 2. **Application of Reverse Bias**: When a reverse bias voltage is applied, the positive terminal of the battery is connected to the N-type material, and the negative terminal is connected to the P-type material. This increases the potential barrier width, further resisting the flow of majority carriers across the junction.
- 3. **Depletion Region Widening**: The reverse bias causes the depletion region to widen. The positive terminal repels holes in the P-type material, and the negative terminal repels electrons in the N-type material. This increases the width of the depletion region, reducing the electric field in the junction.
- 4. **Conduction Mechanism**: In reverse bias, only minority charge carriers (minority carriers for each region are electrons in the P-type material and holes in the N-type material) contribute to the current flow. However, the number of minority carriers is very low compared to majority carriers, resulting in very low current flow, typically in the nanoampere range.
- 5. **Breakdown**: If the reverse bias voltage exceeds a certain threshold (called the breakdown voltage), the diode can undergo avalanche breakdown or Zener breakdown. In avalanche breakdown, high-energy carriers generated by collisions gain enough energy to create more electron-hole pairs, leading to a sharp increase in current. In Zener breakdown, the strong electric field across the depletion region allows electrons to tunnel through the junction, causing a sudden increase in current.

Characteristics of p-n junction diode:

Forward bias characteristics

The circuit diagram to study for bias characteristics is shown in fig .1

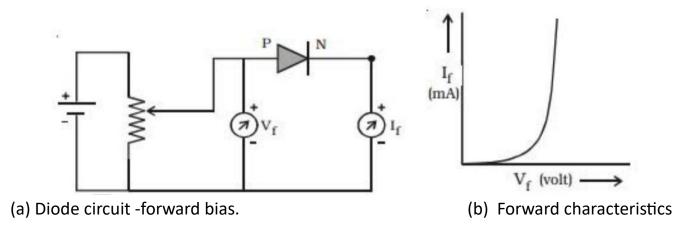


Fig .1 Forward bias characteristics of diode

When the battery voltage is Zero, diode does not conduct and the diode current is zero.

As the battery voltage increase, the barrier potential starts decreasing and a small current begins to flow. Once the applied voltage exceeds a particular value known as knee voltage

or cut -in voltage ,the current starts increasing rapidly and curve is almost linear as shown in fig .1 .If the Forward voltage is increased beyond a certain safe value it produces an extremely large current which may destroy the junction due to overheating.

Reverse bias characteristics:

The circuit diagram to study reverse bias characteristics is shown in fig .2

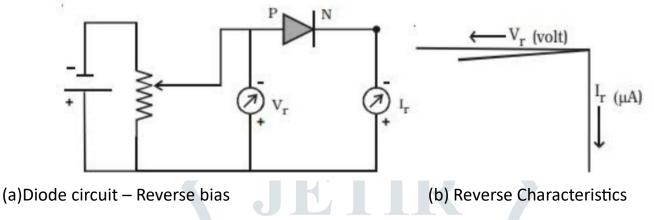


Fig.2 Reverse bias characteristics of diode

When p-n junction is reverse biases, a very small current flows across the junction in the reverse direction and is due to minority charge carriers. This current attains a maximum or saturation value immediately and is independent of the applied reverse voltage. It depends on the temperature of the junction diode .As the reverse voltage is increased to a high value called Zener voltage or break down voltage, a large number of covalent bonds near the junction are broken .As a result of this large electron-hole pairs are produced which diffuse through the junction and hence there is sudden rise in reverse current as shown in fig .2 .A junction diode offer a very small current well Forward biased and has a very large resistance when reverse biased .The diode can conduct current well only I one direction .This property is used to convert a.c into d.c. The consersion of a.c into d.c. is called rectification.

Conclusion:

In conclusion, the PN junction diode serves as a fundamental building block in electronic circuits, enabling the control and manipulation of electric current. Its unique properties, such as forward and reverse bias behavior, make it invaluable in applications ranging from rectification to signal modulation. Understanding its characteristics and behavior is essential for engineers and scientists in designing and optimizing electronic devices for various practical purposes.

Reference:

Here are the references for information on p-n junction diodes:

Sze, S.M., and Kwok, K.N. "Physics of Semiconductor Devices." Wiley-Interscience, 2006.

- 1. Streetman, B.G., and Banerjee, S. "Solid State Electronic Devices." Prentice Hall, 2005.
- 2. Kasap, Safa O. "Principles of Electronic Materials and Devices." McGraw-Hill Education, 2006.
- 3. Bhattacharya, Pallab. "Semiconductor Optoelectronic Devices." Prentice Hall, 1997.
- 4. Razeghi, Manijeh. "Fundamentals of Solid State Engineering." Springer, 2009.

