
© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2404D77 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org n626

 Benchmarking Correctness of Operations

in Big Data Applications

Gannoju Vinod Kumar

Department of Computer Science and Engineering,

Sphoorthy Engineering College,

Jawaharlal Nehru Technical University, Hyderabad

ABSTRACT

The past several years have seen an increase in data stores with innovative design choices that may

compromise an application's operational accuracy in order to improve performance, due to the large range of

big data applications. This paper outlines our ongoing efforts to develop a framework that produces a part of

validation. An application's characteristics are fed into the framework. Its output is a validation module that

may be used to gauge how much unpredictable data a data store produces by plugging it into an application

or a benchmark. This paper provides a synopsis of the BG benchmark by identifying its strengths and

limitations in our daily use cases. The identified limitations shape our research activities and the obtained

solutions shall be incorporated into future BG releases.

A INTRODUCTION

In order to manage the ever-increasing volume and variety of data created by big data applications, there has

been an explosion of new data stores with diverse architectures and design choices. Systems and services with

innovative assumptions are still being contributed by academia, cloud service providers like Google and

Amazon, social networking sites like Facebook and LinkedIn, and the computer industry. In the year 2010

Rick Cattell assessed 23 systems [1], and 10 more1 have come to our attention since then. "NoSQL" data

storage are a common term for several of these emerging systems. Although there is no universally accepted

definition of NoSQL, the systems covered in [1] typically lack strong consistency guarantees, or ACID

transactional features. They can choose the Basically Available, Soft state

instead.Novel data stores with a wide range of architectures and design choices have proliferated to handle t

he ever-increasing volume and diversity of data generation.

Novel data stores with a wide range of architectures and design choices have proliferated to handle the ever-

increasing volume and diversity of data generBenchmarking frameworks have been used to quantify a variant

of the first two measures [9, 10, 6, 12].

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2404D77 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org n627

The sole benchmark available for assessing proper operation execution in support of interactive social

networking operations is BG [6, 12]. In order to achieve a work-in-progress, this document abstracts BG's

validation process.

Framework that is modular and customizable and assesses the accuracy of various applications. The features

of an application or a benchmark tailored to a particular application serve as the framework's input. The

framework produces a module that can be integrated into the benchmark or the application to measure the

quantity of uncertain data resulting from improper operation execution. One possible reason for an inaccurate

execution could be inconsistent replicas of a data item.

Novel data stores with a wide range of architectures and design choices have proliferated to handle the ever-

increasing volume and diversity of data generOne or more data items may have their attribute values updated

by an application's operations. A database error could lead to surprising results for all ensuing reads if the

values generated by these operations are not appropriately saved. A relational database management system

(RDBMS) enhanced with memcached is used to observe the amount of unpredictable data, which is plotted

against the system load simulated by a requests are issued by a certain number of threads, T. There is a set

time to live (TTL) for the cached entries, which can range from 30 to 120 seconds. The proportion of requests

with response times less than 100 milliseconds is indicated by the numbers in red. As a result of answering

queries with larger TTL values, this proportion rises for various system loads.

Novel data stores with a wide range of architectures and design choices have proliferated to handle the ever-

increasing volume and diversity of data generOne or more data items may have their attribute values updated

by an application's operations. A database error could lead to surprising results for all ensuing reads if the

values generated by these operations are not appropriately saved. A relational database management system

(RDBMS) enhanced with memcached is used to observe the amount of unpredictable data, which is plotted

against the system load simulated

Novel data stores with a wide range of architectures and design choices have proliferated to handle the ever-

increasing volume and diversity of data generOne or more data items may have their attribute values

updated by an application's operations. A database error could lead to surprising results for all ensuing reads

if the values generated by these operations are not appropriately saved. A relational database management

system (RDBMS) enhanced with memcached is used to observe the amount of unpredictable data, which is

plotted against the system load simulated by a requests are issued by a certain number of threads, T. There is

a set time to live (TTL) for the cached entries, which can range from 30 to 120 seconds. The proportion of

requests with response times less than 100 milliseconds is indicated by the numbers in red. As a result of

answering queries with larger TTL values, this proportion rises for various system loads.

Novel data stores with a wide range of architectures and design choices have proliferated to handle the ever-

increasing volume and diversity of data generOne or more data items may have their attribute values

updated by an application's operations. A database error could lead to surprising results for all ensuing reads

if the values generated by these operations are not appropriately saved. A relational database management

system (RDBMS) enhanced with memcached is used to observe the amount of unpredictable data, which is

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2404D77 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org n628

plotted against the system load simulated by a requests are issued by a certain number of threads, T. There is

a set time to live (TTL) for the cached entries, which can range from 30 to 120 seconds. The proportion of

requests with response times less than 100 milliseconds is indicated by the numbers in red. As a result of

answering queries with larger TTL values, this proportion rises for various system loads.

Novel data stores with a wide range of architectures and design choices have proliferated to handle the ever-

increasing volume and diversity of data generOne or more data items may have their attribute values updated

by an application's operations. A database error could lead to surprising results for all ensuing reads if the

values generated by these operations are not appropriately saved. A relational database management system

(RDBMS) enhanced with memcached is used to observe the amount of unpredictable data, which is plotted

against the system load simulated by a requests are issued by a certain number of threads, T. There is a set

time to live (TTL) for the cached entries, which can range from 30 to 120 seconds. The proportion of requests

with response times less than 100 milliseconds is indicated by the numbers in red. As a result of answering

queries with larger TTL values, this proportion rises for various system loads.

B UNPREDICTABLE READS

From the standpoint of a client issuing them, consider the simultaneous execution of many concurrent write

operations with a read operation (see Figure 2). The result obtained by the read operation R1 relies on how a

data store is configured, assuming that all of these actions pertain to the same data item Di and are complete.

executes them in a serialized manner. A serial execution of the concurrent operations in isolation is one

possibility [18].

Consequently, the value that R1 retrieves is a range of values that can be obtained based on how the data store

serializes the read operation in relation to the write operations. It is possible that the read operation in Figure

2 was serialized.

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2404D77 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org n629

Either before all write operations, after all write operations, or gradually after each write operation (taking

into account all the possible combinations of W4 with other write operations). The data store generated an

accurate value if R1 returns a value that is present in the set. If not, R1 has seen data that is unpredictable.

There are two possible methods for validation: online and offline. An offline technique would measure the

amount of unpredictable data after a benchmark finishes generating its stated workload, whereas an online

strategy would indicate the accuracy of a value created for a read operation immediately after it completes

does not measure the quantity of erratic data that is collected during the trial. A method can apply one of the

two extremes or a hybrid approach, as described in Section C, which provides the quantity of uncertain data

after a certain period of time depending on the resources allotted.

Validation needs to support both custom and primitive data types in order to plug-in to a variety of application-

specific benchmarks. Among the primitive data types are Char, String, Boolean, int, and so forth. Calendar

events and other user-defined objects are examples of custom data types.

Two main inputs must be customizable for the validation approach in order to calculate the amount of

unexpected data. First, a method for distinguishing a data item from others, read and write functions that

modify 4 operations.

Data items, and how write operations alter a data item's status from one that is valid to another.

One example of a data item in a social networking benchmark would be a member profile located via the

member's unique identifier. View Profile (VP) and Accept Friend Request (AFR) are two examples of read

and write operations, respectively. The write operation increases each member's friend count by one when

Member A issues the AFR operation to verify friendship with Member B.

Custom data types are subject to operation dependence and data item specifications. For instance, if member

A is displaying an array-type feed, then when member A writes to unfriend B, B's news shouldn't show up in

member A's feed [15]. How to specify things in an intuitive way is a challenge.

A crucial component of our project is creating user interfaces that are effective.

Second, there needs to be enough input data such that the validation procedure can calculate the value that a

read operation ought to have seen. The starting value of a data item is a crucial input. Analytical models could

be one form of this input.

C An Implementation

Our development and use of BG's validation methodology served as the foundation for the abstraction in

Section

B.

BG is a scalable benchmarking system that measures the quantity of uncertain data following the completion

of the benchmark by implementing validation as an offline technique. This choice reduces the quantity of

resources needed by BG to provide a load that makes the most of a data store's resources. An online version

would allow an experimenter to see the volume of erratic data together with other online metrics that have

been reported (such response time and throughput). Nevertheless, more CPU and memory may be needed.

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2404D77 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org n630

Figure 4: Conceptual design of BG’s feed following.

In order to give the validation module with the specifics of the actions carried out during the benchmarking

phase, today's BG generates a stream of log records [6, 12]. These contain the start and finish timestamps of

the operations issued by the BG benchmark and are divided into read and write log records.

The Records from read logs preserve the value that was observed from a data store. The write log entries

show whether an attribute of a manipulated data item has changed or has a new absolute value. These log

records are used in conjunction with the database's initial state during the offline validation procedure to

determine how many unpredictable reads there are. The social graph's starting state is determined by a set

number of members, friendships for each member,

One way to inform the validation process about the actions carried out by a benchmark is to generate these

log records. It is easy to route BG's stream of log records to a procedure that would carry out the semi-online2

validation. One could picture a dataflow. MapReduce3 infrastructure that gradually improves the amount of

uncertain data computing.

A subset of the design options are implemented in the validation technique as it is currently used. This

implementation is meant for a typical use case scenario; it is not meant to be used in all situations. For

example, the current approach makes the assumption that the PC carrying out validation4 has enough memory

to hold all of the write log records. High capacity data stores that process millions of operations per second

are incompatible with this.

The validation causes the PC's memory to run out, which results in a thrashing operating system. Our current

studies with middlewares like KOSAR [16, 17] demonstrate this. An experimentalist might not be willing to

wait hours to get an exact measurement of the amount of uncertain data, even with enough memory.

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2404D77 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org n631

The Runtime Configuration component, as its name implies, sets up the modules that are used during the

validation stage. This part is utilized just once. The components used by the validator during runtime are

specified in its output. Based on the following input parameters, its result is produced:

• How much RAM ought to be set aside for the validation stage? In order to avoid the validation phase using

up all of the memory during the processing of read log records, a certain amount of write log records might

be staged in memory before being processed.

2.Not entirely online since there could be a lag between the time the log records are generated and the

processing time.

Since the records can be divided according to the identity of the data objects that a log references,

3MapReduce makes sense.

In the validation process, the accuracy of the value generated by a data storage is assessed. It can use a

probabilistic model with a predetermined confidence level or a deterministic model to ascertain 7 accuracy.

These models ought to be plug-and-play software modules in theory. To calculate correctness, they might

need to know the starting state of the data items and a set of precise write operations. As a result, there's a

chance that this stage depends on the Runtime configuration and Log processing stages.

D Summary

Our ongoing efforts to develop a general-purpose framework for assessing the accuracy of operations in big

data applications are presented in this study. It measures the quantity of random data generated by innovative

data storage architectures that could jeopardize operation correctness because of unfavorable race situations

and delayed update propagation. An experimentalist could create application-specific benchmarks and gauge

the volume of unpredictable data generated by a data source using such a transformational framework.

Applications in data science [11] with a variety of data sets and use case scenarios benefit most from it.

References

[1] R. Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec., 39:12–27, May 2011.

[2] S. Ghandeharizadeh and J. Yap. Gumball: A Race Condition Prevention Technique for Cache Augmented

SQL Database Management Systems. In Second ACM SIGMOD Workshop on Databases and Social

Networks, 2012.

[3] P. Gupta, N. Zeldovich, and S. Madden. A Trigger-Based Middleware Cache for ORMs. In Middleware,

2011.

[4] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, Harry C. Li, R. McElroy, M. Paleczny, D.

Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling memcache at facebook. In Presented as

http://www.jetir.org/

© 2024 JETIR April 2024, Volume 11, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2404D77 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org n632

part of the 10th USENIX Symposium on Networked Systems Design and Implementation, pages 385–398,

Berkeley, CA, 2013. USENIX.

[5] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data Consistency Properties and the Trade-offs in

Commercial Cloud Storages: The Consumers’ Perspective. In CIDR, 2011.

[6] S. Barahmand and S. Ghandeharizadeh. BG: A Benchmark to Evaluate Interactive Social Networking

Actions. Proceedings of 2013 CIDR, January 2013.

[7] P. Bailis and A. Ghodsi. Eventual Consistency Today: Limitations, Extensions, and Beyond.

Communications of the ACM, May 2013.

[8] P. Bailis, S. Venkataraman, M.J. Franklin, J.M. Hellerstein, and I. Stoica. Quantifying Eventual

Consistency with PBS. The VLDB Journal, pages 1–24.

[9] M.R. Rahman, W. Golab, A. AuYoung, K. Keeton, and J.J. Wylie. Toward a Principled Framework for

Benchmarking Consistency. In Proceedings of the Eighth USENIX Conference on Hot Topics in System

Dependability, HotDep’12, pages 8–8, Berkeley, CA, USA, 2012. USENIX Association.

[10] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lopez, G. Gibson, A. Fuchs, and B. Rinaldi.

YCSB++: ´ Benchmarking and Performance Debugging Advanced Features in Scalable Table Stores. In

Cloud Computing, New York, NY, USA, 2011. ACM.

[11] A. Talukder, C. Greenberg. Overview of the NIST Data Science Evaluation and Metrology Plans. In

Data Science Symposium, NIST, March 4-5, 2014.

[12] S. Barahmand. Benchmarking Interactive Social Networking Actions. Ph.D. thesis, Computer Science

Department, USC, 2014.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking Cloud Serving

Systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC ’10) , 2010.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall, W. Vogels. Dynamo: Amazon’s Highly Available Key-value Store. In Proceedings of Twenty-

first ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’07), 2007.

[15] S. Barahmand, S. Ghandeharizadeh and D. Montauk. Extensions of BG for Testing and Benchmarking

Alternative Implementations of Feed Following. In Proceedings of the SIGMOD Workshop on Reliable Data

Services and Systems (RDSS), 2014.

[16] S. Ghandeharizadeh. KOSAR: A Game Changer for SQL Solutions. Mitra LLC, 2014.

[17] S. Ghandeharizadeh. KOSAR: An Elastic, Scalable, Highly Available SQL Middleware. USC DBLAB

Technical Report 2014-09.

[18] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers

Inc., 1992

http://www.jetir.org/

