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Abstract: Traffic is a major reason for road accidents. Due to road accidents occurred injuries and lives loss both. So safe driving
and observe the road traffic to find information regarding road accidents. If you understand this situation, study road accidents and
it helped us develop novel strategies to avoid road accidents. So many factors like road conditions, and traffic accidents impact
accidents. To overcome this problem, make an accident prediction model. In our research, we use machine learning and ensemble
learning. In our research study, compare all models and ensemble models with the road traffic accident dataset. We find the accuracy
of all models. We observe support vector machines and decision trees predict a lower accuracy rate compared with other models.
Ensemble models also do not give much accuracy compared to individual models. Finally, extra trees predict the highest accuracy
rate.
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I INTRODUCTION

The issue of road accidents creates fear in common people because of the loss of their lives. Road accidents damage public life
with multiple injuries [1]. So many factors affect such types of road accidents like environmental conditions, road designs, driver
behavior, and vehicle conditions [4]. Major parameters associated with analysis of accidental data [2]. Different types of accidental
data generate a job analysis through the framework. Accident data analysis interrupts the human life [3]. Using professional
knowledge measure the heterogeneity data. Road accidents are divided into different clusters based on similarity. The data partition
is useful for overcoming the dissimilarity of the accident data [1]. To provide safety rules for drivers, cautious road traffic statistics
make it tough to find variables that are connected to road accidents [5]. In the past building data mining techniques to find high
accidental places and recognize different factors that affect road accidents at dissimilar locations. Accident locations are divided
into different clusters with the support of different clustering algorithms [6]. The research examines the responsibility of human,
road, vehicle, and infrastructure correlation calculated by using data mining methods for road accident data [7].

In practical implementation of road accident records finalize based on accuracy, data analysis, and record retention [8]. These
accidents affect on society in a huge number of families. Drivers’ health is also caused by road accidents. Solving such types of
problems using different types of techniques [9]. In a recent study locations of villages had less accidental rate. But in cities, the
accident rate is higher than in villages. Residential zones probably higher accidental rate due to the high speed of vehicles with
more public roads [10]. In undeveloped countries, the road accident rate is very high due to insufficient infrastructure and economy.
Road accidents and safety are a major concern throughout the world, most researchers have been trying to solve this issue for a long
time. Road traffic and uncontrolled driving occur in every part of the world [11]. Many pedestrians’ are affected with no fault and
they become victims due to road traffic accidents. Different factors affect most of road accidents like human faults, weather
conditions, road conditions, and sharp curves [12].

The following paper continues with section 2 for the proposed architecture. Section 3 discusses with results and analysis. Section
4 describes the comparative study of machine learning algorithms. Section 5 concludes the paper.

I11. PROPOSED ARCHITECTURE

The primary objectives of the Road Safety Policy in India are to reduce road traffic accidents, minimize fatalities and injuries
resulting from road accidents, and enhance road infrastructure to make it safer and more efficient [13].
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I1l. RESULTS AND ANALYSIS
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Figure 1: Proposed system architecture

The following Figure 1 provides information on the different phases of our proposed architecture. The following phases are 1.
Road accident data (input), 2. Data Preprocessing (remove abnormal data), 3. Attribute selection (apply redundancy algorithms), 4.
Selection of Machine Learning algorithms (suitable algorithm selection), 5. Build model and training and 6. Predict the result
(visualization) [15].

3.1 Dataset Description

The following data was collected from Addis Ababa Sub-city police departments for research work. Upload the data into the
system for execution.

Table 1: Sample Dataset(part-1)

0

1

2

3

4

Time Day_of_week Age band_of driver Sex_of driver Educational_level Vehicle driver_relation Driving_experience Type_of_vehicle Owner_of_vehicle Service_year_of vehicle Defect of vehicle

17:02:00

17:02:00

17:02:00

1:06:00

1:06:00

Monday 1830
Monday 3150
Monday 18-30
Sunday 18-30
Sunday 18-30

Male

Male

Male

Male

Male

Above high school

Junior high school

Junior high school

Junior high school

Junior high school

Employee 12y
Employee Above 10yr
Employee -2y
Employee 5-10yr
Employee 2.5y

Automobile Owner Above 10yr
Public (» 45

seds) Owner 5-10yrs

Loy (417100Q) Owner NaN

Pubiic (> 43 Govemmental NaN
seals)

NaN Owner 5-10yrs

No defect

No defect

No defect

No defect

No defect

3.2 Data Preprocessing

Data preprocessing is the crucial procedure for the removal of abnormal values. For this purpose, use different techniques based
on requirements.

3.3 Data Visualization

Data visualization is a critical stage for displaying the data in a certain format. It may be represented in different types of graphs.
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Figure 2: statistical percentage of injuries
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The following table 2 checks the numerical statistics of our data.
Table 2: numerical statistics of our data

count mean std min 25% 5@% 75% max
Number_of_wvehicles_involved 12316.0 2040679 0688790 1.0 20 20 20 7.0
Number_of_casualties 12316.0 1.548149 1.007179 1.0 1.0 10 20 8.0
The following table 3 shows the list of issues for road traffic accident data.
Table 3: types of different issues road accident data
Mo distarmcings o E=
Changing lanmne to the might 1=os
Changing lanmne to the left 1aF=
Driwving carelesslay 1ac=
Mo priorritynws to wehicle A 7
Mowing Backwvrard 117
Mo pricority to pedestrian =2
Ot e AS S
Owreaer-takims P B Y=
Dr-iwing under the idnflusence of droagss =ac
Driwing to the lefit 2=
SCettinmng ofF 1T the wehicle Ampra e re e pu 1= g
Driwing =t high sSpeed AT
O r~toar-rm L e =
T n i e e F=
O r=pead S
Owver-load i e s=
Drwmbk dreEwdre =
(Wl e = | 25
ITmproper parbins 2s
Mame : Cause__of_ accident, dbywpe: Dt

Table 4: Vehicles age for road traffic accident

rta_data[ "Service year_of_ wvehicle'].value_ counts()
Unknown 2883

2-5yrs 1792

Abowve 18wr 1324

S5-1@yrs 12589

A -2y 827

Below 1yr 282

Mame: Service_vear_of_wehicle, dtwype: ints4d

As we observe, 4 columns have more than 20% missing values. We can safely remove these columns, as these columns will not
add any value to our analysis because of the high missing value rate.

Table 5: attributes of road traffic accident data

count unique top Freq
Time 12316 1074 15:30:00 120
Day_of_week 12316 7 Friday 2041
Age_band_of_driver 12316 5 18-30 4271
Sex_of_driver 12316 3 Male 11437
Educational_level 11575 7 Junior high school TE19
Wehicle_driver_relation 11737 a Employes 527
Driving_experience 11487 7 51 0yr 3363
Type_of_vehicle 11366 17 Automobile 3205
Owner_of_wvehicle 11834 a Owner 10459
Area_accident_occured 12077 14 Other 3819
Lanes_or_Medians 11931 7  Two-way (divided with broken lines road marking) 4411
Road_allignment 12174 =] Tangent road with flat terrain 10459
Types_of_Junction 11429 a8 ¥ Shape 4543
Road_surface_type 12144 =3 Asphalt roads 112968
Road_surface_conditions 12316 =8 Dry 9340
Light_conditions 12316 < Davylight 8793
Weather_conditions 12316 =] Normal 10063
Tvpe_of_ collision 12161 10 “Wehicle with wvehicle collision 8774
Wehicle_mowvement 12008 13 Going straight 8158
Casualty_class 12316 =8 Driver or rider 4944
Sex__of_casualty 12316 3 Male 5253
Age_band_of_casualty 12316 (5] na 4443
Casualty__severity 12316 =3 3 TOT6
Pedestrian_mowvement 12316 9 Mot a Pedestrian 11390
Cause_of_accident 12316 20 Mo distancing 2263
Accident_severity 12316 3 Slight Injury 10415
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Figure S: Vechicle driver relation and driver experience
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Figure 6: Area of accident and types of junctions
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Figure 7: Visualization of data based on different road traffic accidents

3.3.1 Observations of Road Traffic Accidents

1.

!\).....

Most of the accidents

Occurred on Friday

Occurred at 8AM and 5PM (office & school hours)
Occurred at two-way lines

Sunday has a smaller number of accidents

Severity of accident is slight injury

Causality

Avg. Causality number is 1

The severity range of causality is 3

Age Range is 18-30

Male causality is more compared to female causality
Major causality is the driver himself

Fatality occurred on Saturdays and Sundays.

Drivers

Most of the drivers are male between the 18-30 age group and with 5-10 years of driving experience.
Majority of the drivers who got into accidents are employees.

The educational level of the driver is jr. high school.

Most of the accidents occurred in personally owned passenger vehicle
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e Majority of accidents occurred in office areas rather than residential areas.

e Majority of accidents occurred in normal daylight and Y junction.

6. Type of Collision
e Majority of accidents occurred in vehicle-vehicle collision.
e  The number of vehicles involved is 2 in the majority of accidents.
e The major cause of accidents is not keeping sufficient distance between vehicles and lane changing.
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Figure 8: Accident severities basedon day
Accident_severity = Slight Injury Accident_severity = Serious Injury Accident_severity = Fatal injury
10000
150
1500
8000
1250 123
= 6000 = 1000 o 100
[= = =
3 3 750 3 75
S 4000 S
500 50
2000
250 25
o e O —
1 2 3 1 2 3 1 2 3
Sex_of_driver Sex_of_driver Sex_of_driver
Figure 9: Accident severities based on sex type
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Figure 10: Accident severities based driver relation with vechicle
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Figure 11: Accident severities based driver experience
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Figure 12: Accident severities based on type of vehicle
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Figure 13: Accident severities based on area of accident
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Figure 14: Accident severities based on type of lanes
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Figure 15: Accident severities based on road alignment
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Figure 16: Accident severities based on type of junction
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Figure 17: Accident severities based on road surface type
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Figure 18: Accident severities based on weather conditions
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Figure 19: Accident severities based on weather conditions
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Figure 20: Accident severities based on ageof vehicle
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Figure 21: Accident severities based on cause of accident
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Figure 22: Accident severities based on time in minute
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Figure 23: Accident severities based on time in an hour

3.3.2 Correlation

A heatmap (aka heat map) depicts values for a main variable of interest across two axis variables as a grid of coloted squares. The
axis variables are divided into ranges like a bar chart or histogram, and each cell's color indicates the value of the main variable in
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the corresponding cell range [14].
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Figure 24: heatmap for data visualization
IV. COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS
4.1 Gradient Boosting Classifier
Table 6: Classification report of gradient boosting
The classification report:
precision recall fl-score support
1 8.16 .15 e.16 52
2 8.27 .26 2.23 552
3 8.85 2.89 e._87 3991
accuracy e.78 3695
macro avg 8.43 2.42 @.42 3695
weighted awvg 8.76 B8._78 e8.77 3695
4.2 Random Forest Classifier
Table 7: Classification report of random forest
The classification report:
precision recall Fl-score support
1 2.44 e.as8 e.13 52
2 a.3e e. 21 @.24 552
3 ©.86 e.91 ©.88 3e91
accuracy e.80 3695
macro avg 2.53 2 .40 2.42 2695
weighted avg .77 2 .80 e.78 2695
4.3 Decision Tree Classifier
Table 8: Classification report of decision tree
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The classification report:

precision recall fl-score support
1 8.22 2.38 e.28 52
2 8.23 B.36 B.28 552
3 a.87 e.78 e.82 3991
accuracy .71 3695
macro avg 8.44 B.50 e.46 3695
weighted awvg B8.76 B.71 B.73 3695
4.4 Logistic Regression
Table 9: Classification report of logistic regression
The classification report:
precision recall fl-score support
1 a.e4 @.5a 8.e7 52
2 e.17 e.3e B8.22 552
3 B8.86 @.56 B.68 3091
accuracy 2.52 3695
macro awvg 8.36 2.45 .32 3695
weighted awvg e.74 B.52 B.68 3695

4.5 Support Vector Machine

Table 10: Classification report of support vector machine

The classification report:

precision recall fl-score support
1 2.23 @.31 2.26 52
2 @.17 2.29 e.21 552,
3 a8 .85 e.62 e.72 a9l
accuracy e.57 2695
macro awvg a.35 e.4aa e.33 2695
weighted awvg e.74 2._.57 8.53 3695
4.6 Extra Trees Classifier
Table 11: Classification report of extra trees
The classification report:
precision recall fl-score support
1 a.67 e.a4 e.e7rv 52
2 a.29 e.13 e.18 552
=3 a.85 e.95 e.89 229l
accuracy 2.81 3595
macro avg a.68 e.37 e.38 2695
weighted awvg .76 2.81 2.78 25695

Table 12: Checking the accuracy score of different models
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4.5 Ensemble learning

4.5.1 Ense mble model (Extra Trees + Random Forest)

from sklearn.ensemble import VotingClassifier

extree = ExtraTreesClassifier()
rfc = RandomForestClassifier(random_state = @)

ensemble_model.fit(X_train, y_train)

# Make predictions on the testing data

predictions = ensemble_model.predict(X_test)

# Calculate accuracy
accuracy = accuracy_score(y_test, predictions)
print(f"Accuracy: {accuracy}")

Accuracy: ©.7878213802435724

ensemble_model = VotingClassifier(estimators=[('extra_tree', extree), ('random_forest', rfc)], voting='hard"')

4.5.2 Ensemble model (Gradient Boost + Logistic Regression)

# Define and train the Gradient Boosting model
gb_model . fit (X train, yw_ train)

# Define and train the Logistic Regression model
1r_model = LogisticRegression{(C=1.8, penalty="12", random_state=8)
1r model.fit(X train, y_ train)

# Make predictions using both models
gb_predictions = gb_model .predict(X_test)
1r_predictions = 1lr_model.predict(X_test)

# Combine predictions using a simple averaging approach
ensemble_predictions = (gb_predictions + 1lr_predictions) J 2

# Round the predictions to the nearest integer (assuming classes are integers)
ensemble_ predictions = ensemble_predictions.round().astype(int)

# Ewvaluate the performance of the ensemble model

ensemble accuracy = accuracy_ scorel(y test, ensemble predictions)
print(f"Ensemble Model Accuracy: {ensemble accuracy}™)

Ensemble Model Accuracy: 8.5192798376184833

gb_model = GradientBoostingClassifier(n_estimators=180, max_depth=3, random_state=8)

Table 13: comparative study of ensemble models vs individual models

S. No. Name of the Model Accuracy in %

1 Extra trees 81

2 Random forest Tree 79.7
3 Gradient Boosting 77.9
4 Logistic regression 70.6
5 Support vector Machine 56.5
6 Decision Trre 52.1
7 Extra Trees+ Random Forest 78.7
8 Gradient Boosting +Logistic Regression 51.9

In our research study, compare all models and ensemble models with the road traffic accident dataset. We find the accuracy of
all models. We observe support vector machines and decision trees predict a lower accuracy rate compared with other models.
Ensemble models also do not give much accuracy compared to individual models. Finally, extra trees predict the highest accuracy

rate.
V. CONCLUSION

Traffic is a major reason for road accidents. Due to road accidents occurred injuries and lives loss both. So safe driving and
observe the road traffic to find information regarding road accidents. If you understand this situation, study road accidents and it
helped us develop novel strategies to avoid road accidents. So many factors like road conditions, and traffic accidents impact
accidents. To overcome this problem, make an accident prediction model. In our research, we use machine learning and ensemble
learning. From our research study, compare all models and ensemble models with the road traffic accident dataset. From our research
study, compare all models and ensemble models with the road traffic accident dataset. We find the accuracy of all models. We
observe support vector machines and decision trees predict a lower accuracy rate compared with other models. Ensemble models

also do not give much accuracy compared to individual models. Finally, extra trees predict the highest accuracy rate.
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