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ABSTRACT  

The past several years have seen an increase in data stores with innovative design choices that may 

compromise an application's operational accuracy in order to improve performance, due to the large range of 

big data applications. This paper outlines our ongoing efforts to develop a framework that produces a part of 

validation. An application's characteristics are fed into the framework. Its output is a validation module that 

may be used to gauge how much unpredictable data a data store produces by plugging it into an application 

or a benchmark. This paper provides a synopsis of the BG benchmark by identifying its strengths and 

limitations in our daily use cases. The identified limitations shape our research activities and the obtained 

solutions shall be incorporated into future BG releases. 

 

A INTRODUCTION 

In order to manage the ever-increasing volume and variety of data created by big data applications, there has 

been an explosion of new data stores with diverse architectures and design choices. Systems and services with 

innovative assumptions are still being contributed by academia, cloud service providers like Google and 

Amazon, social networking sites like Facebook and LinkedIn, and the computer industry. In the year 2010 

Rick Cattell assessed 23 systems [1], and 10 more1 have come to our attention since then. "NoSQL" data 

storage are a common term for several of these emerging systems. Although there is no universally accepted 

definition of NoSQL, the systems covered in [1] typically lack strong consistency guarantees, or ACID 

transactional features. They can choose the Basically Available, Soft state 

instead.Novel data stores with a wide range of architectures and design choices have proliferated to handle t

he ever-increasing volume and diversity of data generation.  

Novel data stores with a wide range of architectures and design choices have proliferated to handle the ever-

increasing volume and diversity of data generBenchmarking frameworks have been used to quantify a variant 

of the first two measures [9, 10, 6, 12]. 
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The sole benchmark available for assessing proper operation execution in support of interactive social 

networking operations is BG [6, 12]. In order to achieve a work-in-progress, this document abstracts BG's 

validation process. 

 

Framework that is modular and customizable and assesses the accuracy of various applications. The features 

of an application or a benchmark tailored to a particular application serve as the framework's input. The 

framework produces a module that can be integrated into the benchmark or the application to measure the 

quantity of uncertain data resulting from improper operation execution. One possible reason for an inaccurate 

execution could be inconsistent replicas of a data item. 

Novel data stores with a wide range of architectures and design choices have proliferated to handle the ever-

increasing volume and diversity of data generOne or more data items may have their attribute values updated 

by an application's operations. A database error could lead to surprising results for all ensuing reads if the 

values generated by these operations are not appropriately saved. A relational database management system 

(RDBMS) enhanced with memcached is used to observe the amount of unpredictable data, which is plotted 

against the system load simulated by a requests are issued by a certain number of threads, T. There is a set 

time to live (TTL) for the cached entries, which can range from 30 to 120 seconds. The proportion of requests 

with response times less than 100 milliseconds is indicated by the numbers in red. As a result of answering 

queries with larger TTL values, this proportion rises for various system loads. 

Novel data stores with a wide range of architectures and design choices have proliferated to handle the ever-

increasing volume and diversity of data generOne or more data items may have their attribute values updated 

by an application's operations. A database error could lead to surprising results for all ensuing reads if the 

values generated by these operations are not appropriately saved. A relational database management system 

(RDBMS) enhanced with memcached is used to observe the amount of unpredictable data, which is plotted 

against the system load simulated  
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plotted against the system load simulated by a requests are issued by a certain number of threads, T. There is 

a set time to live (TTL) for the cached entries, which can range from 30 to 120 seconds. The proportion of 

requests with response times less than 100 milliseconds is indicated by the numbers in red. As a result of 

answering queries with larger TTL values, this proportion rises for various system loads.

 

Novel data stores with a wide range of architectures and design choices have proliferated to handle the ever-

increasing volume and diversity of data generOne or more data items may have their attribute values updated 

by an application's operations. A database error could lead to surprising results for all ensuing reads if the 

values generated by these operations are not appropriately saved. A relational database management system 

(RDBMS) enhanced with memcached is used to observe the amount of unpredictable data, which is plotted 

against the system load simulated by a requests are issued by a certain number of threads, T. There is a set 

time to live (TTL) for the cached entries, which can range from 30 to 120 seconds. The proportion of requests 

with response times less than 100 milliseconds is indicated by the numbers in red. As a result of answering 

queries with larger TTL values, this proportion rises for various system loads. 

 

B UNPREDICTABLE READS 

From the standpoint of a client issuing them, consider the simultaneous execution of many concurrent write 

operations with a read operation (see Figure 2). The result obtained by the read operation R1 relies on how a 

data store is configured, assuming that all of these actions pertain to the same data item Di and are complete. 

 
executes them in a serialized manner. A serial execution of the concurrent operations in isolation is one 

possibility [18]. 

Consequently, the value that R1 retrieves is a range of values that can be obtained based on how the data store 

serializes the read operation in relation to the write operations. It is possible that the read operation in Figure 

2 was serialized. 
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Either before all write operations, after all write operations, or gradually after each write operation (taking 

into account all the possible combinations of W4 with other write operations). The data store generated an 

accurate value if R1 returns a value that is present in the set. If not, R1 has seen data that is unpredictable. 

There are two possible methods for validation: online and offline. An offline technique would measure the 

amount of unpredictable data after a benchmark finishes generating its stated workload, whereas an online 

strategy would indicate the accuracy of a value created for a read operation immediately after it completes 

does not measure the quantity of erratic data that is collected during the trial. A method can apply one of the 

two extremes or a hybrid approach, as described in Section C, which provides the quantity of uncertain data 

after a certain period of time depending on the resources allotted. 

Validation needs to support both custom and primitive data types in order to plug-in to a variety of application-

specific benchmarks. Among the primitive data types are Char, String, Boolean, int, and so forth. Calendar 

events and other user-defined objects are examples of custom data types. 

 

 

Two main inputs must be customizable for the validation approach in order to calculate the amount of 

unexpected data. First, a method for distinguishing a data item from others, read and write functions that 

modify 4 operations.  

Data items, and how write operations alter a data item's status from one that is valid to another.  

One example of a data item in a social networking benchmark would be a member profile located via the 

member's unique identifier. View Profile (VP) and Accept Friend Request (AFR) are two examples of read 

and write operations, respectively. The write operation increases each member's friend count by one when 

Member A issues the AFR operation to verify friendship with Member B. 

 

Custom data types are subject to operation dependence and data item specifications. For instance, if member 

A is displaying an array-type feed, then when member A writes to unfriend B, B's news shouldn't show up in 

member A's feed [15]. How to specify things in an intuitive way is a challenge.  

 

A crucial component of our project is creating user interfaces that are effective.  

Second, there needs to be enough input data such that the validation procedure can calculate the value that a 

read operation ought to have seen. The starting value of a data item is a crucial input. Analytical models could 

be one form of this input. 

 

 

C An Implementation 

Our development and use of BG's validation methodology served as the foundation for the abstraction in 

Section  

B.  

BG is a scalable benchmarking system that measures the quantity of uncertain data following the completion 

of the benchmark by implementing validation as an offline technique. This choice reduces the quantity of 

resources needed by BG to provide a load that makes the most of a data store's resources. An online version 

would allow an experimenter to see the volume of erratic data together with other online metrics that have 

been reported (such response time and throughput). Nevertheless, more CPU and memory may be needed.  

http://www.jetir.org/


© 2024 JETIR April 2024, Volume 11, Issue 4                                                            www.jetir.org (ISSN-2349-5162) 

 

JETIR2404D77 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org n630 
 

 

Figure 4: Conceptual design of BG’s feed following. 

In order to give the validation module with the specifics of the actions carried out during the benchmarking 

phase, today's BG generates a stream of log records [6, 12]. These contain the start and finish timestamps of 

the operations issued by the BG benchmark and are divided into read and write log records.  

The  Records from read logs preserve the value that was observed from a data store. The write log entries 

show whether an attribute of a manipulated data item has changed or has a new absolute value. These log 

records are used in conjunction with the database's initial state during the offline validation procedure to 

determine how many unpredictable reads there are. The social graph's starting state is determined by a set 

number of members, friendships for each member, 

One way to inform the validation process about the actions carried out by a benchmark is to generate these 

log records. It is easy to route BG's stream of log records to a procedure that would carry out the semi-online2 

validation. One could picture a dataflow. MapReduce3  infrastructure that gradually improves the amount of 

uncertain data computing.  

 

A subset of the design options are implemented in the validation technique as it is currently used. This 

implementation is meant for a typical use case scenario; it is not meant to be used in all situations. For 

example, the current approach makes the assumption that the PC carrying out validation4 has enough memory 

to hold all of the write log records. High capacity data stores that process millions of operations per second 

are incompatible with this.  

 

The validation causes the PC's memory to run out, which results in a thrashing operating system. Our current 

studies with middlewares like KOSAR [16, 17] demonstrate this. An experimentalist might not be willing to 

wait hours to get an exact measurement of the amount of uncertain data, even with enough memory. 
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The Runtime Configuration component, as its name implies, sets up the modules that are used during the 

validation stage. This part is utilized just once. The components used by the validator during runtime are 

specified in its output. Based on the following input parameters, its result is produced:  

 

• How much RAM ought to be set aside for the validation stage? In order to avoid the validation phase using 

up all of the memory during the processing of read log records, a certain amount of write log records might 

be staged in memory before being processed.  

2.Not entirely online since there could be a lag between the time the log records are generated and the 

processing time.  

 

Since the records can be divided according to the identity of the data objects that a log references, 

3MapReduce makes sense. 

In the validation process, the accuracy of the value generated by a data storage is assessed. It can use a 

probabilistic model with a predetermined confidence level or a deterministic model to ascertain 7 accuracy. 

These models ought to be plug-and-play software modules in theory. To calculate correctness, they might 

need to know the starting state of the data items and a set of precise write operations. As a result, there's a 

chance that this stage depends on the Runtime configuration and Log processing stages.  

 

D Summary 

 

Our ongoing efforts to develop a general-purpose framework for assessing the accuracy of operations in big 

data applications are presented in this study. It measures the quantity of random data generated by innovative 

data storage architectures that could jeopardize operation correctness because of unfavorable race situations 

and delayed update propagation. An experimentalist could create application-specific benchmarks and gauge 

the volume of unpredictable data generated by a data source using such a transformational framework.  

Applications in data science [11] with a variety of data sets and use case scenarios benefit most from it.  
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