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Abstract :  Electrification is the fastest-growing and widely adopted trend across all industries and geographical areas in 

Tanzania. This rapid expansion has led to an increased demand for electricity. Similarly, dependence on hydropower makes it 

vulnerable to droughts, results in energy deficits, and cannot meet rising electricity demand. To address this growing demand, the 

Tanzania Electricity Supply Company (TANESCO) have resorted to load shedding, but it has proven inconvenient for customers. 

Alternatively, constructing new power plants cannot immediately meet the rising demand. This study aims to explore demand-side 

management as a viable alternative to load shedding, and reducing the necessity for new power plants. The study employs artificial 

neural network optimization method to optimize the battery energy storage system to lower the peak demand through peak clipping. 

The proposed study was modelled and simulations were carried out using the MATLAB/Simulink R2022a software environment. 

The results show that the proposed approach effectively reduces peak demand, and consequently achieving significant reductions 

in the peak-to-average ratio (PAR), leading to improved grid reliability and efficiency. Notably, the study demonstrates peak demand 

and PAR reductions of approximately 41.8027% for grid-connected battery energy systems. Furthermore, this approach promises 

more flexibility and comfort for customers, making it a promising solution to address the challenges posed by increasing electricity 

demand and ensuring a reliable and efficient grid system. 

 

Index Terms - Artificial neural network, battery energy storage system, demand side management, load clipping, microgrid, peak demand. 

       

I. INTRODUCTION 

  Hydro power is the second major source of electricity in Tanzania as of 2020 Power System Master Plan (PSMP) but expected 

to dominate the electricity generation in 2024 after the completion of 2115 MW Julius Nyerere Hydro Power Plant[1]. The nation's 

1,602.32 MW of installed capacity is made up of a connected Grid System (1,565.72 MW) and an isolated Grid System (36.60 MW). 

573.70 MW (36.64%) of the interconnected grid system is hydro power while others are natural gas 892.72 MW (57.02%), liquid fuel, 

88.80 MW (5.67%) and biomass 10.50 MW (0.67%)[2]. The difficulties Tanzania's electricity sector is facing include Tanzania's 

dependence on hydropower which makes it vulnerable to droughts and other weather-related events that can disrupt the supply of 

electricity. As a result, Tanzania has an energy deficit and cannot meet the growing demand for electricity. In the past two years the 

country has faced the drought[3] which led to the decrease of water level in several hydro power plant dams across the country leading 

to low generation of electricity. 

Following the challenge, the utility has initiated load shedding in order to cater the challenges. Load shedding is when utilities step 

in on the supply side to minimize power use; customers are disconnected for a certain period of time[4],[5]. Customers typically hate 

this experience because it results in several losses and inconveniences[5]. Other alternative way to handle this challenge is to use large 

storage devices. A better alternative to load shedding is through demand side management where the peak demand is lowered through 

peak clipping 

Demand side management (DSM) is defined as the planning, implementation, and monitoring of utility distribution network 

activities aimed at influencing customer electricity use in ways that result in desirable changes in load shape. The DSM system may 

dispatch available energy in a conservative manner, reducing emissions and peak load usage while allowing users to use their preferred 

energy type[6]. DSM was initially launched in 1970[7] in which the DSM model and architecture by the electricity industry was 

proposed to regulate the time of use (ToU) and the peak energy demand and the analysis of load profiles among consumers. DSM has 

gained more attention since it can reduce the peak-to-average ratio (PAR) by clipping the demand at the peak usage hours to make grid 

more efficient and reliable[8], improving load factor as a result of load shifting, maximization of electricity consumption from local 

renewable energy resources (RESs), minimization of cost of electricity, reduces inconveniences caused by load shedding and maximize 

user’s comfortability, reduce the need for new power plants and improve the overall efficiency of the energy system[9], [10]. 
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The various changes in the load patterns of customers demand can be shaped to improve utilization factors and load balance. The 

most frequently used load shape changes are through DSM techniques shown in Fig 1. Peak clipping tries to reduce peak demand in a 

utility system by lowering demand-side on-peak electricity consumption. This strategy is being implemented primarily to reduce current 

and future capacity needs. The most common method for achieving this change is to disable or restrict the operation of specific 

electricity-using equipment during peak hours by charging higher costs, directly managing loads, and incentivizing users[11] and the 

strategy is useful when there is no option of establishing or installing new power plants[10]. Valley filling aims to encourage increase 

of consumption during off-peak periods of very low electricity profile. Such actions are appropriate to perform when the incremental 

cost of serving the load is lower than the average cost of electricity. Increase of off-peak consumption lowers the average cost of 

electricity and it improves the utilization of available plants. Thence keep the demand and supply balance, avoiding the startup and 

ramp up cost of the generators[8],[11]. Load shifting gives the customers options to transfers loads usage patterns that would otherwise 

occur on- peak to off-peak periods based on cheap tariffs, thus combining peak clipping and valley filling. This is possible with 

distributed generation, energy storage systems and thermal storage technologies, such as the cool storage, heating storage and storage 

water heating[12]. Load growth is intended to enhance overall electricity sales. Customers are encouraged to raise their usage up to a 

specific level in order to keep the grid stable, e.g. using electric vehicles, heating and water heating systems[11], [12]. Flexible load 

shaping is a concept related to reliability in which customers are flexible enough to shift their loads to different low usage slots. The 

load shape can be flexible if the options presented to the customers include variations in quality of service in exchange for appropriate 

incentives. Interruptible or curtailable loads, or individual customer devices capable of incorporating service limits into load control 

actions, may be used in the programs[11]. Load conservation or Energy Efficiency entails reducing overall electricity consumption. 

This can be accomplished by the use of more efficient appliances, modifications to the building envelope, or other measures that reduce 

customers' electricity consumption[12], for instance, use of LED lights, BLDC fans, inverter ACs etc which are energy efficient 

appliances. 

 

Fig. 1 Different demand-side management (DSM) techniques adapted from [9] 

II. RELATED WORK 

In recent years, DSM has received considerable attention from researchers, policymakers, and utilities for improving energy 

efficiency, reducing peak demand, and improving power grid reliability and stability: The authors of [10] provides an in-depth review 

on the demand side management techniques and optimization methods used residentially. Optimizing DSM strategies is crucial for 

minimizing energy consumption and meeting consumer demand. In [13], [14] the authors proposed a stochastics scheduling framework 

in which stochastic character of the electrical and thermal loads, renewable generation, and market prices are incorporated. Peak shaving 

DSM techniques was employed in [13] to minimize the total cost of energy, while [14] considered incentive based demand response 

(IBDR) and real time pricing (RTP) programs to maximize the profit of the microgrid operator while minimizing the energy purchase 

cost and improving reliability indices under normal and resilient conditions. Further, under uncertainty [15] proposed a two stage robust 

optimization model to minimize the overall electricity cost for customers and schedule of operating modes of different appliances. 

Nash Equilibrium(NE), a simple game theory was employed to study demand side management in [16] in which the loads were 

categorized into six groups based on their criticality and power requirements. A simulation of a specific day load with varying power 

availability shows the Nash Equilibrium based algorithm performs effectively and can help in managing the demand for electricity 

during peak hours and reduces the chances for blackouts. In [17], particle swarm optimization method was used to study demand side 

management in smart grid. It optimized the consumption curves of household, commercial and industrial consumers which minimize 

the cost incurred by the users while considering their preferences for loads by setting priorities and preferred time intervals for load 

scheduling. Demand side management for large-scale buildings with industrial loads was proposed and implemented using Genetic 

Algorithm(GA) to optimize the load curves and to generate an optimal schedule for industrial user based on controllable loads[18]. 

Backtracking search algorithm was used in [19] to solve two problems related to demand side management: reduction of load peak and 

minimization of the electricity bill for end-users. Clustering customers based on their load profiles and then applying the fuzzy logic-

based DSM to each cluster to optimize energy consumption and reduce peak demand was proposed in [20]. [21] modelled a customized 

fuzzy logic control system to schedule household appliances and maintain consumer comfort levels for managing heating, ventilation 

and air conditioning systems in smart grid. 
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The authors in [22] discusses the use of demand side management(DSM) techniques in the context of smart grid, in which the 

authors used data acquired from digital meters to create load curves and train an artificial neural network (ANN) to classify new data 

based on created load patterns. In [9] a novel approach to demand-side management in microgrid systems through load shifting and 

peak clipping using neural network was presented. The proposed strategy increases the flexibility on the demand side by scheduling 

users' consumption patterns profiles in response to supply considering presence of deferrable loads. Through simulations, the study 

demonstrates that the proposed demand-side management (DSM) strategies can optimize the load profile with the solar generation, 

leading to better utilization of the available solar energy. Peak clipping reduced peak demand and PAR by approximately 31.2% and 

7.5%, respectively. Meanwhile, load shifting offers more flexibility to customers, allowing them to reschedule their appliance usage to 

hours of more power generation. Further, in [23] neural networks was implemented as a control system for DSM in residential sector 

with distributed generation. The scheduler of the control system set the time to execute the task considering the user’s constraints and 

generation forecast, while the coordinator of the control system manages the energy resources to meet the user’s demand while 

maximizing the use of local generation. In [24] the application of demand side management to industrial customers using artificial 

neural networks was presented to improve the load factor and reduce the maximum demand, resulting in energy saving and cost 

reduction. Strategies like end-use equipment management, load prioritization, peak clipping and valley filling, and differential tariff 

were used to make best use of the energy sources that are currently available. To deal with uncertainty in future pricing, [25] employs 

a steady price prediction model based on artificial neural networks, while the best selections for various household appliances are made 

using multi-agent reinforcement learning. The algorithm handles energy management for multiple appliances, minimize user energy 

bills and dissatisfaction costs, and assists the user in significantly lowering its electricity cost compared to a benchmark without demand 

response. 
Furthermore, various countries are implementing DSM to balance their power grid by matching the supply and demand, the US 

and UK are the leading developed countries implementing DSM, while India, South Africa and Nigeria are developing countries that 

have implemented DSM in their power system. Focusing on developing country like India; the Energy Conservation Act of 2001 in 

India aims to reduce energy intensity and has established the Bureau of Energy Efficiency to provide a regulatory framework. The Act 

includes schemes such as standard labeling of equipment and appliances, which enables consumers to choose energy-saving products. 

Another scheme is the Energy Conservation Building Code for commercial buildings, which aims to deliver cost-saving tools and is 

projected to save 125 billion units of electricity by 2030[26]. DSM in India is categorized into different aspects, including energy 

efficiency in the small and medium enterprise (SME) sector. [27] highlights the practical implications of implementing demand-side 

management (DSM) techniques in an Indian village, specifically Singhana Village (Dedali B) in Madhya Pradesh, India. Through the 

adoption of a demand-side management approach, the village can achieve a 15% reduction in energy consumption and a 20-25% 

decrease in electricity bills. The study employed the Binary Particle Swarm Optimization Algorithm to validate the effectiveness of 

the demand-side management approach and to optimize the scheduling of devices for efficient load management within a smart grid 

framework. The simulation results demonstrate notable reductions in peak load demand and total incurred costs, affirming the efficacy 

of the demand-side management approach. This study underscores the potential benefits of demand-side management in surmounting 

financial, social, and ecological constraints that often impede the construction of new power plants and the expansion of power 

transmission infrastructure. Though there is high awakening in implementing DSM in developing countries yet they are still facing 

challenges like lack of necessary infrastructure to support DSM programs, such as smart meters and advanced communication systems, 

low awareness and participation of consumers and at times policy and regulatory frameworks in developing countries may not be 

conducive to DSM implementation[28]. 
According to previous studies, DSM has not been effectively utilized and implemented in Tanzania, while many of these demand 

side management strategies are commonly adopted in developing nations. Moreover, the current electricity regulations in Tanzania do 

not promote the integration of microgrids and other renewable energy technologies into the grid, despite their potential to enhance grid 

stability. Conversely, the heavy reliance on hydropower renders the grid more vulnerable during drought seasons, resulting in reduced 

generation capacity and necessitating the utility to implement load shedding.  

In this study, we employed the peak clipping DSM method within a model of a grid-connected battery energy storage system. Our 

aim was to showcase the significance of supply-demand matching of power during peak periods that is still lacking in Tanzania. This 

alignment not only enhances user comfort but also bolsters the reliability and efficiency of the grid system, particularly during periods 

of low generation from existing power plants. The key contributions of our work are outlined as follows:  

 Implementation of a load clipping DSM approach on a grid-connected battery energy storage system. 

 Utilization of an artificial neural network optimization method to regulate the output of the battery energy storage system (BESS). 

The subsequent sections of the paper are structured as follows. Section 3 delves deeper into the technique, encompassing detailed 
explanations of the model construction and simulation process. In Section 4, a comprehensive presentation of the paper's results and 
subsequent discussion is offered. Finally, Section 5 serves as the concluding segment. 

III. MATERIAL AND METHODS 

A.  Load Data. 

We can classify the loads based on where they are used, mostly classified as residential loads, commercial loads, and industrial 

loads. In this work we only take into consideration residential and commercial loads as they are usually supplied in common feeders 

while most of the industrial loads have separate feeders or private feeders. The load data used in this work are locally obtained load 

data in a span of 30min for one day and are used to show how demand side management can be implemented in a grid connected 

battery energy storage system with neural network as an alternative to load shedding in Tanzania grid distribution system. 
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Table 1 Load Data 

ToD 

(hr) 

Residential Load 
Commercial Load 

P (in 

watts) for 

R-1 

P (in 

watts) 

for R-2 

P (in watts) 

for C-1 

P (in 

watts) for 

C-2 

0 4240 8400 12000 2500 

0.5 4240 8200 11000 2375 

1 4200 8000 10000 2250 

1.5 4200 7950 9000 2125 

2 4200 13200 8000 2000 

2.5 4000 12750 7500 2075 

3 4000 12900 7000 2150 

3.5 4000 9300 6750 2275 

4 3800 10400 6500 2400 

4.5 4335 10450 6250 2575 

5 4615 10500 6000 2750 

5.5 4600 10600 7000 2625 

6 4580 10760 8000 4500 

6.5 4530 10810 9000 7150 

7 4480 10860 10000 9800 

7.5 4480 12335 10000 18400 

8 4480 13710 10000 27000 

8.5 4750 14235 14000 31500 

9 5000 14760 18000 36000 

9.5 5100 15180 21500 47500 

10 5180 15600 25000 59000 

10.5 5290 16600 30000 56000 

11 5400 17600 35000 53000 

11.5 5390 20280 35500 67750 

12 5380 24960 36000 82500 

12.5 5370 24810 36500 90250 

13 5360 24660 37000 98000 

13.5 5000 22280 38500 92750 

14 4640 19900 40000 87500 

14.5 4650 16700 40000 80250 

15 4660 13500 40000 73000 

15.5 4600 14700 39500 67000 

16 4600 15900 39000 61000 

16.5 4600 16125 38500 53750 

17 4600 16350 38000 46500 

17.5 6200 15700 37250 40750 

18 7800 15050 36500 35000 

18.5 7800 14775 29250 29750 

19 7800 14500 22000 24500 

19.5 7800 14300 21000 20000 

20 7800 14100 20000 15500 

20.5 6700 14150 19750 11000 

21 5600 14200 19500 6500 

21.5 5600 14250 18750 5750 

22 5600 14300 18000 5000 

22.5 5000 13450 16500 4000 

23 4400 12600 15000 3000 

23.5 4320 10500 13500 2750 

B.  Battery Energy Storage System. 

BESS is a device that enables energy to be stored and then released when needed. They offer several benefits over traditional grid 

storage solutions, including balancing the electric grid, providing backup power, improving grid stability and enabling the use of 

renewable energy. Furthermore, the current technology of choice of BESS is lithium-ion batteries due to their cost-effectiveness and 

high efficiency[29]. The average duration of utility-scale lithium-ion battery storage systems is 1.7 hours but it can reach 4 hours[30], 

while the long duration batteries, can discharge for about 10 hours. The degree of autonomy can also affect the operation hour of a 

grid-connected battery, as it depends on the size of the battery, the amount of energy being consumed, and the rate at which it is being 

recharged[31]. In this study the BESS of 100kW was used, with initial state of charge of 50%. The BESS connection to the grid is as 

seen in the simulation figure marked as fig 2. On the other hand, fig 3. Shows the measurements from the system, including the battery’s 

state of charge (SOC). 

C.  Artificial Neural Network 

Artificial Neural Networks are a type of machine learning that mimic how biological creatures learn. It is inspired by the structure 

and function of brain whereas the nervous system comprises neurons, which are linked to each other through axons and dendrites and 

their junction is known as synapses which modify the response to stimuli, and this modification is how the living organisms learn[32], 

[33], [34]. Thus a processing unit called neurons performs computation in artificial neural network connected to one another through 

weights, which serve the same role as synaptic connections in biological organisms[32]. This architecture is illustrated in figure 4a and 

its modification in figure 4b. 

 

 

Fig 4 (a) Artificial Neural Network; (b) Modified Artificial Neural Network 
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The output of artificial neural network can be drawn from the above modified architecture; 

𝑦 = 𝑓(𝑢) = 𝑓 (∑ 𝑤𝑗𝑥𝑗

𝑛

𝑗=1

− 𝜃) (1) 

Where:     y: Output Signal 
  f: Activation function 
  u: Activation potential 
  𝜃: Activation threshold 
  W1, W2,..., Wn : Synaptic Weights 

X1, X2,..., Xn : Input Signals 

The basic architecture of Artificial Neural Network consists of three layers which are, Input layers - in charge of receiving 

information (data), signals, characteristics, or measurements from the outside world; Hidden layers - made up of neurons that are in 

charge of extracting patterns linked with the process or system being studied and Output layers - in charge of producing and displaying 

the final network outputs that arise from the processing conducted by the neurons in the previous layers 

The flowchart in fig 5 below is used to implement the artificial neural network in this proposed model. The flowchart also includes 

the five stages such as data acquisition, creating patterns, choose ANN, training and simulation and validation taken to reach the 

required trained model. 

 

Fig 5 Flowchart for Artificial Neural Network implementation 

D. Training of Artificial Neural Network 
MATLAB ANN toolbox software is used for this simulation with three layers of feedforward architecture namely input, hidden 

and output layers consisting of 2, 30, and 1 neuron. For most typical problems, a rough prerequisite for the number of hidden layer 
neurons is the rule of geometric pyramid. Means as the number of layers increase, the performance increases but when a certain 
threshold is reached as the number of layers increase, the performance decreases -see figure 6. 

 
Fig 6 Network performance with increase of number of neurons in a hidden layer. 
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Fig 2 Grid connected battery energy storage system. 

 

Fig 3 The Block diagram of Energy measurement unit.

The training algorithm that performed better was Levernberg-Marquardt algorithm for it combines the advantages of the 

Gauss -Newton method and the steepest decent method. It works by iteratively adjusting the network's weights in the direction 

that reduces the error and was fast compared to other learning algorithms. The algorithm converged to a quadratic error of 

6.0254 at 221 steps, indicating a satisfactory level of accuracy achieved during training process and regression close to 1, 

indicating a strong correlation between the network output and the target values, as shown in figure 7. 

   RESULTS AND DISCUSSION 

After exporting the function fitting neural network to Simulink, two inputs namely the state of charge (SOC) and the time 
of a day were provided to the network. The output of the neural network is then utilized to control the charging and discharging 
of the battery. A simulation of the system is then carried over a 24-hour time interval, and the results of simulations are as 
depicted in the figure 8, showing the comparison of profiles before and after implementing demand side management. 
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Fig 7 Network training performance and regression plot. 

                
(a) (b) 

Fig 8 Simulation results for: (a) grid connected load without battery energy storage system and ANN controller; (b) grid connected load with battery energy 
storage system and ANN controller 

From the results above, it is clear that the battery energy storage system clipped the peak loads during peak hour, thus improving 
the system reliability and efficiency.  

The measure of how an electric system’s reliability and efficiency are affected by peak electricity consumption is called peak to 
average ratio (PAR). The PAR in this work is calculated as below and the PAR reduction can be visualized in fig 9. 

 
 

 

 

Before DSM 

 

Max(power)= 165.02kW 
1

24
∑ 𝑃𝑜𝑤𝑒𝑟24

𝑡=1 =70.89694kW 

∴ 𝑃𝐴𝑅 =  
165.020

70.89694
= 2.3276 

After DSM 

Max(power)= 85.645kW 
1

24
∑ 𝑃𝑜𝑤𝑒𝑟24

𝑡=1 =63.2265kW 

∴ 𝑃𝐴𝑅 =  
85.645

63.2265
= 1.3546 

 
 

 
This means the reliability and efficiency of the grid is increased by 41.8027%. 

𝑃𝐴𝑅 =
𝑀𝑎𝑥(𝑃𝑜𝑤𝑒𝑟)
1

24
∑ 𝑃𝑜𝑤𝑒𝑟24

𝑡=1

, 
(2) 

% PAR Reduction =  
PAR (Before DSM)- PAR(After DSM)

PAR (Before DSM)
 × 100% 

 

                                         =
2.3276 − 1.3546

2.3276
× 100% = 41.8027% 
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Fig 9 Comparison of PAR before and after performing a Peak Clipping Demand Side Management. 

Based on the peak-to-average ratio (PAR) calculations presented above, it is evident that the system incorporating the battery 

energy storage system with ANN control has significantly enhanced system reliability and efficiency. The PAR reflects the rat io of the 

peak power demand to the average power demand, and a lower PAR indicates a more balanced and efficient energy utilization. The 

improved PAR values indicate that the battery energy storage system, controlled by the artificial neural network, effectively manages 

and smoothens out peak loads, resulting in a more reliable and efficient system overall.  

Leveraging DSM in Tanzania's electricity distribution network is a strategic move that can offer numerous benefits. By reducing 
maximum demand, especially during peak hours and challenging periods like drought seasons, the utility company can enhance grid 
reliability, minimize load shedding, and mitigate discomfort and losses for consumers and various sectors dependent on electricity. It's 
a win-win approach that aligns with efficient energy management and sustainable development goals. 

   CONCLUSION 

In conclusion, this study focused on the implementation and benefits of demand side management (DSM) techniques, specifically 

peak clipping, within the context of Tanzania's electricity distribution system. The research highlighted the vulnerabilities of Tanzania's 

heavy reliance on hydropower, which makes the grid susceptible to disruptions due to droughts and weather-related events. These 

challenges have led to energy deficits and necessitated load shedding, causing inconvenience and economic losses for consumers. 

The study introduced the concept of DSM as a solution to these challenges, showcasing how a grid-connected battery energy storage 

system controlled by an artificial neural network (ANN) can effectively manage peak loads. Through the implementation of peak clipping, 

the system smoothed out peak electricity demand, significantly reducing the peak-to-average ratio (PAR). This reduction in PAR, by 

approximately 41.80%, translated to enhanced system reliability and efficiency. 

The use of ANN in this context allowed for accurate prediction and control of energy demand patterns, optimizing the battery 
energy storage system's charging and discharging cycles. The simulations demonstrated how DSM can not only mitigate peak demand 
but also improve grid stability, minimize load shedding, and enhance overall energy utilization. 

However, it's important to note that the successful implementation of DSM requires careful consideration of various factors, 
including customer behavior, regulatory frameworks, and technological feasibility. Additionally, while this study focused on peak 
clipping, there are other DSM techniques that could further contribute to efficient energy management, such as valley filling, load 
shifting, and load conservation. To further this study incorporating real-time data and forecasting will enhance the accuracy of the ANN 
models and improve the efficiency of the DSM strategies by better predicting energy availability and demand patterns. Furthermore, 
Exploring and implementing more sophisticated control algorithms (Advanced Control Algorithms), such as Model Predictive Control 
(MPC) or Reinforcement Learning, could improve the system's ability to adapt to dynamic and complex energy scenarios. 
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