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Abstract:  In numerous applications, the transmission and storage of images are frequently required. The smaller the image, the 

lower the associated costs of transmission and storage. Therefore, data compression techniques are often employed to minimize 

the storage space utilized by the image. One such technique involves applying Singular Value Decomposition (SVD) to the image 

matrix. In this process, a digital image is subjected to SVD, which decomposes the image into three matrices. Singular values are 

then utilized to reconstruct the image, resulting in a representation with a reduced set of values, thereby decreasing the required 

storage space. The objective is to compress the image while retaining the essential features that characterize the original image. 

SVD is versatile and can be adapted to any arbitrary matrix of m x n size, whether square, reversible, or non-reversible. The 

compressed image generated by the modified SVD is then used as input for a 2D Discrete Wavelet Transform (DWT) image 

compression algorithm to achieve a superior compression ratio with the same Mean Square Error (MSE). The performance 

metrics used are the compression ratio, MSE, Peak Signal-to-Noise Ratio, Bitrate and Structural Similarity Index (SSIM). 

 

Index Terms - Singular Value Decomposition (SVD); 2D discrete wavelet transform (2D DWT); Inverse Discrete wavelet 

(IDWT); lossy image compression; Image Performance Metrics; Python; Linear Algebra 

I. INTRODUCTION 

With technology playing an increasingly central role in our lives, vast amounts of data are generated daily. This data 

encompasses diverse formats like text, audio, video, and images. Images, a popular data sharing method, are often used to convey 

information efficiently ("A picture is worth a thousand words"). The rise of smartphones and smart devices has further facilitated 

image capture and utilization. As data scientists, we routinely store, process, and transmit enormous volumes of digital data. 

However, storing uncompressed data incurs significant storage costs, and its transmission demands high bandwidth. Consequently, 

data compression techniques for storage and transmission have become a crucial research area, particularly in artificial intelligence, 

pattern recognition, and signal processing. This paper explores the application of Singular Value Decomposition (SVD) for 

reducing storage requirements of image files. 

 

Image Compression: Balancing Quality and Efficiency: Image compression aims to minimize the data needed to represent images. 

Since images are digital, the goal is to represent them using the fewest possible bits. Redundancies within the image file, defined as 

repetitive patterns contributing to image resolution, can be exploited to achieve this reduction. However, the process should not 

excessively compromise image quality, rendering it unusable. A good image compression algorithm strikes a balance between these 

two competing factors. The application typically dictates the optimal trade-off between compression and data quality. 

 

Lossless vs. Lossy Compression Techniques: Image compression techniques fall into two broad categories: lossless and lossy. 

Lossless compression defines entropy, a theoretical limit for data reduction. It aims to produce a bit-by-bit replica of the original 

data. This reversible process preserves image quality. In contrast, lossy compression identifies and eliminates minute details and 

variations in the image that the human eye may not readily perceive. This approach significantly reduces storage requirements by 

discarding such features, but often at the cost of some image quality degradation. Lossy compression is irreversible, meaning the 

discarded information cannot be recovered. However, it allows for much higher compression ratios compared to lossless 

techniques. 

 

Image Representation: Pixels and Matrices: Images are typically represented using matrices with dimensions m x n. Here, m 

represents the number of rows, corresponding to the image height in pixels, and n represents the number of columns, corresponding 

to the image width in pixels. Each element (pixel) within the matrix contributes to the overall image representation. Pixel intensity, 

relative to surrounding pixels, is denoted by a numerical value assigned to each pixel. These values determine the characteristics of 

the corresponding pixel. In grayscale images, values range from 0 (black) to 1 (white), reflecting the relative greyscale level of each 

pixel. Colored images, composed of red, green, and blue (RGB) channels, are further divided by the computer into these three 

layers during storage. This additional layer necessitates more storage space for colored images compared to grayscale images. 
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Consequently, each pixel in a colored image is associated with three values ranging from 0 (no color) to 1 (fully saturated), 

representing the red, green, and blue intensity levels. 

 

II. BACKGROUND 

Data redundancy significantly impacts image compression. This redundancy falls into three categories: 

Coding redundancy: Suboptimal code usage leads to inefficiencies. Techniques like Huffman coding address this. 

Inter-pixel redundancy: Neighboring pixels exhibit correlation, allowing for value prediction. This redundancy is also 

known as spatial or geometric redundancy. 

Psycho-visual redundancy: The human eye has varying sensitivity to different frequencies. Techniques exploit this for 

targeted compression without compromising perceived quality. 

SVD and 2D -DWT implementations leverage these redundancies to achieve smaller image sizes by efficiently eliminating 

redundant information 

 

Singular Value Decomposition (SVD): 

Singular Value Decomposition (SVD) is a powerful technique for dimensionality reduction and data analysis. It aims to 

represent a high-dimensional dataset using a lower number of dimensions while capturing the most important information. 

 

Here's a breakdown of how SVD works: 

Dimensionality Reduction: SVD takes a high-dimensional data matrix and decomposes it into a set of lower-dimensional 

matrices. This process reveals the underlying structure of the data by identifying the most significant variations within it. 

Think of it as simplifying a complex dataset by focusing on the most informative aspects. 

Matrix Factorization: SVD essentially factorizes the original data matrix (M) into three component matrices: 

U: An orthogonal matrix of size m x m (where m is the number of rows in the original matrix). 

Σ (Sigma): A diagonal matrix of size m x n (where n is the number of columns in the original matrix). This diagonal 

matrix contains the singular values, which are the square roots of the eigenvalues obtained during the decomposition 

process. Singular values represent the importance of the corresponding basis vectors in the decomposition. 

VT: An orthogonal matrix of size n x n, representing the transpose of another orthogonal matrix V. 

The relationship between these matrices is expressed as: M = UΣVT. 

 

Eigenvectors and Singular Values: SVD relies on the concept of eigenvalues and eigenvectors. The decomposition involves 

calculating the eigenvalues and eigenvectors of AAT (where A is the original data matrix) and ATA. These eigenvalues and 

eigenvectors are then used to construct the U and V matrices, respectively. The singular values are obtained from the 

eigenvalues by taking the square root. The eigenvalues and, consequently, the singular values are arranged in descending 

order along the diagonal of the Σ matrix. This ordering signifies the importance of each dimension (basis vector) in 

representing the data. 

 

In essence, SVD provides a compact representation of the original data by identifying the most significant variations and 

discarding less important details. This makes it a valuable tool for image compression and other dimensionality reduction 

tasks. 

 

Applying SVD in image compression: 

As discussed earlier, SVD decomposes a matrix into a sum of simpler rank-one matrices. When applied to an image matrix, 

SVD breaks it down into three component matrices. However, simply applying SVD doesn't achieve compression. 

 

The key to compression lies in exploiting the singular values obtained after SVD decomposition. These singular values are 

arranged in descending order along the diagonal of the singular value matrix (Σ). The first singular value holds the most 

significant information about the image, while subsequent values contribute progressively less. Lower singular values, 

therefore, represent negligible image details. 

 

Discarding these lower singular values during reconstruction allows us to reduce the image size without introducing 

significant distortion to the original image. Here's a formalized representation of the process: 

 

Let A be the matrix representing the image. SVD decomposes it as: 

A = UΣVT = ∑(µ_i * u_i * v_i^T) (summation from 1 to r) 

Expanding the summation: 

A = µ₁u₁v₁ᵀ + µ₂u₂v₂ᵀ + ... + µ_r u_r v_r^T 

 

We can truncate this summation by discarding terms with smaller singular values (µ_i) before reconstruction. This results in 

a compressed version of the image matrix: 

 

A_k = µ₁u₁v₁ᵀ + µ₂u₂v₂ᵀ + ... + µ_k u_k v_k^T 

 

The storage requirement for this compressed matrix (A_k) is k(m + n + 1) units, where m and n are the dimensions of the 

original image matrix. The value of k, which controls the level of compression, will be close to but less than n. This ensures 

a good balance between image resolution and compression ratio. By adjusting k, we can tailor the compression level to 

specific storage requirements. 
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In essence, SVD-based compression leverages the inherent redundancy in image data by discarding less significant 

information captured by lower singular values. This allows for efficient storage and transmission of images while 

maintaining an acceptable level of visual fidelity. This process is illustrated in below image. 

 

 
                                                   

Figure 1. Image compression using SVD method 

 

 

 

2 D - discrete wavelet transform for Image Compression: 

2D Discrete Wavelet Transform (DWT) is a powerful technique for image compression. It decomposes an image into 

different frequency sub-bands, allowing us to store or transmit the most important information while discarding less crucial 

details. Here's a breakdown of the process with matrices: 

1. Image as a Matrix: 

Imagine your image as a grayscale picture. We represent this image as a 2D matrix I where each element I[i,j] 

represents the intensity of the pixel at row i and column j. This matrix essentially captures the spatial information of 

the image. 

2. Filter Application: 

DWT uses filters to decompose the image. We have two sets of filters: 

Low-pass filter (H): Captures the overall trends and smooth areas of the image. 

High-pass filters (V and D): Capture horizontal and diagonal details like edges and textures. 

These filters are small matrices themselves, typically of size 2x2. 

3. Decomposition Steps: 

Here's how we decompose the image using these filters and matrices: 

a. Row-wise filtering: 

* Apply the low-pass filter (H) to each row of I to obtain the approximation component (LL). This captures the 

overall structure of the image. 

* Apply the high-pass filters (V and D) to each row to get horizontal detail (HL) and diagonal detail (LH) 

components. These capture sharp changes in intensity. 

 

b. Column-wise filtering: 

* Take the filtered rows obtained in step (a) and treat them as a new matrix. 

* Apply the same set of filters (H, V, D) to the columns of this matrix. 

4. Resulting Sub-bands: 

After these steps, we obtain four sub-bands represented by a matrix structure: 

LL (Approximation): This sub-band contains the most significant information about the image, representing its overall 

structure. 

HL, LH, HH (Details): These sub-bands capture horizontal, vertical, and diagonal details like edges and textures, 

respectively. 

5. Compression with Quantization: 
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For compression, we typically focus on the LL sub-band since it holds the most crucial information. We can then: 

Quantize the LL sub-band (reduce the precision of its values) while maintaining acceptable image quality. 

Discard the HL, LH, and HH sub-bands entirely for high compression ratios (lossy compression), leading to a smaller 

representation of the image but with some loss of detail. 

 

 
 

Figure 2. 2D discrete wavelet transform 

 

 

Inverse Discrete wavelet transform for Image Compression: 

Inverse Discrete Wavelet Transform (IDWT) for image reconstruction involves the following steps: 

1. Up sampling: 

Up sample each wavelet component (LL, LH, HL, HH) to match the size of the original image by inserting zeros between 

each element in each row and column. 

 

2. Reconstruction Along Columns: 

    - Apply synthesis filters along the columns of each unsampled component. 

 - Convolve each column of the unsampled components with the synthesis filters and sum the results to reconstruct the 

columns of the original image. 

 

3. Reconstruction Along Rows: 

   - Apply synthesis filters along the rows of the reconstructed columns. 

- Convolve each row of the reconstructed columns with the synthesis filters and sum the results to reconstruct the rows of 

the original image. 

 

Synthesis filters, comprising a low-pass synthesis filter (LPSF) for the approximation component (LL) and a high-pass 

synthesis filter (HPSF) for the detail components (LH, HL, HH), are essential for the reconstruction process. These filters 

are designed to achieve perfect reconstruction, ensuring that the original image can be exactly reconstructed from its wavelet 

coefficients. The synthesis filters play a crucial role in combining the unsampled components to reconstruct the original 

image accurately. 

 

The reconstruction process involves applying the synthesis filters to the unsampled components and summing the results to 

obtain the final reconstructed image. This process ensures that the original image is faithfully reconstructed from its wavelet 

components, completing the inverse wavelet transform.  

   

 

   
 

Figure 3. Image Compression using 2D-DWT and IDWT 
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III. PROPOSED SOLUTION 

The image matrix is composed of RGB signals. However, for the purposes of storage and transmission, the RGB representation 

is not optimal due to the presence of redundant information. The proposed solution seeks to address this by transforming the RGB 

spectrum into the YCBCR spectrum. Here, Y represents the brightness or luminance, while CB and CR represent the blue and red 

chroma components, respectively. This new representation approximates the process where primary colors are transformed into 

perceptually meaningful information. It segregates the Y components into two Chroma components, which can be stored at a higher 

resolution or transmitted at a higher bandwidth. They can also be treated separately, either by compression or bandwidth reduction. 

The proposed system involves using the YCBCR format to represent the original image, which is in RGB representation. The 

constituent components can be obtained by breaking down the YCBCR representation, yielding three components corresponding to 

Y, CB, and CR. Singular Value Decomposition (SVD) is then applied to these components to obtain their respective U, ∑, and V 

components, namely, Uy, ∑y, Vy corresponding to Y, Ub, ∑b, Vb corresponding to CB, and Ur, ∑r, Vr corresponding to CR. 

Since U and V represent the spatial attributes of the image, they can be taken from any color space. However, since Y represents 

the brightness, it must be used for all three components. This approach can achieve information loss. Since Y is used in all three 

components, we have chosen to use U and V of the Y component. All three components of the image are used in reconstruction to 

reduce the damage due to loss. Frequency components for U and V are generated, and a thresholding technique is used to remove 

the low-value singular values from the matrix. This method helps to achieve a significant amount of compression while retaining 

the quality. The image is reconstructed using ∑, U, and V of all three components Y, CB, and CR. Compression is enhanced by 

applying the compressed images as input to the 2D Discrete Wavelet Transform (DWT) algorithm. 

Performance metrics are evaluated to compare the original and compressed images. These include the compression ratio, Mean 

Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Bitrate, and Structural Similarity Index (SSIM). 

 

Implemented Algorithm:  

Algorithm Input: Image  

Algorithm Output: Compressed image  

 

Steps: 

1. Convert the RGB image into the YCBCR color space. 

2. Decompose the YCBCR image matrix into its constituent components: Y, CB, and CR. 

3. Apply the Singular Value Decomposition (SVD) algorithm to each component, generating three vectors for each. 

4. Reconstruct the intermediate image by applying the reconstruction algorithm to the decomposed components. 

5. Extract the frequency components for the U and V components. 

6. Utilize threshold values from the U and V matrices to reconstruct the resultant image. 

7. Concatenate the decomposed components Y, CB, and CR to form the final image. 

8. Enhance compression by applying the compressed images as input to the 2D Discrete Wavelet Transform (DWT) algorithm. 

9. Reconstruct the image from LL, HL, LH, HH components 

10. Evaluate performance metrics to compare original and compressed images: compression ratio, Mean Squared Error (MSE), 

Peak Signal-to-Noise Ratio (PSNR), Bitrate, and Structural Similarity Index (SSIM) 

 

 

 

 

 

IV. RESULTS 

The algorithm was implemented in Python and evaluated on a 139KB image. We iteratively processed the image using the 

algorithm, varying the number of retained columns (k). For each iteration, the output image size and resolution were measured. 

 

Parameter(K) 

Original 

Image Size 

(KB) 

Compressed 

Image Size 

(KB) 

Compression 

Ratio 

Mean 

Squared 

Error (MSE) 

Peak Signal-

to-Noise 

Ratio 

(PSNR) 

(dB) 

Bitrate 

(bpp) 

Structural 

Similarity Index 

(SSIM) 

5 139.09 0.63 222.2 85.03 28.84 0.11 0.9997626 

10 139.09 0.65 213.86 81.16 29.04 0.11 0.999816 

40 139.09 1.05 132.74 68.29 29.79 0.18 0.9999207 

80 139.09 2.6 53.54 57.66 30.52 0.45 0.9999534 

100 139.09 3.73 37.27 53.51 30.85 0.64 0.9999616 

800 139.09 115.87 1.2 8.01 39.1 19.99 0.999986 

 

Table 1. Compressed image performance metrics corresponding to different values of k 
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The graph to show performance of a compression algorithm on an image at different number columns (K). 

 

 
 

 

The graphs to show various performance metrics of a compression algorithm on an image at different number columns (K). 

 

 

 

 
Performance metrics: 
Here we considered below metrics as evaluation criteria. 

Compression Ratio (CR): 

The Compression Ratio (CR) measures the efficiency of a compression algorithm. It is defined as the ratio between the size of the original image data  

and the size of the compressed image data , typically expressed in bits. Mathematically, CR is calculated as: 
CR = original image size in bytes / Compressed image size in bytes 

 

MSE (Mean Squared Error):  

This metric measures the average squared difference between corresponding pixels in the original and compressed images.  

     Equation: MSE = (1 / m x y) * Σ Σ (f(x, y) - F(x, y))^2  

- m x y: Total number of pixels in the image. 
- Σ Σ: Double summation symbol, iterating over all pixels in the image. 

- f(x, y): Pixel value in the original image at position (x, y). 

- F(x, y): Pixel value in the compressed image at position (x, y). 
 

Bitrate (BPP): 

The Bitrate (BPP) indicates the average number of bits used to represent each pixel in the compressed image. For color images, BPP can be calculated 

as 24 / CR, while for grayscale images, it's 8 / CR. 

 

Peak Signal-to-Noise Ratio (PSNR): 

The Peak Signal-to-Noise Ratio (PSNR) is a widely used metric for assessing the quality of a compressed image compared to the original. Typically 

used for 8-bit images, PSNR is expressed in decibels (dB) and calculated using the following formula: 
PSNR(dB) = 10 * log10 ( 255^2 / MSE ) 

Here, 255 represents the maximum possible value for an image pixel. MSE (Mean Squared Error) refers to the average squared difference between 

corresponding pixels in the original and compressed images. It is calculated as: 
MSE = (1 / m x y) * Σ Σ (f(x, y) - F(x, y))^2 

where: 

m x y represents the total number of pixels in the image 

f(x, y) represents the pixel value in the original image at position (x, y) 

F(x, y) represents the pixel value in the compressed image at position (x, y) 
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Structural Similarity Index (SSIM): 

The Structural Similarity Index (SSIM) is a metric that goes beyond simple pixel-wise comparison and assesses the structural similarity between two 

images [40]. It considers three key aspects: 
Luminance: This compares the brightness of corresponding pixels in the original and compressed images. 

Contrast: This compares the local variations in pixel intensity between the two images. 

Structure: This compares the underlying patterns or textures present in the images. 
The SSIM score ranges from -1 to 1, with 1 indicating identical images.  

Here's the formula for SSIM: 

SSIM(x, y) = l(x, y) * c(x, y) * s(x, y) 
where: 

x represents the original image  

y represents the compressed image  
l(x, y), c(x, y), and s(x, y) represent the luminance, contrast, and structure comparison functions, respectively. 

 

These metrics provide valuable insights into the trade-off between compression efficiency (measured by CR and BPP) and image quality (measured by 
PSNR and SSIM) achieved by a lossy compression technique. 

 

 

Compression of images with different values of k. 

 

 

         
 

 

 

          
 

 

 

 

 

V. CONCLUSION 

Based on the presented results, the selection of the parameter k allows for tailoring the compression ratio to specific application 

requirements. This highlights a key advantage of the proposed SVD-based approach. As the rank (k) of the decomposed matrices 

increases, a larger portion of the image information is retained in the top singular values. This observation aligns with the inherent 

property of SVD, where the most significant information is concentrated in the leading singular value coefficients. 

Furthermore, the reconstructed matrix size grows with increasing rank (k). This allows for a gradual recovery of image detail as 

the number of singular values used for reconstruction increases. 

The combination of SVD with 2D DWT and IDWT step offers an additional benefit: reduced computational complexity. SVD 

itself is a relatively efficient decomposition technique, and the inclusion of 2D DWT and IDWT can potentially further enhance 

compression without incurring a significant computational burden. This characteristic makes the proposed method suitable for real-

time or resource-constrained image compression applications. 
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