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Abstract :   In this paper we mainly work on “ Function of bounded variation ” . The function  of bounded variation in 

one variable was first introduced  by Camille Jordan in 1881. Camille Jordan was a French mathematician known for his 

work in analysis.  

           In particular, he studied the properties of function that has finite variation over a given interval. The related topics 

are Riemann-Stieljes  integral, absolute continuity , monotonicity, boundedness ,arc length etc.  Also we discuss some 

algebraic properties of bounded variation and some theorem on related topic of bounded variation. 

Keywords- Bounded variation, continuity , monotonicity ,partitions , refinement. 

1 Introduction 

In this paper explore the function of bounded variation and other related topic which are intituively related with function 

of bounded variation. 

                   We start our paper by defining the variation of a function and what is meaning of a function to be bounded 

variation. After this, we shall discuss the algebraic properties of function of bounded variation. We discuss monotonicity 

of a function on [a, b], which relate class of BV − f unction. 

                  Next, we define “Absolute continuity” and nice property to show that all absolute continuous function are class 

of BV − function but all continuous function of bounded variation are not absolute continuous by given counter example. 

                  We relate arc length and bounded variation. We discuss that a curve which have finite arc length is said to be 

ractifiable curve and all curve which have finite arc length are class of BV − function. 

                  Lastly, we define Riemann-Stieltjes  integral and discuss some important theorem to see how it related with 

function of bounded variation. 

2 Preliminaries. 

Before we start our discussion on function of bounded variation we must define some basic definitions, lemma 

and theorems etc. 

 

http://www.jetir.org/


© 2024 JETIR May 2024, Volume 11, Issue 5                                                                 www.jetir.org (ISSN-2349-5162) 

     

JETIR2405383 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c732 

 

2.1 Definitions. 

2.1.1 Lower bound, upper bound and bounded set. 

Let A be a non-empty set of real numbers. 

1. Set A is said to be bounded above if ∃ a real number M ∈ R such that M ≥ x , ∀x ∈ A then the real number M 

is called set an upper bound of A and the collection of all such M is called set of all upper bound. 

2. Set A is said to be bounded below if ∃ a real number m ∈ R such that m ≤ x , ∀x ∈ A then the real number m 

is called lower bound of A and the set of all such m is called set of all lower bound of A. 

3. The set A is said to be bounded if it is bounded above as well as bounded below. From above two points we 

can write if ∃ a no. p such that |x| ≤ p. 

2.1.2 Supremum and Infimum of a set. 

Let A ⊂ R be bounded above then A has an upper bound and the set of all upper bound of A has a least element 

is called supremum of  A or lowest upper bound. Similarly ,if A is bounded below then it has a lower bound and 

the set of all lower bound of A has a greatest element is called infimum of a set A or greatest lower bound . 

2.1.3 Partition. 

Let [a, b] be a closed and bounded interval then a set P ={x0, x1, x2, ..., xn} such that a = x0 < x1 < x2 < ... < xn = 

b is said to be partition on [a, b].The family of all partition on [a, b] is denoted by P[a, b] then if we take a 

partition P then we can write P ∈ P [a, b] 

3 Function of bounded variation. 

3.0.1 Variation of a function. 

            Variation of a function tells to how the output of a function will change as the input values changes. It 

tells us whether the function is increasing or decreasing or  constant.   A variation of a function that measures 

the total changes and fluctuation of a function over an interval. 

             Let [a, b] be a closed and bounded interval and a function 𝑓: [𝑎, 𝑏] → ℝ and let a partition 𝑃 =

 {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛}     where   a = x0 < x1 < x2 < ... < xn = b    then  the  sum  

V (P, f ) =|f (x1) − f (x0)| + |f (x2) − f (x1)| + ... + |f (xn) − f (xn−1)| is said to be variation on      a given interval. 

Also, we  can  write 

𝑉(𝑃, 𝑓) = ∑ |𝑓(𝑥𝑖

𝑛

𝑖=1

) − 𝑓(𝑥𝑖−1)|     , ∀ i = 1,2,3, … , n  

 

3.0.2 Bounded Variation. 

          For  different  partitions  V (P, f )  be  a  non-negative  real  number  and  if   the   set  {V (P, f ) : ∀ P ∈ P 

[a, b]} ≤ ∞ i.e finitely exist then  f is said  to  be  function  of  bounded variation or in short BV − function. 

Mathematically, we  write 
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𝑉(𝑃, 𝑓) = ∑ |𝑓(𝑥𝑖

𝑛

𝑖=1

) − 𝑓(𝑥𝑖−1)|  < ∞   , ∀ i = 1,2,3, … , n  

3.0.3 Total Variation. 

    sup{𝑉(𝑃, 𝑓): 𝑃 ∈ 𝑃[𝑎, 𝑏]} = 𝑉𝑎
𝑏(𝑓) 

      𝑉𝑎
𝑏(𝑓) is called total variation of a function f. 

 

 

3.0.4 Examples 

𝒇(𝒙) = 𝒙 ; 𝒙 ∈ [𝒂, 𝒃] 

Here , variation of a function 

𝑉(𝑃, 𝑓) = ∑ |𝑓(𝑥𝑖

𝑛

𝑖=1

) − 𝑓(𝑥𝑖−1)|     , ∀ i = 1,2,3, … , n  

𝑉(𝑃, 𝑓) = |𝑓(𝑥1) − 𝑓(𝑥0)| + |𝑓(𝑥2) − 𝑓(𝑥1)| +  … + |𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)| 

                𝑉(𝑃, 𝑓) = |𝑥1 − 𝑥0| + |𝑥2 − 𝑥1| +  … + |𝑥𝑛 − 𝑥𝑛−1| 

                𝑉(𝑃, 𝑓) = 𝑥1 − 𝑥0 + 𝑥2 − 𝑥1 +  … + 𝑥𝑛 − 𝑥𝑛−1 

                𝑉(𝑃, 𝑓) = 𝑥𝑛 − 𝑥0  

                𝑉(𝑃, 𝑓) = 1 − 0 

                𝑉(𝑃, 𝑓) = 1 

Thus , 𝑉(𝑃, 𝑓) = {1} , ∀ P ∈ P[a, b]  

Hence , Total variation sup{𝑉(𝑃, 𝑓) ∶  ∀ P ∈ P[a, b]} = 1  i.e. 𝑉0
1(𝑓) = 1 

3.0.5    Example – not a function of bounded variation 

Let 𝑓: [𝑎, 𝑏] → ℝ  be a function and  

                                       𝑓(𝑥) = {
1 , 𝑖𝑓 𝑥 ∈ [0,1] ∩ ℚ

0, 𝑖𝑓 𝑥 ∈ [0,1] ∩ ℚ𝑐                                    (1) 

Now , first we find variation of the  function . Let us take a partition  𝑃 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥2𝑛} 

such that 𝑓(𝑥2𝑘) ∈ ℚ  and 𝑓(𝑥2𝑘−1) ∈ ℚ𝑐  

now , 

       𝑉(𝑃, 𝑓) = ∑ |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|2𝑛
𝑗=1  

 ⟹ 𝑉(𝑃, 𝑓) = |𝑓(𝑥2) − 𝑓(𝑥1)| + |𝑓(𝑥4) − 𝑓(𝑥3)| +  … + |𝑓(𝑥2𝑛) − 𝑓(𝑥2𝑛−1)| 

 ⟹ 𝑉(𝑃, 𝑓) = |1 − 0| + |1 − 0| +  … + |1 − 0|   (2𝑛 − 𝑡𝑖𝑚𝑒𝑠) 
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 ⟹ 𝑉(𝑃, 𝑓) = 2𝑛 

 ⟹ 𝑉(𝑃, 𝑓) ⟶ ∞  𝑎𝑠  𝑛 ⟶ ∞ 

 

 ⟹ sup{𝑉(𝑃, 𝑓): ∀ 𝑃 ∈ 𝑃(𝑉, 𝑓)} = ∞ 

Therefore , this is not a function of bounded variation. 

This function is called Dirichlet function , which has infinite variation . 

Now , from this example we conclude that a bounded function  does not imply that  f  is a class of BV- function . 

4   Algebra of bounded variation 

If f and g are function of bounded variation on [a,b] then 

 𝒇 + 𝒈 ∈ 𝐵𝑉[𝑎, 𝑏] . 

 𝒇 − 𝒈 ∈ 𝐵𝑉[𝑎, 𝑏] . 

 𝜶𝒇 ∈ 𝐵𝑉[𝑎, 𝑏] ∀𝜶 ∈ ℝ 

 𝒇. 𝒈 ∈ 𝐵𝑉[𝑎, 𝑏] 

 If 1/𝒈 is bounded on [𝑎, 𝑏] then  𝒇/𝒈 is a class of 𝐵𝑉[𝑎, 𝑏]  

5     Important Theorems and Lemmas  

5.0.1    Lemma  

Let 𝑓: [𝑎, 𝑏] → ℝ be a function and let 𝑃 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛}  be a partition  on [𝑎, 𝑏] and 𝑃∗ =

{𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑚}  be a refinement of 𝑃 then , 

∑|𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| ≤ ∑|𝑓(𝑦𝑗) − 𝑓(𝑦𝑗−1)|

𝑚

𝑗=1

𝑛

𝑖=1

 

 We  first add one extra  point 𝑧 and compute the effect of  𝑓 by point 𝑧 in 𝑃 then 

 𝑃1 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑧, 𝑥𝑖 , … , 𝑥𝑛}. 

The interval [𝑥𝑖−1, 𝑥𝑖] divided into two smaller subinterval [𝑥𝑖−1, 𝑧] and [𝑧, 𝑥𝑖] . 

𝑉(𝑃, 𝑓) = |𝑓(𝑥1) − 𝑓(𝑥0)| + |𝑓(𝑥2) − 𝑓(𝑥1)| +  … + |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| +  

                                 … + |𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)|    

And  

𝑉(𝑃1, 𝑓) = |𝑓(𝑥1) − 𝑓(𝑥0)| + |𝑓(𝑥2) − 𝑓(𝑥1)| +  … + |𝑓(𝑧) − 𝑓(𝑥𝑖−1)| + |𝑓(𝑥𝑖) − 𝑓(𝑧)| +  … + |𝑓(𝑥𝑛)

− 𝑓(𝑥𝑛−1)| 

 

 

 

Now,  we can write  
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    |𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)| = |𝑓(𝑥𝑘) − 𝑓(𝑧) + 𝑓(𝑧) − 𝑓(𝑥𝑘−1)| 

 ⇒ |𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)| ≤ |𝑓(𝑥𝑘) − 𝑓(𝑧)| + |𝑓(𝑧) − 𝑓(𝑥𝑘−1)|  

 ⇒ 𝑉(𝑃, 𝑓) ≤ 𝑉(𝑃1, 𝑓) 

Similarly, we can continue to adjoining points and examine the effect of it. 

⇒ ∀𝑃∗(refinement of 𝑃) the inequality holds ,   

⇒ 𝑉(𝑃, 𝑓) ≤ 𝑉(𝑃∗, 𝑓)  

5.0.2   Theorem 

Let 𝑓: [𝑎, 𝑏] ⟶ ℝ be a function of bounded variation on [𝑎, 𝑏] and 𝑎 < 𝑐 < 𝑏  

 i.e. 𝑐 ≠ 𝑎 , 𝑐 ≠ 𝑏 . Then , 𝑓 is a function of bounded variation on [𝑎, 𝑐] and [𝑐. 𝑏],   

And Total variation 𝑉𝑎
𝑏(𝑓) = 𝑉𝑎

𝑐(𝑓) + 𝑉𝑐
𝑏(𝑓) 

5.0.3   Example  

A function 𝑓 is of bounded variation  on every close subinterval of (𝑎, 𝑏) but may not be bounded variation on 

[𝑎, 𝑏]. 

      Let us take a counter example.  

                                       𝑓(𝑥) = {
1

2−𝑥
 , 𝑓𝑜𝑟 𝑥 ≠ 2

0, 𝑓𝑜𝑟 𝑥 = 2
                           (2) 

                                    

We see that, 

The function is increasing on (0,2) and on every close subinterval of interval (0,2) it is a function of bounded 

variation but as → 2  ⇒  𝑓(𝑥) → ∞ . 

Which means we can take point closer to point 2 and we can increase 𝑓(𝑥) as we choose x i.e. 𝑉([0,2], 𝑓) = ∞ 

⇒ 𝑓(𝑥) is not a function of bounded  variation on [0,2]. 

 This example is nice to proving that a continuous function on an interval is not implies f  is a function of 

bounded variation .  
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5.0.4 Monotonicity of BV – function 

Let 𝑓: [𝑎, 𝑏] ⟶ ℝ be a monotone on [𝑎, 𝑏] . Then , 𝑓 is a function of bounded variation on [𝑎, 𝑏]. 

Proof. First we assume that 𝑓 is monotonic increasing on [𝑎, 𝑏]. 

Let 𝑃 = {𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑛} where 𝑎 = 𝑦0 < 𝑦1 < 𝑦2 <  … < 𝑦𝑛 = 𝑏   be a partition on[𝑎, 𝑏], then 𝑉(𝑃, 𝑓) =

|𝑓(𝑦1) − 𝑓(𝑦0)| + |𝑓(𝑦2) − 𝑓(𝑦1)| + … + |𝑓(𝑦𝑛) − 𝑓(𝑦𝑛−1)|      

 Since  𝑓  is monotonic increasing, then  

𝑉(𝑃, 𝑓) = 𝑓(𝑏) − 𝑓(𝑎) , this satisfies for all𝑃 ∈ 𝑃[𝑎, 𝑏]. 

Therefore, the sup{𝑉(𝑃, 𝑓): 𝑃 ∈ 𝑃[𝑎, 𝑏]}  is 𝑓(𝑏) − 𝑓(𝑎) < ∞ so 𝑓 ∈ 𝐵𝑉[𝑎, 𝑏].  

Now, Let 𝑓 is monotonically decreasing then𝑉(𝑃, 𝑓) = 𝑓(𝑎) − 𝑓(𝑏). 

Similarly, by above ∀𝑃 ∈ 𝑃[𝑎, 𝑏]  

Therefore, 𝑓 ∈ 𝐵𝑉[𝑎, 𝑏]  

5.0.5 Example of a discontinuous function which is class of BV −function. 

𝑓(𝑥) = [𝑥] on interval [0,3] 

This example shows that a discontinuous function may be a function of bounded variation but it has only 

discontinuity of first kind. 

5.0.6 Theorem. 

. Let 𝑓: [𝑎, 𝑏] ⟶ ℝ be a function of bounded variation then 𝑓 can have only countable number of discontinuity. 

i.e. 𝑓 have first kind of discontinuity (jump discontinuity). 

6    Absolute Continuity. 

6.1 Definition. 

Let 𝐼 be an interval in real ℝ.  A function 𝑓: 𝐼 ⟶ ℝ is said to absolute continuous on I  if  

∀ 𝜖 >  0  ∃ 𝛿 >  0  Such that   

∑ |𝑓(𝑝𝑖)

𝑛

𝑖=1

− 𝑓(𝑞𝑖)| < 𝜖, whenever  [𝑝𝑖, 𝑞𝑖] is finite collection   of disjoint subinterval 

  𝑝𝑖 < 𝑞𝑖  ∃ 𝐼 satisfies ∑ (𝑝𝑖 − 𝑞𝑖) < 𝛿.𝑛
𝑖=1  

6.1.1 Theorem. 

An absolute continuous function is uniform continuous but an uniform continuity does not imply absolute 

continuity. 

6.1.2 Lipschitz Function. 

Let 𝑓: 𝐼 ⟶ ℝ  with I an interval, and 𝑘 ∈ ℝ  such that 𝑘 > 0. Then f satisfies a Lipschitz condition with 

constant 𝑘 𝑖𝑓 |𝑓 (𝑏)  −  𝑓 (𝑎)|  ≤  𝑘|𝑏 −  𝑎| for all  𝑎, 𝑏 ∈  𝐼. Then 𝑓 is called a Lipschitz function. 
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6.1.3 Theorem. 

If 𝑓 ∶  𝐼 ⟶ ℝ  be Lipschitz continuous function then 𝑓 is an absolute continuous function but an absolute 

continuous function need not be a Lipschitz continuous function. 

First we prove that a Lipschitz continuous is an absolute continuous. 

Let 𝜖 >  0 and choose 𝛿 =  𝜖/𝑘. Let us take a set of disjoint close intervals such that {[𝑎𝑖, 𝑏𝑖] ∶  𝑖 =

 1, 2, 3, . . . 𝑛} be a finite partition of interval 𝐼. 

We have to show that ∑ (𝑏𝑖 − 𝑎𝑖) < 𝛿𝑛
𝑖=1 . 

Now, we apply the condition of Lipschitz continuous. 

∑ |𝑓(𝑏𝑖) − 𝑓(𝑎𝑖)

𝑛

𝑖=1

| < ∑ 𝑘(𝑏𝑖 − 𝑎𝑖) < 𝛿.

𝑛

𝑖=1

 

We already choose 𝛿 =
𝜖

𝑘
 .  

⟹ ∑(𝑏𝑖 − 𝑎𝑖) < 𝜖

𝑛

𝑖=1

 

⟹ ∑ |𝑓(𝑏𝑖) − 𝑓(𝑎𝑖) < 𝜖

𝑛

𝑖=1

 

This is a condition of absolute continuity. 

Now, Let us take a counter example to show that absolute continuous functions are not always a Lipschitz 

continuous. 

𝑓 (𝑥)  =  √𝑥  is absolute continuous on [0, 1] but not a Lipschitz continuous function. 

On applying Lipschitz continuity condition, 

|𝑓(𝑏𝑖) − 𝑓(𝑎𝑖)| < 𝑘|(𝑏𝑖) − (𝑎𝑖)|, where, [𝑎𝑖, 𝑏𝑖]; 𝑖 = 1,2,3, … , 𝑛 are disjoint close interval. 

 |𝑓(𝑏𝑖) − 𝑓(𝑎𝑖)| < |√𝑘𝑏𝑖 − √𝑘𝑎𝑖| 

⟹ |𝑓(𝑏𝑖) − 𝑓(𝑎𝑖)| < √𝑘|√𝑏𝑖 − √𝑎𝑖|.  

This does not satisfy Lipschitz continuous condition. 

6.1.4 Example of a Uniform continuous function which is not an absolute continuity and not a function of 

bounded variation 

Let 𝑓 ∶  [𝑎, 𝑏]  ⟶ ℝ  be a function such that 

                                                          𝑓(𝑥) = {
𝑥𝑐𝑜𝑠

𝜋

𝑥
 , 𝑤ℎ𝑒𝑛 𝑥 ≠ 0

0 , 𝑤ℎ𝑒𝑛 𝑥 = 0
                     (3) 

We know that this function is uniform continuous on [0, 1]. 

Define partition 𝑃 = {0,
1

2𝑛
−

1

2𝑛−1
, … ,

1

2
, 1} 
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Now, 𝑓 (
1

2𝑛
) =

1

2𝑛
cos

2𝑛𝜋

2
=

(−1)𝑛

2𝑛
 

And, 𝑓 (
1

2𝑛−1
) =

1

2𝑛−1
cos

(2𝑛−1)𝜋

2
= 0 

 ⟹ |𝑓 (
1

2𝑛
) − 𝑓 (

1

2𝑛−1
)| =

1

2𝑛
 

Now, the variation function, 

𝑉(𝑃, 𝑓) = ∑ |𝑓 (
1

2𝑗
) − 𝑓(

1

2𝑗 − 1

𝑛

𝑗=1

)| =
1

2
∑

1

𝑗

𝑛

𝑗=1

 ⟶ ∞ 

⟹ 𝑉(𝑃, 𝑓) ⟶ ∞ 

Thus 𝑓 is not a function of bounded variation. 

 

6.2 Relation between absolute continuity and bounded variation and also Lipschitz 

continuous function and bounded variation 

6.2.1 Theorem. 

If a function 𝑓 is absolute on the interval 𝐼 then 𝑓 is also abounded variation. 

6.2.2 Theorem 

A Lipschitz continuous function is a bounded variation converse need not be true. 

For converse part we can take above example. We have to only prove that a Lipschitz continuous function is 

always a function of bounded variation. 

 For this, we apply here Lipschitz continuous function. 

∀ 𝑦, 𝑥 ∈  [𝑎, 𝑏] ∃ 𝑘 ∈  ℝ+  

Such that, |𝑓 (𝑥)  −  𝑓 (𝑦)|  ≤  𝑘|𝑥 −  𝑦| 

Let us take partitions, ∀ 𝑃 =  {𝑎 =  𝑥0  <  𝑥1  < 𝑥2 < . . . <  𝑥𝑛 = 𝑏 

Variation of a function, 

𝑉 (𝑃, 𝑓 )  =  ∑ |𝑓(𝑥𝑗

𝑛

𝑗=1

) − 𝑓(𝑥𝑗−1)| 

≤ 𝑘 ∑|(𝑥𝑖) − (𝑥𝑖−1)|

𝑛

𝑗=1

 

⟹ 𝑉(𝑃, 𝑓) ≤ 𝑘(𝑏 − 𝑎) 

This shows that a Lipschitz function is always a continuous function. 

 

6.2.3 Theorem related to Lipschitz continuous function and differentiability 
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. 

Let 𝑓 ∶  [𝑎, 𝑏] ⟶ ℝ be a function and if 𝑓 ′(𝑥) exists and 𝑓 ′(𝑥)  ≤  𝑀 for some 𝑀 >  0 

  ⟹  𝑓 is Lipschitz continuous. 

 ⟹  𝑓 ∈  𝐵𝑉 [𝑎, 𝑏] 

 

7 Riemann-Stieltjes Integration. 

In this section we define Riemann-Stieltjes integration and discuss some important example. Finally we discuss 

relationship between Riemann-Stieltjes integral and function of bounded variation. 

7.0.1 Definition. 

Let 𝑓 ∶  [𝑎, 𝑏]  ⟶ ℝ be any real valued bounded function defined on [𝑎, 𝑏] and 𝛼 be a monotonically increasing 

function on [a, b]. Let P be a partition of [𝑎, 𝑏] such that 𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑏 

𝑀𝑖  =  𝑠𝑢𝑝{𝑓 (𝑥): ∀ 𝑥 ∈  [𝑥𝑖−1, 𝑥𝑖]}  

and 𝑚𝑖  =  𝑖𝑛𝑓 {𝑓 (𝑥): ∀ 𝑥 ∈  [𝑥𝑖−1, 𝑥𝑖]} 

Define 𝑈 (𝑃, 𝑓, 𝛼)  =  ∑ 𝑀𝑖∆𝛼𝑖
𝑛
𝑖=1  

and 𝐿(𝑃, 𝑓, 𝛼) = ∑ 𝑚𝑖∆𝛼𝑖
𝑛
𝑖=1  

Then 𝑈 (𝑃, 𝑓, 𝛼) and 𝐿(𝑃, 𝑓, 𝛼) are called lower Riemann-Stieljes sum and upper Riemann-Stieljes of 𝑓 with 

respect to 𝛼 corresponding to partition 𝑃. where, 

∆𝛼𝑖  =  𝛼(𝑥𝑖)  −  𝛼(𝑥𝑖−1) such that 𝛼𝑖  ≥  0, because 𝛼 is monotonically increasing function. 

We define, 

                                             ∫
𝑎

𝑏
 𝑓 𝑑𝛼 = 𝑖𝑛𝑓𝑃{𝑈(𝑃, 𝑓, 𝛼)}                                (4) 

And  

                                              ∫
𝑎

𝑏
 𝑓 𝑑𝛼 = 𝑠𝑢𝑝𝑃{𝐿(𝑃, 𝑓, 𝛼)}                                 (5) 

        The equation (4) and (5) are called upper and lower Reimann-Stieljes integral of 𝑓 with respect to 𝛼 

on [𝑎, 𝑏]. If  

                                                     ∫
𝑎

𝑏
𝑓 𝑑𝛼 = ∫

𝑎

𝑏
𝑓 𝑑𝛼                    (6) 

    If 𝑓 satisfies equation (6) then 𝑓 is Riemann-Stieljes integrable with respect to 𝛼 on [𝑎, 𝑏].   

7.0.2 Theorem 

Let 𝑓 ∶  [𝑎, 𝑏]  ⟶ ℝ  be a bounded function, and 𝛼 is monotonically increasing on [𝑎, 𝑏]. then, prove that the 

lower Riemann-Stieljes integral of 𝑓 relative to 𝛼 can never exceed the upper Riemann-Stieljes integral. 

i.e. ∫
𝑎

𝑏
𝑓 𝑑𝛼    ≤ ∫

𝑎

𝑏
𝑓 𝑑𝛼 
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7.0.3 Condition on Riemann-Stieljes integral which is related to function of bounded variation 

.Let 𝑓 ∶  [𝑎, 𝑏]  ⟶ ℝ be a bounded function on [𝑎, 𝑏] and 𝛼 be monotonic increasing on [𝑎, 𝑏].  Then, 𝑓 ∈

 ℝ(𝛼) ⟺ ∀ 𝜖 >  0  ∃  a partition 𝑃 on [𝑎, 𝑏] such that 

  𝑈 (𝑃, 𝑓, 𝛼) − 𝐿(𝑃, 𝑓, 𝛼)  <  𝜖 

Let 𝑓 ∈  ℝ(𝛼) on[𝑎, 𝑏] then we have, 

                                                    ∫
𝑎

𝑏
𝑓 𝑑𝛼 = ∫

𝑎

𝑏
𝑓 𝑑𝛼                     (7) 

We know that - 

 ∫
𝑎

𝑏
𝑓 𝑑𝛼 = 𝑠𝑢𝑝𝑃𝐿(𝑃, 𝑓, 𝛼) ∀𝑃.  

 ∃ a partition 𝑃1 of [𝑎, 𝑏] and a real number 
𝜖

2
> 0 such that  

𝐿(𝑃, 𝑓, 𝛼) >  ∫
𝑎

𝑏
𝑓 𝑑𝛼 −

𝜖

2
 

                                              ⟹ −𝐿(𝑃, 𝑓, 𝛼) < − ∫
𝑎

𝑏
𝑓 𝑑𝛼 +

𝜖

2
                             (8) 

Also we know that, 

∫
𝑎

𝑏
 𝑓 𝑑𝛼 = 𝑖𝑛𝑓𝑃{𝑈(𝑃, 𝑓, 𝛼)}     

∃ a partition 𝑃2 of [𝑎, 𝑏] and a real number 
𝜖

2
> 0 such that 

                                        ⟹  𝑈 (𝑃, 𝑓, 𝛼)  < ∫
𝑎

𝑏
 𝑓 𝑑𝛼  +  ϵ/2                             (9) 

Now, we take 𝑃 =  𝑃1 ∪ 𝑃2 , such that  𝑃1 ⊂ 𝑃 , 𝑃2 ⊂ 𝑃 .. 

then, 𝑈 (𝑃, 𝑓, 𝛼)  ≤  𝑈 (𝑃2, 𝑓, 𝛼). 

and 𝐿(𝑃, 𝑓, 𝛼)  ≤  𝐿(𝑃1, 𝑓, 𝛼). 

⟹ −𝐿(𝑃1, 𝑓, 𝛼) ≥ −𝐿(𝑃, 𝑓, 𝛼)  

or − 𝐿(𝑃, 𝑓, 𝛼)  ≤  −𝐿(𝑃1, 𝑓, 𝛼)  

⟹ 𝑈 (𝑃, 𝑓, 𝛼) −  𝐿(𝑃, 𝑓, 𝛼) ≤  𝑈 (𝑃2, 𝑓, 𝛼) −  𝐿(𝑃2, 𝑓, 𝛼) ≤
𝜖

2
+

𝜖

2
= 𝜖  

⟹ 𝑈(𝑃, 𝑓, 𝛼) − 𝐿(𝑃, 𝑓, 𝛼) ≤ 𝜖  

 

7.0.4 Theorem 

If 𝑓1 and 𝑓2 are in 𝑅(𝛼) on [𝑎, 𝑏], then 𝑓1  +  𝑓2  ∈  [𝑎, 𝑏] and also  𝑓1 − 𝑓2  ∈  [𝑎, 𝑏]. 

 

7.0.5 Relation between Riemann-Stieljes and function of bounded variation. 
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. If 𝑓 is a function of bounded variation on a close interval [𝑎, 𝑏], then we can write 𝑓 as a difference of two 

monotonically increasing function by Algebra of bounded variation. 

i.e. 𝑓 =   𝑓1  +  𝑓2  where, 𝑓1 and 𝑓2 both increasing function on [𝑎, 𝑏]. 

By the theorem 7.0.4 we can write, 

     If 𝑓1 and 𝑓2 are two monotonically increasing bounded function then 𝑓1  −  𝑓2 ∈ 𝑅(𝛼) whenever 𝛼 is 

continuous and here 𝑓 =  𝑓1 −  𝑓2 ∈  𝑅(𝛼)  ⟹  𝑓 ∈  𝑅(𝛼) 

i.e Function of bounded are like a nice functions that they don’t have infinite variation or wiggling. On the other 

hand, the Riemann-Stieljes is a way to calculate the area under the curve of a function, but it takes into account 

the variation of the function called Stieljes measure. If we have a function of bounded variation it can always be 

integrated by the Riemann- Stieljes integral and calculate area under the curve. 

8 Rectifiable Curve. 

        Now, we introduce the concept of Rectifiable curve or arc length. We know that, a straight line is the 

shortest distance between two points in Euclidean plane. So that the length of any inscribe polygon should not 

exceed the length of the curve. 

        Therefore we can say, the length of the curve is work like an upper bound to the length 

 of all inscribe polygon and the curve should be least upper bound of the length of all possible polygon inscribe 

polygon. 

     For most curve, we use in practice will give us useful definition of arc length, but there are some curve for 

which there are no upper bound. 

     So, we need to categories curves in two categories- Rectifiable and non-rectifiable. 

8.0.1 Curve and Paths. 

We know that [𝑎, 𝑏] be a compact interval. Let 𝑓 ∶  [𝑎, 𝑏] ⟶ ℝ𝑛 be a vector valued function, which is 

continuous on compact interval [𝑎, 𝑏] in ℝ. Let input value 𝑡 in [𝑎, 𝑏] the function values 𝑓 (𝑡) trace out a set of 

points in ℝ𝑛 called graph of 𝑓 or curve described by 𝑓 . We know a curve is compact and connected subset of 

ℝ𝑛 since it is continuous image of a compact interval. The function 𝑓 itself is called a path.  

 

8.0.2 Rectifiable curves in ℝ𝒌. 

Let 𝑓 ∶ [𝑎, 𝑏] ⟶ ℝ and let a partition 𝑃 =  {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛}  of [𝑎, 𝑏]. 

The points 𝛾(𝑥0), 𝛾(𝑥1), . . . , 𝛾(𝑥𝑛) vertices of inscribe polygon and Λ𝑟(𝑃) is the length of the path with vertices 

𝛾(𝑥0), 𝛾(𝑥1), . . . , 𝛾(𝑥𝑛). 

     If the set of number Λ𝑟(𝑃)  is bounded for all partition 𝑃 of [𝑎, 𝑏], then the curve 𝛾 is said to be rectifiable 

curve and its arc length is defined as Λ𝑟([𝑎, 𝑏]) = 𝑠𝑢𝑝𝑃Λ𝑟(𝑃).   

     In other word the curve 𝛾 is said to be rectifiable if Λ𝑟([𝑎, 𝑏]) < ∞ . The length of this polygon is denoted 

by 
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Λ𝑟(𝑃) = ∑ ||𝑓(𝑟𝑘) − 𝑓(𝑟𝑘−1)||

𝑚

𝑘=1

 

If Λ𝑟(𝑎, 𝑏) = sup{Λ𝑟(𝑃): P ∈ P[a, b]}  is unbounded then 𝑓 is called non-rectifiable. 

8.0.3 Theorem. 

Let 𝛾 ∶  [𝑎, 𝑏]  ⟶ ℝ𝑘 be a curve (Rectifiable) and if 𝑐 ∈  (𝑎, 𝑏) then prove that  

Λ𝑟(𝑎, 𝑏) = Λ𝑟(𝑎, 𝑐) + Λ𝑟(𝑐, 𝑏)   

     Let  𝑃 =  {𝑎 = 𝑥0, 𝑥1, … , 𝑥𝑛 = 𝑏} be a partition of [𝑎, 𝑏] adjoining the point ′𝑐′ to 𝑃 we get the partition 𝑃1 

and 𝑃2 of [𝑎, 𝑐] and [𝑐, 𝑏]. 

We get 𝑃1 = {𝑎 = 𝑥0, 𝑥1, … , 𝑥𝑖−1, 𝑐} 

 

and 𝑃2 = {𝑐, 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛 = 𝑏}. such that Λ𝑟(𝑃) ≤ Λ𝑟(𝑃1) + Λ𝑟(𝑃2)  

 ⟹ Λ𝑟(𝑎, 𝑏) ≤ Λ𝑟(𝑎, 𝑐) + Λ𝑟(𝑐, 𝑏)   

Now, let 𝑃1 and 𝑃2 be arbitrary partitions of [𝑎, 𝑐] and [𝑐, 𝑏], respectively. Then 𝑃 = 𝑃1 ∪ 𝑃2 is a partition of 

[𝑎, 𝑏]. then we have, 

Λ𝑟(𝑃) = Λ𝑟(𝑃1) + Λ𝑟(𝑃2)   

 

8.0.4 Note. 

(a). If 𝛾 is injective i.e. one-one then 𝛾 is called Jordan arc. 

(b). If 𝛾(𝑎)  =  𝛾(𝑏) then 𝛾 is said to be closed curve. 

It may be noted that we define a curve to be a mapping not a point set and the range of 𝛾. 

𝛾 =  {𝛾(𝑥)  ∈  ℝ𝑘;  ∀𝑥 ∈  [𝑎, 𝑏]}. 

 

8.1 Relation between bounded variation and rectifiable curve. 

We now consider some theorem and proof to stabilize the relation between bounded variation and arc length. 

8.1.1 Theorem. 

The length of a curve is finite iff it is of bounded variation. 

Proof. Suppose that arc length is finite, for all partition 𝑃 =  {𝑥𝑗 ∶  0 ≤  𝑗 ≤  𝑛}. 

The arc length is defined as- 

∑ |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|

𝑛

𝑗=1

≤ ∑ √[(𝑥𝑗) − (𝑥𝑗−1)]2 + [𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)]2

𝑛

𝑗=1

 

Since arc length is finite, let us suppose 𝑠𝑢𝑝{𝑆}  =  𝑀 
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Where 𝑆 = ∑ √((𝑥𝑗) − (𝑥𝑗−1))2 + (𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1))2𝑛
𝑗=1 ∶ ∀𝑥𝑗 , 𝑗 = 1,2,3, … , 𝑛. 

⟹ ∑ √((𝑥𝑗) − (𝑥𝑗−1))
2

+ (𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1))
2

𝑛

𝑗=1

≤ 𝑀 

⟹ ∑|𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|

𝑛

𝑗=1

≤ 𝑀 

This is condition of a function to be a class of bounded variation. We conclude from here that the variation of 𝑓 

is less than or equal to 𝑀 . 

   This implies 𝑓 is of bounded variation. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦, Let us suppose that 𝑓 is of bounded variation and we know that 

              √𝑎2 + 𝑏2 ≤ |𝑎| + |𝑏|. 

⟹ ∑ √((𝑥𝑗) − (𝑥𝑗−1))
2

+ (𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1))
2

𝑛

𝑗=1

≤ ∑|(𝑥𝑗) − (𝑥𝑗−1)|

𝑛

𝑗=1

+ ∑|𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|

𝑛

𝑗=1

 

= 𝑏 − 𝑎 + ∑|𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|

𝑛

𝑗=1

 

≤ 𝑏 − 𝑎 + 𝑉(𝑓, [𝑎, 𝑏]) 

Since we suppose that 𝑓 is of bounded variation this implies that 𝑉 (𝑓, [𝑎, 𝑏]) is finite and 𝑏 −  𝑎 is length of 

bounded interval then this is also finite and the whole sum is finite, 

                              ⟹  𝑏 −  𝑎 +  𝑉 (𝑓, [𝑎, 𝑏])  <  ∞ 

⟹ ∑ √((𝑥𝑗) − (𝑥𝑗−1))
2

+ (𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1))
2

𝑛

𝑗=1

≤ ∞ 

                                  ⟹ The length of the curve is finite. 

9 Conclusion. 

In this paper we enjoy to exploring function of bounded variation. We have also explored some other related 

topic with bounded variation. However, we did not see them in detail explanation but we have only considered 

briefly. Here the important and interesting topic is monotonicity of function of bounded variation and that we 

can write a function of bounded variation in two monotonic increasing functions. We showed that the absolutely 

continuous function is of function of bounded variation and also considered converse need not be true. We 

showed by giving example that a uniform continuous function may not be absolutely continuous. Then we 

showed Riemann-Stieltjes integration is of bounded variation if f can be written as difference of two increasing 

function. We discussed here that a function of bounded variation have only jump type of discontinuity. We also 

discussed if f is of function of bounded variation then 𝑓 is Riemann-Stieltjes integrable over 𝛼 whenever, 𝛼 is 

continuous etc. 
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