JETIR.ORG

# JOURNAL OF EMERGING TECHNOLOGIES AND

INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access Peer-ry

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

# An overview of Schottky semiconductor diode

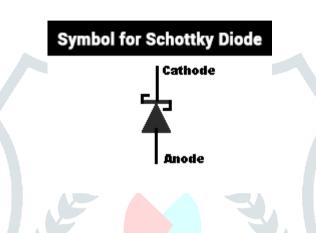
Sudanshu Khajuria<sup>1</sup>, Inamul Haq Wani<sup>2</sup>

Department of Physics Govt. Maulana Azad Memorial College Jammu, Jammu and Kashmir, India

#### Abstract

Schottky diodes are essential semiconductor devices known for their unique characteristics and diverse applications in modern electronics. This project explores the fundamental principles, construction and operation.

Schottky diodes are essential semiconductor devices known for their unique characteristics and diverse applications in modern electronics. This project explores the fundamental principles, construction, operation, and practical uses of schottky diodes. The study is structured to provide a comprehensive understanding of schottky diode technology, including theoretical insights, design considerations, and real-world applications.


practical uses of schottky diodes. The study is structured to provide a comprehensive understanding of schottky diode technology, including theoretical insights, design considerations, and real-world applications.

**Keywords**: Schottky Diode, Semiconductor Physics, Metal-Semiconductor Junction, Forward Voltage Drop, Reverse Leakage Current, Junction Capacitance, Fast Switching Speed, High-Frequency Applications Power Electronics, Rectification, Voltage Clamping, Signal Modulation, RF Circuits, Photovoltaic Systems, Power Rectifier

#### Introduction

Semiconductor diodes are fundamental electronic components that allow current to flow in one direction while blocking it in the opposite direction. They are crucial for rectification, switching, and signal modulation in electronic circuits. Schottky diodes represent a distinct type of semiconductor diode that offers specific advantages over conventional p-njunction diodes. Semiconductor diodes are fundamental electronic components designed to control the flow of electrical current in circuits. They are characterized by their ability to conduct

current in one direction while blocking it in the opposite direction. The most common type of semiconductor diode is the p-n junction diode, which is formed by joining a p-type semiconductor (excess of positive "holes") and an n-type semiconductor (excess of negative electrons). This junction creates a depletion region with no mobile charge carriers, establishing a barrier potential that determines the diode's behavior. The symbol for the Schottky barrier diode is based around the basic diode circuit symbol. The circuit symbol of the Schottky diode is shown in the figure.



## Working of a Schottky Diode

 The operation relies on the principle that the electrons in different materials have different potential energy.



- N-type semiconductors have higher potential energy than electrons of metals.
- When these two are brought into contact, there is a flow of electrons in both directions across the metal-semiconductor interface.
- A voltage is applied to the Schottky so that the metal is positive when compared to the semiconductor.
- The voltage opposes the built-in potential and makes the current flow easy.

#### **Types of Semiconductor Diodes:**

P-N Junction Diodes: The simplest form of diode, capable of rectifying AC (Alternating Current) to DC (Direct Current) by allowing current flow in only one direction.

**Schottky Diodes**: Unlike p-n junction diodes, Schottky diodes are formed by a metal-semiconductor junction instead of a semiconductor-semiconductor junction. This metal-semiconductor contact results in a lower forward voltage drop and faster switching speeds compared to p-n junction diodes. Semiconductor Diode Operation:

Forward Bias: When a positive voltage is applied to the p-side and a negative voltage to the n-side of a diode, it reduces the width of the depletion region, allowing current to flow easily across the junction.

Reverse Bias: Applying a negative voltage to the p-side and a positive voltage to the n-side widens the depletion region, preventing current flow across the junction.

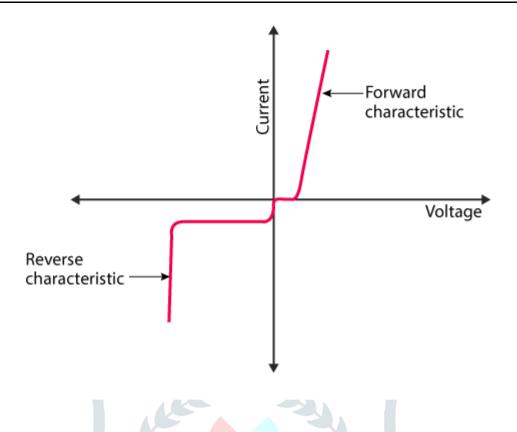
Importance of Semiconductor Diodes:

Semiconductor diodes are vital components in electronics for several reasons:

Rectification: Converting AC to DC by allowing current flow in one direction only.

Signal Modulation: Controlling signal amplitudes and frequencies in communication systems.

Switching: Acting as electronic switches to control the flow of current in digital circuits.


Voltage Regulation: Maintaining stable voltage levels in power supplies.

# Overview of Schottky Diodes:

Schottky diodes are characterized by their unique metal-semiconductor junction, which offers advantages like lower forward voltage drop (typically 0.3 V to 0.5 V) and faster switching speeds compared to p-n junction diodes. The absence of minority carrier storage in the metal-semiconductor junction contributes to their superior performance in high-frequency applications power rectification tasks.

#### **V-I Characteristics of Schottky Diode**

The V-I characteristics of Schottky diodes are very much similar to the PN junction diode. Current is the dependent variable while voltage is the independent variable in the Schottky diode. The forward voltage drop of the Schottky diode is low between 0.2 to 0.3 volts.



#### Characteristics

The characteristics of Schottky diodes are defined by their unique structure and operating principles. Understanding these characteristics is crucial for leveraging the advantages of Schottky diodes in various electronic applications. Here are the key characteristics:

# 1. Low Forward Voltage Drop:

One of the most significant characteristics of Schottky diodes is their low forward voltage drop (VF).

Typically, the forward voltage drop is around 0.3 to 0.5 volts, much lower than the 0.7 volts or more in standard silicon p-n junction diodes.

This low voltage drop minimizes power losses and heat generation in circuits, making Schottky diodes suitable for high-efficiency applications.

## 2. Fast Switching Speed:

Schottky diodes exhibit rapid switching characteristics due to their minimal minority carrier storage time.

The absence of a depletion region in the metal-semiconductor junction allows for quicker response times compared to p-n junction diodes.

Fast switching speeds make Schottky diodes ideal for high-frequency applications such as RF (Radio Frequency) circuits and switching power supplies.

# 3. Low Reverse Recovery Time:

Unlike p-n junction diodes, Schottky diodes do not have a reverse recovery time associated with the removal of stored charge carriers.

This absence of minority carrier storage results in virtually no reverse recovery charge and contributes to faster turn-off times in switching applications.

Low reverse recovery time enhances the efficiency and reliability of circuits using Schottky diodes, particularly in high-speed rectification and switching tasks.

#### 4. High Frequency Operation:

Due to their fast switching speed and low junction capacitance, Schottky diodes excel in high-frequency applications.

They are commonly used in RF mixers, detectors, and other high-frequency circuits where rapid response times and low capacitance are critical.

# 5. Lower Junction Capacitance:

Schottky diodes typically exhibit lower junction capacitance (Cj) compared to p-n junction diodes.

Lower capacitance values contribute to improved high-frequency performance and reduced signal distortion in RF and digital circuits.

The reduced capacitance allows for more efficient signal processing and higher bandwidth capabilities.

#### 6. Temperature Stability:

Schottky diodes made from materials like silicon carbide (SiC) or gallium nitride (GaN) offer excellent temperature stability and can operate reliably at elevated temperatures.

This characteristic makes them suitable for applications where temperature variations are significant, such as automotive electronics and power electronics.

#### 7. Lower Reverse Leakage Current:

Schottky diodes typically exhibit lower reverse leakage currents (IR) compared to p-n junction diodes.

The absence of minority carriers in the metal-semiconductor junction reduces leakage current, enhancing the efficiency and reliability of circuits, particularly in low-power applications.

Power Handling Capability:

Schottky diodes made from advanced materials like SiC or GaN can handle higher power densities and voltages compared to silicon-based p-n junction diodes.

This characteristic makes them suitable for high-power applications such as power rectifiers, inverters, and motor drives.

#### 9. Small Form Factor:

Schottky diodes are available in compact packages and exhibit a smaller footprint compared to equivalent p-n junction diodes.

The smaller size and low-profile design make them ideal for space-constrained applications in consumer electronics and portable devices.

# **Applications**

Schottky diodes find extensive applications across different fields of electronics due to their unique characteristics and performance advantages. The following are some common applications where Schottky diodes are utilized:

#### 1. Rectification:

Schottky diodes are widely used for rectification purposes in power supply circuits.

Their low forward voltage drop (VF) and high efficiency make them ideal for converting AC (Alternating Current) to DC (Direct Current) with minimal power loss.

Applications include DC power adapters, voltage regulators, and battery charging circuits.

**Power Supply Switching:** 

Schottky diodes are employed in switching power supply circuits to control the flow of current.

Their fast switching speed and low forward voltage drop improve the overall efficiency of switching regulators.

They help minimize switching losses and improve the transient response of power converters.

#### 3. High-Frequency Circuits:

Schottky diodes are well-suited for high-frequency applications due to their fast response times and low junction capacitance (Cj).

They are used in RF (Radio Frequency) mixers, detectors, and frequency multipliers in communication systems.

Schottky diodes enable efficient signal processing and modulation in high-frequency circuits.

# 4. Clamping and Protection Circuits:

Schottky diodes are employed in voltage clamping circuits to protect sensitive electronic components from voltage spikes.

They can quickly conduct excess voltage away from critical components, preventing damage due to overvoltage conditions.

Common applications include surge protectors, transient voltage suppressors (TVS), and ESD (Electrostatic Discharge) protection circuits.

## 5. Signal Demodulation and Detection:

Schottky diodes are used in signal demodulation circuits to recover modulated signals in communication systems.

They exhibit low distortion characteristics and can efficiently detect amplitude-modulated (AM) and frequency-modulated (FM) signals.

Applications include AM/FM radio receivers, radar systems, and wireless communication devices.

## 6. Mixers and Frequency Converters:

Schottky diodes play a crucial role in RF mixers and frequency converters, where they facilitate the mixing of multiple signals.

Their fast recovery time and low noise properties contribute to high-performance frequency conversion.

These applications are common in telecommunications, radar systems, and satellite communication.

# 7. Photovoltaic Solar Energy Systems:

Schottky diodes are used in photovoltaic (PV) solar panels and charge controllers to prevent reverse current flow during nighttime or low-light conditions.

They minimize power losses and improve the overall efficiency of solar energy systems.

# 8. Analog and Digital Circuits:

Schottky diodes are integrated into analog and digital circuits for logic-level translation, signal conditioning, and voltage level shifting.

They are used in logic gates, level shifters, and data communication interfaces.

# 9. Automotive Electronics:

Schottky diodes are employed in automotive electronics for various applications, including alternator diodes, LED lighting systems, and motor control circuits.

Their robustness, temperature stability, and low forward voltage drop make them suitable for automotive environments.

# 10. Computer and Consumer Electronics:

Schottky diodes are used in computers, smartphones, and other consumer electronics for power management, charging circuits, and signal processing.

Their small size and high efficiency contribute to compact and energy-efficient device designs.

#### Limitations

Despite their many advantages, Schottky diodes also have certain limitations and onsiderations that need to be taken into account when designing circuits or choosing components for specific applications. Understanding these limitations helps in making informed decisions about the use of Schottky diodes. Here are some key limitations of Schottky diodes:

# 1. Lower Reverse Breakdown Voltage:

Schottky diodes typically have a lower reverse breakdown voltage (VBR) compared to conventional p-n junction diodes.

This limits their application in circuits requiring high reverse voltage tolerance. Care must be taken to ensure that reverse voltage ratings are not exceeded to prevent diode breakdown.

# 2. Higher Leakage Current at Elevated Temperatures:

Schottky diodes can exhibit higher leakage current (IR) at elevated temperatures compared to p-n junction diodes.

This characteristic can affect circuit performance in applications where temperature variations are significant, such as automotive or industrial environments.

#### 3. Reduced Robustness Against Surge Currents:

Schottky diodes may have lower robustness against surge currents and overcurrent conditions compared to p-n junction diodes.

Care must be taken to select Schottky diodes with appropriate current ratings and consider additional protection measures in circuits exposed to high current transients.

#### 4. Limited Reverse Recovery Capability:

Schottky diodes do not exhibit a reverse recovery time like p-n junction diodes, which can be advantageous in high-frequency applications.

However, this characteristic may limit their use in circuits requiring controlled reverse recovery behavior, such as certain types of power supply and motor drive applications.

# **5. Sensitive to Voltage Spikes and Transients:**

Schottky diodes can be more sensitive to voltage spikes and transient conditions compared to p-n junction diodes.

Proper circuit design with adequate transient voltage suppression (TVS) devices or clamping circuits is essential to protect Schottky diodes from voltage stress and ensure reliable operation.

#### 6. Thermal Considerations:

Schottky diodes have higher thermal resistance compared to p-n junction diodes due to their metal-semiconductor junction.

ZHeat dissipation and thermal management are critical to prevent thermal runaway and ensure stable performance, especially in high-power applications.

## 7. Limited Voltage Drop:

While the low forward voltage drop (VF) of Schottky diodes is advantageous for reducing power losses, it can also limit their use in applications where a higher voltage drop is required for specific circuit operation.

Careful consideration of voltage drop requirements is necessary when selecting Schottky diodes for voltage regulation or power conversion tasks.

#### 8. Materials and Reliability:

The choice of materials used in Schottky diodes, such as the metal-semiconductor combination, can impact reliability and long-term stability.

Advanced materials like silicon carbide (SiC) and gallium nitride (GaN) offer improved performance, but careful validation of reliability under operating conditions is essential.

#### Conclusion

In conclusion, Schottky diodes are semiconductor devices that offer unique advantages and play a vital role in modern electronic circuits. Their distinctive characteristics, including low forward voltage drop, fast switching speed, and suitability for high-frequency applications, make them preferred components in a wide range of electronic systems. Despite their strengths, Schottky diodes also come with certain limitations and considerations that need to be addressed when integrating them into circuit designs.

The low forward voltage drop of Schottky diodes makes them efficient for power conversion and rectification tasks, minimizing power losses and improving overall circuit efficiency. Their fast switching speed and low junction capacitance enable high-performance operation in high-frequency circuits, such as RF mixers, detectors, and signal processing units. Schottky diodes

are also valuable in voltage clamping and protection circuits, where their rapid response to voltage spikes helps safeguard sensitive components from damage.

However, Schottky diodes have limitations such as lower reverse breakdown voltage, higher leakage current at elevated temperatures, and reduced robustness against surge currents. These limitations necessitate careful consideration during circuit design, including proper selection of diode specifications, thermal management strategies, and protection circuitry to ensure reliable operation and longevity.

In recent years, advancements in material science have led to the development of Schottky diodes based on silicon carbide (SiC) and gallium nitride (GaN), offering improved performance and reliability, especially in high-power and high-temperature applications. These advanced materials expand the potential applications of Schottky diodes in automotive electronics, renewable energy systems, and power electronics.

#### Reference

- 1. Sze, S. M., & Ng, K. K. (2006). Physics of Semiconductor Devices. John Wiley & Sons.
- 2. Streetman, B. G., & Banerjee, S. K. (2005). Solid State Electronic Devices. Prentice Hall.
- 3. Baliga, B. J. (2008). Fundamentals of Power Semiconductor Devices. Springer.
- 4. Shen, M., & Li, Z. (Eds.). (2018). Silicon Carbide Power Devices. Springer.