
 © 2024 JETIR May 2024, Volume 11, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2405532 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f295

ATARI PONG

 WITH DQN AND DDQN

1Ms.S Nivedha, 2Mr A Rajaguhan, 3Mr.R Prabin
1Assistant Professor, 2Student, 3Student

1Department of Artificial Intelligence and Machine Learning,
1Sri Shakthi Institute of Engineering and Technology, Coimbatore, India

Abstract : In this project, we showcase a deep learning model leveraging reinforcement learning to derive control policies directly

from high-dimensional sensory inputs. Our approach employs Convolutional Neural Networks trained through both Deep Q-

Networks (DQN) and Double DQN (DDQN). Remarkably, our model processes raw pixel data from the classic Atari Pong game

within the Arcade Learning Environment, predicting and optimizing future rewards. The distinctive aspect of our methodology lies

in its robustness and generalizability. Notably, we find that DDQN consistently outperforms DQN without requiring any

modifications to the network architecture or the learning algorithm. Through extensive experimentation, our model consistently

surpasses previously documented methods. Surpassing well-established hard-coded bots and even outstripping human experts

across all testing scenarios, our results underscore the potential of deep reinforcement learning in complex decision-making tasks.

This achievement sets a new standard for autonomous systems interacting in dynamic environments.

IndexTerms -Deep Learning, Reinforcement Learning, Deep Q-Networks (DQN), Double DQN (DDQN), Convolutional

Neural Network, Future Rewards, Atari Pong, Arcade Learning Environment..

I. INTRODUCTION

 A. Overview:

Reinforcement learning (RL) in Artificial Intelligence (AI) is suitable for learning to play and improving in playing the game

over time. With the success of ATARI where AI agent was able to beat humans by learning from raw pixels, RL is being applied

in many other games. By the combination of RL and deep learning, commonly known as Deep Reinforcement Learning (DRL),

the performance of RL agents is improving and it can discover hidden patterns in the game. Our project RL pong implements

DRL to understand the working of RL agent to play pong by implementing two algorithms: (1) Deep Q-Network (DQN) with

replay and (2) DOuble DQN with replay. The project work aims to demonstrate the implementation of an RL agent called RL-

Pong (which we have named AAR agent). Our AAR agent plays the game of Pong from pixels data.

We implement DQN and Double-DQN by training our agent using a deep learning approximator with two-layered convolutional

neural networks (CNNs). The game environment is based on Open AI’s gym environment [1]. The environment has been

modified by [10]. Our environment is based on [10], where a simple agent has been set as an opponent. This opponent is capable

of following the ball on the y-axes of the screen. Unlike a simple AI agent, our agent cannot access environment variables like

coordinates of the ball in the field and needs to entirely learn to play from pixels. In our environment, there are two players and

they can control two paddles at opposing sides of the table. The players must choose between three actions: move up, move

down or stay in the same place. The goal of the game of our agent is to keep the ball in the game by passing it back to the

opponent’s side of the table and implement a strategy to score more by making the opponent miss the ball. The game is played

as episodes. The episode ends when one of the players misses the ball. When an agent scores, it receives a reward of +1 at the

end of action step, and if the opponent scores then it receives -1. We measure the performance through reward during recent

episodes and win rate. We explain our architecture and approach in detail in the next sections. We train and test our agent to

compete with a pre-trained AI agent called Simple AI agent.

 B. CHALLENGE & OBSERVATION :

The major challenge throughout the process is to tackle computational complexity. Even with GPU NVIDIA GTX1050, our

network was extremely slow. It required 40 mins to complete 100 episodes. This halted our progress to great extent. Further,

http://www.jetir.org/

 © 2024 JETIR May 2024, Volume 11, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2405532 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f296

being new to the torch environment, optimizing tensor allocation was the greater challenge.

This led to a realization that we spend the majority of time on improving hyper-parameters but adding two simple steps in our

preprocessing improved the computational speed by 8 times. We transform an image into a tensor object and tune our target

update to every 50 frames (compared to 2500 frames). It took 5 mins to complete 100 episodes in GPU NVIDIA GTX1050.

Note that the comparison is about the initial episodes of training. When network starts learn, it consumers more time depending

upon how long it can bounce the ball back. Further, we tune several hyper parameters to improve the performance.

Our final result shows that our agent can beat opponent 82% of time with DDQN and 62% of time with DQN. Further, DQN

plays around 13 games in 5 minutes whereas DDQN plays 15 games in 5 minutes. Our observations show that our agent learns

to tackle an opponent by returning the ball with a wider angle and bouncing the ball and in DDQN, it can also develop strategy

to beat its opponent. Our comparison results demonstrate that DDQN is effective than DQN to beat opponent and develop

strategy.

Fig. 1. Open AI Gym environment for pong

RELATED WORK AND BACKGROUND

A. OpenAI gym (Pong-v0) :

OpenAI Gym is an open-source toolkit for studying and comparing reinforcement learning-related algorithms, contain-ing many

classical simulation environments and various data

The current research in reinforcement learning faces the lack of standardization of the environment used, making it challenging

to replicate published results and compare results from different papers. The gym provides an excellent solution to this problem.

OpenAI Gym provides interfaces to many problems and environments (or games) that users can use for testing and simulation

by simply calling them without knowing much about the internal implementation of the game.

B. Pytorch :

PyTorch is a well-known deep learning framework that supports GPU acceleration and automatic derivation and has received a

lot of interest from the academic community in recent years [5]. Pytorch library includes different algorithms for building and

optimizing convolutional neural networks (CNNs), especially for image recognition. Therefore, we decided to use pytorch as

the basis for our Deep Q Network (DQN).

C. RL DQN Agent :

In RL course, we learn to build DQN using experience replay. The course motivated to build framework for DQN in our work.

In the previous studies, DQN could apply to the different games in the Atari 2600 platform and perform as professional human

players with minimal a prior knowledge by optimizing the algorithm to learn successful policies directly from high-dimensional

sensory inputs [4].

D. Weight initialisation :

The weight initialization process entails initializing each node’s weights and biases before training the deep neural network [5].

The weight initialization is crucial to whether the network could get good results or how fast it converges. Sometimes, even

good training results are not obtained because of the parameter initialization.

http://www.jetir.org/

 © 2024 JETIR May 2024, Volume 11, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2405532 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f297

E. Other Sources :

To achieve better performance of the DQN model, hyper-parameter tuning is a common method to find the optimal parameter

setting and improve the performance from the baseline model [6,7,8].

II. APPROACH

Our work has two motives: (a) to compare two approaches: DQN and Double DQN, and (b) to understand the real-life application

of RL topics discussed in-class lectures. Our approach is similar to the original Atari paper [9] but differs in the loss function,

optimizer, and the utilization of a target network to stabilize the training. For the rest of our hyper parameters, we follow [9] due

to the higher performance equivalent to the expert human player is achieved. We discuss our approach below:

A. Data pre-processing :

The feedback from the Pong environment is a raw colored image of size 200x200. We did data pre-processing in three stages:

● We first change the color into grayscale then to binary. This assisted network to distinguish elements from the background

for better convergence.

● We down sample each frame to 100x100 image.

● We transform an image into a tensor object. This is essential when working with images and CUDA cores of GPU.

● We stack four adjacent observed frames from the envi-ronment into a stacked array of (4,100,100).

Fig. 2. (a)Original image; (b) grayscale image; (c) final image

In the process of stacking, we tried following the original DQN atari paper where they stacked 4 frames together. We also

worked with 2 and 3 frames. However, we observed that with frames lesser than 4, it is not able to learn the movement. We

provide these stacks via a buffer implemented into the experience replay memory. We are inspired by other relevant works that

use a buffer of 4 to provide stacks. The process is :

• Time t > 4: The environment returns a transition at time t and pushes it to buffer. If a buffer is full with 4 images, the

observations are stacked and a new transition is composed by the stacked frames, the most recent stacked frames, action, the

reward is pushed into replay memory. To take an action, the agent looks into the buffer and retrieves all the observations in the

past transition, and stacks them. Before observing the transition at time t+1, the oldest transition in the buffer is deleted.

• Time t < 4: The environment returns transition at time t and pushes it to the buffer. To take an action, the AAR agent

retrieves all the observation in past transition, stack them, and repeat the most recent observation till the sequence length is 4.

B. Deep Q-learning network (DQN) :

In our project, we select two Q-learning algorithms: DQN and DDQN. In each state s we observe the game and try to estimate

http://www.jetir.org/

 © 2024 JETIR May 2024, Volume 11, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2405532 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f298

the Q-values.

Fig. 3. Equations for DQN and DDQN

From the equation, we observe that when in state s, we take action a to reach to new state s’ with reward r and then, we want to

update our estimate of future rewards while being in state s and taking action a.DQN has many variations to remove

maximization bias. One such DQN that removes maximization bias via two Q-value the estimator is double DQN. Here, we use

model Q and target model Q’ to use Q for action evaluation and Q’ for action selection. In DQN, we maximize over all the Q-

values over all the possible action but in double DQN we estimate the value of chosen action instead. The action chosen is the

one selected by our policy model.

In our approach, we apply neural networks as function approximators. We use two networks called policy network (Q) and

target network (Q’), which are also updated separately.The policy network predicts the next state for all possible actions and the

target network predicts the next state values for all possible actions and then selects the action that maximizes the next state

value. We implemented Huber loss between the max value of target network output and policy network’s prediction with the

action selected during the game. The policy network Q is optimized with an Adam optimizer. The way we write our algorithm

follows Figure 4 for DQN and Figure 5 for DDQN. Our neural network structure is discussed in the subsection below and is

based on parameters literature for Atari games[9].

Fig. 4. Deep Q-Learning

Fig. 5. Double Deep Q-Learning

http://www.jetir.org/

 © 2024 JETIR May 2024, Volume 11, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2405532 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f299

C. Convolutional Neural Network :

Our network needs to learn from pixels. To process such low-level data like images, deep learning algorithms have proven to yield

better performance. We apply CNN as a neural network for function approximators. Our CNN architecture is shown in Figure 6

and the table below

 100x100x4

 Conv

 +BN+

 ReLu

 Frame stacked Convolutional Layers FC Layers

Fig. 6. Our CNN system flow.

 Table: Conv+BN+ReLU parameters

D. Experience replay :

To remove catastrophic forgetting problem in DQN, we store tuples of (s,a,r,s’) in replay memory. Then, we draw batches of data

from replay memory to draw previous experi-ences.

E. Weight initialisation :

In our work, we experiment with different weight initial-ization techniques: random initialization, normal initialization and Xavier

uniform distribution and found better results with normal initialization with mean 0 and scale 1. Further, pytorch clip of -0.1 and

0.1 was kept for entire training for better convergence.

F. Hyper parameter tuning :

In our project, optimizing hyper parameters is a bit of a challenge even though existing pieces of literature are available. This is

mainly due to computational limitation and code optimization for greater speed. We have these hyper parameters to tune: replay

memory, optimizer, target update frequency, and the number of frame stacks. In the table below we show value for our old hyper

parameters and new ones:

Table: Hyper parameters

The exploration in our network follows greedy-epsilon with exploration probability that decreases gradually from 1 to 0.5 till 10,000

episodes with minimum epsilon of 0.1. Earlier, we set this to decrease from 1 to 0.1 till 10,000 episodes. This helps our agent to

first explore more and learn new experiences and gradually, decreases exploration to improve exploitation. Such strategy is called

Greedy in the Limit with Infinite Exploration (GLIE).

G. Training Strategy :

We train our DQN and DDQN with GLIE strategy. We train agent to play with simpleAI for nearly 10,000 games. The models are

saved periodically in order to test against simpleAI.

 Layer Channels Filter size

Layer 1

Conv2d 16 8 (stride 4)

Layer 2

Conv2d 32 4 (stride 2)

Layer 3

Flatten

Layer 4

FC 256

Hyper parameters Old New

Replay buffer size 100,000 40,000

Batch size 32 128

Discount factor 0.99 0.99

Learning rate 1e-3 1e-4

Optimizer RMS prop Adam

Frame stacks 4 4

Target update 2500 50

http://www.jetir.org/

 © 2024 JETIR May 2024, Volume 11, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2405532 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f300

III. EXPERIMENTAL RESULTS

A. Training result :

In figure below, we show out training results for approx 10,000 episodes. Our epsilon decreases from 1 to 0.5 and further decreases.

Due to time constraint, we are only able to run till these episodes (we discovered this method very late in our project).We believe

that the better performance can be observed by decreasing exploration to 0.1. It is important to notice that the /textbfwin-rate is at

around 0.25 (1 being the highest) during training due to our epsilon greedy being very high, thus prioritising exploration, and the

score shown being an average of 100 games. Our previous win rate on training was 0.00142 (project progress) and 0.0091 (during

project presentation)

Fig. 7. Training curve for DQN (note: it broke down on one of our desktop due to cuda error so we needed to restart the process time

and again for this part so only two figures are attached here

Observations about algorithms in training:

● Double DQN takes larger amount of time for each episodes than DQN. In Figure fig:ddqn time, we can see that double dqn

plays episodes for longer amount of time. It can probably because even though agent is not winning, it is able to strike back

for longer duration.

Fig. 8. Time per 500 episodes for DQN vs DDQN during training

● In double DQN, agent is able to learn some strategies to play for longer duration than DQN , probably due to no

maximization bias.

B. Testing results :

Our results shows that during testing, For DQN, it beats around 62% for 157 games in 60 minutes while for DDQN, it beats around
82% of time for 182 games for DDQN. The timespan for 182 games is 60 minutes. In Figure 10 and 11, we see the win percentage
and total number of episodes in 60 minutes.

http://www.jetir.org/

 © 2024 JETIR May 2024, Volume 11, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2405532 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f301

Fig. 10. DQN and DDQN win within 1 hour of game

Observations about algorithms in testing:

● Time: It is seen that DQN initially bounces back well but couldn’t develop strategy to beat opponent so keeps playing for

longer duration. But, DDQN quickly beats opponent and moves to play next episodes.

● Strategy: Double DQN can play game for longer run as well as know how to beat the opponent by passing ball in such a

way that opponent will miss it. But, in DQN, it can pass ball back to opponent and plays for longer duration but it has not

still developed strategy to beat opponent after games. When you see the video, you see that it passes only and passes ball to

convenient direction rather than difficult direction for opponent.

 Fig. 11. Number of frames taken to play 5 mins of game

IV. CONCLUSION

Deep Q-Networks (DQNs) represent a significant advancement in reinforcement learning, particularly for training agents in complex
environments such as video games. By integrating Q-learning with deep neural networks, DQNs serve as powerful function
approximators for the Q-function, allowing for the effective handling of high-dimensional state spaces. This method employs gradient
descent to iteratively minimize the difference between predicted Q-values and the target Q-values, thereby refining the policy towards
optimal actions.

In our study, we apply the DQN framework to the task of training an agent to play the Atari game Pong. We further explore the
efficacy of the Double DQN (DDQN) method, which addresses the overestimation bias of traditional DQNs by decoupling selection
and evaluation of the action in the Q-learning update. This is illustrated in our results and through visual representations in Figures
4 and 5, where we demonstrate the application of both DQN and DDQN approaches across various Atari gaming scenarios.

Empirical results show a distinct performance advantage using these methods, with a notable win percentage of 82% when employing
DQN and an enhanced performance of 62% with DDQN. The superior performance of DDQN in this specific gaming environment
highlights its effectiveness in providing a more stable and accurate estimation of action values, ultimately leading to more strategic
decision-making by the agent. This demonstrates the practical utility of advanced Q-learning variants like DDQN in improving agent
performance in competitive and dynamic settings such as Pong.

http://www.jetir.org/

 © 2024 JETIR May 2024, Volume 11, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2405532 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f302

V. REFERENCES

1) Gym-OpenAi, ”Pong-v0,” 2021 [online]. Available at : https://gym.openai.com/envs/Pong-v0/

2) Brockman, Greg, et al. ”Openai gym.” arXiv preprint arXiv:1606.01540 (2016).

3) Paszke, Adam, et al. ”Pytorch: An imperative style, high-performance deep learning library.” Advances in neural information

processing systems 32 (2019): 8026-8037.

4) Mnih, Volodymyr, et al. ”Human-level control through deep reinforcement learning.” nature 518.7540 (2015): 529-533.

5) Cruz Jr, Gabriel V., Yunshu Du, and Matthew E. Taylor. ”Pre-training neural networks with human demonstra-tions for deep

reinforcement learning.” arXiv preprint arXiv:1709.04083 (2017).

6) Sebastianelli, Alessandro, et al. ”A Deep Q-Learning based approach applied to the Snake game.” 2021 29th Mediterranean

Conference on Control and Automation (MED). IEEE, 2021.

7) Kodama, Naoki, Kazuteru Miyazaki, and Taku Harada. ”A proposal for reducing the number of Trial-and-Error searches for

Deep Q-Networks combined with exploitation-oriented learning.” 2018 17th IEEE Inter-national Conference on Machine

Learning and Applica-tions (ICMLA). IEEE, 2018.

8) Azizzadenesheli, Kamyar, et al. ”Surprising negative results for generative adversarial tree search.” arXiv preprint

arXiv:1806.05780 (2018).

9) V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Play-ing Atari With Deep

Reinforcement Learning,” 2013, arXiv:1312.5602

10) Karol Arndt, Aalto University ”Two Player Wimble-pong,” [online] Accessed from: https://github.com/aalto-intelligent-

robotics/wimblepong/tree/

11) Andrej Karpathy, ”Deep Reinforcement Learning: Pong from Pixels,” [online] Accessed from:

http://karpathy.github.io/2016/05/31/rl/

http://www.jetir.org/

