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Abstract :  In this project, we showcase a  deep learning model leveraging reinforcement learning to derive control policies directly 

from high-dimensional sensory inputs. Our approach employs Convolutional Neural Networks trained through both Deep Q-

Networks (DQN) and Double DQN (DDQN). Remarkably, our model processes raw pixel data from the classic Atari Pong game 

within the Arcade Learning Environment, predicting and optimizing future rewards. The distinctive aspect of our methodology lies 

in its robustness and generalizability. Notably, we find that DDQN consistently outperforms DQN without requiring any 

modifications to the network architecture or the learning algorithm. Through extensive experimentation, our model consistently 

surpasses previously documented methods. Surpassing well-established hard-coded bots and even outstripping human experts 

across all testing scenarios, our results underscore the potential of deep reinforcement learning in complex decision-making tasks. 

This achievement sets a new standard for autonomous systems interacting in dynamic environments. 

 

IndexTerms -Deep Learning, Reinforcement Learning, Deep Q-Networks (DQN), Double DQN (DDQN), Convolutional 

Neural Network,  Future Rewards,  Atari Pong,  Arcade Learning Environment.. 

I. INTRODUCTION 

 

 

   A. Overview: 

 

Reinforcement learning (RL) in Artificial Intelligence (AI) is suitable for learning to play and improving in playing the game 

over time. With the success of ATARI where AI agent was able to beat humans by learning from raw pixels, RL is being applied 

in many other games. By the combination of RL and deep learning, commonly known as Deep Reinforcement Learning (DRL), 

the performance of RL agents is improving and it can discover hidden patterns in the game. Our project RL pong implements 

DRL to understand the working of RL agent to play pong by implementing two algorithms: (1) Deep Q-Network (DQN) with 

replay and (2) DOuble DQN with replay. The project work aims to demonstrate the implementation of an RL agent called RL-

Pong (which we have named AAR agent). Our AAR agent plays the game of Pong from pixels data. 

 

We implement DQN and Double-DQN by training our agent using a deep learning approximator with two-layered convolutional 

neural networks (CNNs). The game environment is based on Open AI’s gym environment [1]. The environment has been 

modified by [10]. Our environment is based on [10], where a simple agent has been set as an opponent. This opponent is capable 

of following the ball on the y-axes of the screen. Unlike a simple AI agent, our agent cannot access environment variables like 

coordinates of the ball in the field and needs to entirely learn to play from pixels. In our environment, there are two players and 

they can control two paddles at opposing sides of the table. The players must choose between three actions: move up, move 

down or stay in the same place. The goal of the game of our agent is to keep the ball in the game by passing it back to the 

opponent’s side of the table and implement a strategy to score more by making the opponent miss the ball. The game is played 

as episodes. The episode ends when one of the players misses the ball. When an agent scores, it receives a reward of +1 at the 

end of action step, and if the opponent scores then it receives -1. We measure the performance through reward during recent 

episodes and win rate. We explain our architecture and approach in detail in the next sections. We train and test our agent to 

compete with a pre-trained AI agent called Simple AI agent. 

 

 

   B. CHALLENGE & OBSERVATION : 

The major challenge throughout the process is to tackle computational complexity. Even with GPU NVIDIA GTX1050, our 

network was extremely slow. It required 40 mins to complete 100 episodes. This halted our progress to great extent. Further, 
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being new to the torch environment, optimizing tensor allocation was the greater challenge. 

This led to a realization that we spend the majority of time on improving hyper-parameters but adding two simple steps in our 

preprocessing improved the computational speed by 8 times. We transform an image into a tensor object and tune our target 

update to every 50 frames (compared to 2500 frames). It took 5 mins to complete 100 episodes in GPU NVIDIA GTX1050. 

Note that the comparison is about the initial episodes of training. When network starts learn, it consumers more time depending 

upon how long it can bounce the ball back. Further, we tune several hyper parameters to improve the performance. 

Our final result shows that our agent can beat opponent 82% of time with DDQN and 62% of time with DQN. Further, DQN 

plays around 13 games in 5 minutes whereas DDQN plays 15 games in 5 minutes. Our observations show that our agent learns 

to tackle an opponent by returning the ball with a wider angle and bouncing the ball and in DDQN, it can also develop strategy 

to beat its opponent. Our comparison results demonstrate that DDQN is effective than DQN to beat opponent and develop 

strategy. 

 

 

 

 

 

 

 

 

Fig. 1.  Open AI Gym environment for pong 

RELATED WORK AND BACKGROUND 

 

A. OpenAI gym (Pong-v0) : 

OpenAI Gym is an open-source toolkit for studying and comparing reinforcement learning-related algorithms, contain-ing many 

classical simulation environments and various data 

The current research in reinforcement learning faces the lack of standardization of the environment used, making it challenging 

to replicate published results and compare results from different papers. The gym provides an excellent solution to this problem. 

OpenAI Gym provides interfaces to many problems and environments (or games) that users can use for testing and simulation 

by simply calling them without knowing much about the internal implementation of the game. 

B. Pytorch : 

PyTorch is a well-known deep learning framework that supports GPU acceleration and automatic derivation and has received a 

lot of interest from the academic community in recent years [5]. Pytorch library includes different algorithms for building and 

optimizing convolutional neural networks (CNNs), especially for image recognition. Therefore, we decided to use pytorch as 

the basis for our Deep Q Network (DQN). 

C. RL DQN Agent : 

In RL course, we learn to build DQN using experience replay. The course motivated to build framework for DQN in our work. 

In the previous studies, DQN could apply to the different games in the Atari 2600 platform and perform as professional human 

players with minimal a prior knowledge by optimizing the algorithm to learn successful policies directly from high-dimensional 

sensory inputs [4]. 

D. Weight initialisation : 

The weight initialization process entails initializing each node’s weights and biases before training the deep neural network [5]. 

The weight initialization is crucial to whether the network could get good results or how fast it converges. Sometimes, even 

good training results are not obtained because of the parameter initialization. 
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E. Other Sources : 

 

To achieve better performance of the DQN model, hyper-parameter tuning is a common method to find the optimal parameter 

setting and improve the performance from the baseline model [6,7,8]. 

 

II. APPROACH 

Our work has two motives: (a) to compare two approaches: DQN and Double DQN, and (b) to understand the real-life application 

of RL topics discussed in-class lectures. Our approach is similar to the original Atari paper [9] but differs in the loss function, 

optimizer, and the utilization of a target network to stabilize the training. For the rest of our hyper parameters, we follow [9] due 

to the higher performance equivalent to the expert human player is achieved. We discuss our approach below: 

A. Data pre-processing : 

The feedback from the Pong environment is a raw colored image of size 200x200. We did data pre-processing in three stages: 

● We first change the color into grayscale then to binary. This assisted network to distinguish elements from the background 

for better convergence. 

● We down sample each frame to 100x100 image. 

● We transform an image into a tensor object. This is essential when working with images and CUDA cores of GPU. 

● We stack four adjacent observed frames from the envi-ronment into a stacked array of (4,100,100). 

 

 

 

 

 

 

Fig. 2.  (a)Original image; (b) grayscale image; (c) final image 

In the process of stacking, we tried following the original DQN atari paper where they stacked 4 frames together. We also 

worked with 2 and 3 frames. However, we observed that with frames lesser than 4, it is not able to learn the movement. We 

provide these stacks via a buffer implemented into the experience replay memory. We are inspired by other relevant works that 

use a buffer of 4 to provide stacks. The process is : 

• Time t > 4: The environment returns a transition at time t and pushes it to buffer. If a buffer is full with 4 images, the 

observations are stacked and a new transition is composed by the stacked frames, the most recent stacked frames, action, the 

reward is pushed into replay memory. To take an action, the agent looks into the buffer and retrieves all the observations in the 

past transition, and stacks them. Before observing the transition at time t+1, the oldest transition in the buffer is deleted. 

•       Time t < 4: The environment returns transition at time t and pushes it to the buffer. To take an action, the AAR agent 

retrieves all the observation in past transition, stack them, and repeat the most recent observation till the sequence length is 4. 

 

 

B. Deep Q-learning network (DQN) : 

In our project, we select two Q-learning algorithms: DQN and DDQN. In each state s we observe the game and try to   estimate 
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the Q-values.  

Fig. 3.  Equations for DQN and DDQN 

From the equation, we observe that when in state s, we take action a to reach to new state s’ with reward r and then, we want to 

update our estimate of future rewards while being in state s and taking action a.DQN has many variations to remove 

maximization bias. One such DQN that removes maximization bias via two Q-value the estimator is double DQN. Here, we use 

model Q and target model Q’ to use Q for action evaluation and Q’ for action selection. In DQN, we maximize over all the Q-

values over all the possible action but in double DQN we estimate the value of chosen action instead. The action chosen is the 

one selected by our policy model. 

In our approach, we apply neural networks as function approximators. We use two networks called policy network (Q) and 

target network (Q’), which are also updated separately.The policy network predicts the next state for all possible actions and the 

target network predicts the next state values for all possible actions and then selects the action that maximizes the next state 

value. We implemented Huber loss between  the max value of target network output and policy network’s prediction with the 

action selected during the game. The policy network Q is optimized with an Adam optimizer. The way we write our algorithm 

follows Figure 4 for DQN and Figure 5 for DDQN. Our neural network structure is discussed in the subsection below and is 

based on parameters literature for Atari games[9]. 

 

 

 

                                                                                                                                           

 
 
 
 
 
 

Fig. 4.  Deep Q-Learning 
 

 
Fig. 5.  Double Deep Q-Learning
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C. Convolutional Neural Network : 

Our network needs to learn from pixels. To process such low-level data like images, deep learning algorithms have proven to yield 

better performance. We apply CNN as a neural network for function approximators. Our CNN architecture is shown in Figure 6 

and the table below 

 

                 100x100x4 

                                                                      Conv 

 

                                         +BN+ 

 

                                          ReLu 

 

          Frame stacked                        Convolutional Layers                                   FC Layers 

 
Fig. 6.  Our CNN system flow. 

 

   

 

 

 

 

 

 

 

                                                            Table: Conv+BN+ReLU parameters 

D. Experience replay : 

To remove catastrophic forgetting problem in DQN, we store tuples of (s,a,r,s’) in replay memory. Then, we draw batches of data 

from replay memory to draw previous experi-ences. 

 

E. Weight initialisation :  

In our work, we experiment with different weight initial-ization techniques: random initialization, normal initialization and Xavier 

uniform distribution and found better results with normal initialization with mean 0 and scale 1. Further, pytorch clip of -0.1 and 

0.1 was kept for entire training for better convergence. 

 

F. Hyper parameter tuning : 

In our project, optimizing hyper parameters is a bit of a challenge even though existing pieces of literature are available. This is 

mainly due to computational limitation and code optimization for greater speed. We have these hyper parameters to tune: replay 

memory, optimizer, target update frequency, and the number of frame stacks. In the table below we show value for our old hyper 

parameters and new ones: 

 

 

 

 

 

 

 

 

 

 

 

Table: Hyper parameters 

The exploration in our network follows greedy-epsilon with exploration probability that decreases gradually from 1 to 0.5 till 10,000 

episodes with minimum epsilon of 0.1. Earlier, we set this to decrease from 1 to 0.1 till 10,000 episodes. This helps our agent to 

first explore more and learn new experiences and gradually, decreases exploration to improve exploitation. Such strategy is called 

Greedy in the Limit with Infinite Exploration (GLIE). 

 

G. Training Strategy : 

We train our DQN and DDQN with GLIE strategy. We train agent to play with simpleAI for nearly 10,000 games. The models are 

saved periodically in order to test against simpleAI. 

   Layer Channels Filter size 

Layer 1   

Conv2d 16 8 (stride 4) 

Layer 2   

Conv2d 32 4 (stride 2) 

Layer 3   

Flatten    

Layer 4   

FC 256   

Hyper parameters Old New 

Replay buffer size 100,000 40,000 

Batch size 32 128 

Discount factor 0.99 0.99 

Learning rate 1e-3 1e-4 

Optimizer RMS prop Adam 

Frame stacks 4 4 

Target update 2500 50 
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III. EXPERIMENTAL RESULTS 

 

A. Training result : 

In figure below, we show out training results for approx 10,000 episodes. Our epsilon decreases from 1 to 0.5 and further decreases. 

Due to time constraint, we are only able to run till these episodes (we discovered this method very late in our project).We believe 

that the better performance can be observed by decreasing exploration to 0.1. It is important to notice that the /textbfwin-rate is at 

around 0.25 (1 being the highest) during training due to our epsilon greedy being very high, thus prioritising exploration, and the 

score shown being an average of 100 games. Our previous win rate on training was 0.00142 (project progress) and 0.0091 (during 

project presentation) 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Training curve for DQN (note: it broke down on one of our desktop due to cuda error so we needed to restart the process time 

and again for this part so only two figures are attached here 

 

Observations about algorithms in training: 

● Double DQN takes larger amount of time for each episodes than DQN. In Figure fig:ddqn time, we can see that double dqn 

plays episodes for longer amount of time. It can probably because even though agent is not winning, it is able to strike back 

for longer duration. 

Fig. 8.  Time per 500 episodes for DQN vs DDQN during training 

● In double DQN, agent is able to learn some strategies to play for longer duration than DQN , probably due to no 

maximization bias. 

   

B. Testing results : 

Our results shows that during testing, For DQN, it beats around 62% for 157 games in 60 minutes while for DDQN, it beats around 
82% of time for 182 games for DDQN. The timespan for 182 games is 60 minutes. In Figure 10 and 11, we see the win percentage 
and total number of episodes in 60 minutes. 
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Fig. 10.  DQN and DDQN win within 1 hour of game 

 
 

Observations about algorithms in testing: 

 

● Time: It is seen that DQN initially bounces back well but couldn’t develop strategy to beat opponent so keeps playing for 

longer duration. But, DDQN quickly beats opponent and moves to play next episodes. 

 

● Strategy: Double DQN can play game for longer run as well as know how to beat the opponent by passing ball in such a 

way that opponent will miss it. But, in DQN, it can pass ball back to opponent and plays for longer duration but it has not 

still developed strategy to beat opponent after games. When you see the video, you see that it passes only and passes ball to 

convenient direction rather than difficult direction for opponent. 

 

 

 

 

 

 

 
 

 

 

 

       Fig. 11.  Number of frames taken to play 5 mins of game 

 
 

IV. CONCLUSION 

Deep Q-Networks (DQNs) represent a significant advancement in reinforcement learning, particularly for training agents in complex 
environments such as video games. By integrating Q-learning with deep neural networks, DQNs serve as powerful function 
approximators for the Q-function, allowing for the effective handling of high-dimensional state spaces. This method employs gradient 
descent to iteratively minimize the difference between predicted Q-values and the target Q-values, thereby refining the policy towards 
optimal actions. 

In our study, we apply the DQN framework to the task of training an agent to play the Atari game Pong. We further explore the 
efficacy of the Double DQN (DDQN) method, which addresses the overestimation bias of traditional DQNs by decoupling selection 
and evaluation of the action in the Q-learning update. This is illustrated in our results and through visual representations in Figures 
4 and 5, where we demonstrate the application of both DQN and DDQN approaches across various Atari gaming scenarios. 

Empirical results show a distinct performance advantage using these methods, with a notable win percentage of 82% when employing 
DQN and an enhanced performance of 62% with DDQN. The superior performance of DDQN in this specific gaming environment 
highlights its effectiveness in providing a more stable and accurate estimation of action values, ultimately leading to more strategic 
decision-making by the agent. This demonstrates the practical utility of advanced Q-learning variants like DDQN in improving agent 
performance in competitive and dynamic settings such as Pong. 
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