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1. Introduction 

For  the generalized multi-index Mittag Leffler function is defined by Saxena and Nishimoto 

 in the following summation form 

 

where  and .  

For  the generalized multi-index Mittag Leffler function  reduce into the generalized Mittag 

Leffler function given by Shukla and Prajapati  and defined as  

 

where  and  and 

is the wellknownPohhammer symbol. 

 investigate the generalized Mittag Leffler function for  
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where . 

  investigate the generalized Mittag Leffler function for  

 

where . 

Now the generalized hypergeometric function in terms of Pochhammer symbol is expressed as follows with 

p and q ( ) 

 

where with  are positive integers. 

For  and the definition of Fox-Wright function  is defined as below ( 

) 

 

where  and for all values of the  under the condition 

if . 

 

 

 

 

 

 

2. Preliminaries and Definitions 

The following Euler type integral formulais introduced by Lavoie-Trottier  and defined as 

 
where . 

 

The following next Euler type integral formula is introduced by MacRobert and defined as 

 
where and  are non zero constant with the expression  where 

. 
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The following Euler type double integral formula is introduced by Edward and defined as 

 
where and . 

 

Let  and are two analytic functions with their radii of convergence 

and  respectively, then their Hadamard product  is given by the following power series 

 

where is the radius of convergence of the composite series. 

 

 

3. Main Results 

Theorem 3.1. Let be such that  and the conditions  is satisfied, 

then for the generalized multi-index Mittag Lefflerfunction  the following integral formula holds true 

 

 

where  

Proof. we refer to the left hand side of equation  as the sign  then making the use of equation  in 

equation  we have 

 

After interchanging the order of integration and summation under the theorem's condition 

 

By using equation  and after some simplification, we get 

 

 

Now apply Hadamard producti.e.  
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Theorem 3.2. Let be such that  and the conditions  is satisfied, 

then for the multi-index Mittag Lefflerfunction  the following integral formula holds true 

 

 

where  

Proof. we refer to the left hand side of equation  as the sign  then making the use of equation  in 

equation  we have 

 

After interchanging the order of integration and summation under the theorem's condition 

 

By using equation  and after some simplification, we get 

 

 

Now apply Hadamard producti.e.  

 

 

 

 

Theorem 3.3. Let be such that  and the conditions  is satisfied, 

then for the multi-index Mittag Lefflerfunction  the following integral formula holds true 

 

 

where  
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Proof. First we refer to the left hand side of equation  as the sign  then making the use of equation 

 in equation  we have 

 

After interchanging the order of integration and summation under the theorem's condition 

 

By using equation  and after some simplification, we get 

 

 

 

Now apply Hadamard producti.e.  

 

 

Theorem 3.4. Let be such that  and the conditions  is satisfied, 

then for the multi-index Mittag Lefflerfunction  the following integral formula holds true 

 

 

where  

Proof.  we refer to the left hand side of equation  as the sign  then making the use of equation 

in equation  we have 

 

After interchanging the order of integration and summation under the theorem's condition 

 

By using equation  and after some simplification, we get 
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Now apply Hadamard producti.e.  

 

 

 

4. Special Cases 

 On taking  in  we get 

 

 

where  

 

 On taking  in  we get 

 

 

where  

 

 On taking  in  we get 

 

 
where  

 

 On taking  in  we get 

 

 
where  

 

 

 On taking  in  we get 
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where  

 

 On taking  in  we get 

 

 
where  
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