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ABSTRACT 

 
Software systems have become larger and more complex than ever. Such characteristics make it be very 

challengeable to prevent software defects. Therefore, automatically predicting the number of defects in software 

modules is necessary and may help developers efficiently to allocate limited resources. Various approaches have 

been proposed to identify and fix such defects at minimal cost. However, the performances of these approaches 

require significant improvement. Therefore, we propose a novel approach that leverages deep learning techniques 

to predict the number of defects in software systems. First, we preprocess a publicly available dataset, including 

log transformation and data normalization. Second, we perform data modelling to prepare the data input for the 

deep learning model. Third, we pass the modelled data to a specially designed deep neural network-based model to 

predict the number of defects. We also evaluate the proposed approach on four well-known datasets. The evaluation 

results illustrate that the proposed approach is accurate and can improve upon the machine learning approach. 
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1.INTRODUCTION 

 
A software fault is an error, bug, defect, flaw, malfunction or mistake in software that causes it to create a wrong 

or unexpected outcome. A software bug is an issue that prevents a system from carrying out its intended purpose. 

Software defects can cause different problems. Manual testing and code review are common methods for identifying 

software flaws. The primary disadvantage of these techniques is their high time and effort costs. The automatic 

approaches to the Software Fault Prediction would allow one to reduce the costs and improve quality of the software 

projects. Thus, Software Fault Prediction is an important problem in the fields of the software engineering and 

programming language research. The Finding the faulty code with great precision is the task. Software Fault 

Prediction: A approach called "software fault prediction" makes use of a model to identify likely defect-containing 

code sections. Predicting software faults is a crucial and advantageous technique for enhancing software 

dependability and quality. Fault prediction is one of the key challenges in software development. Software Fault 

Prediction is a critical problem in software development and maintenance procedures that affects the overall success 

of the product. Predicting and finding the bugs in the earlier phase in SDLC makes the software more reliable, 
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efficient and better quality when compared with finding bugs in the later stages. However, developing a software 

defect prediction model is not an easy task and manynew tools and methods are introducing in the deep learning 

for better performance. on the fault of defect-prone software 

modules as compared to other techniques. Software with poor quality might lead to unexpected and incorrect 

outcomes. These days, it is harder togenerate high-quality software at a reduced cost due to the increasing 

complexity of current software systems.is issue can be solved by using the techniques of software fault prediction. 

This activity can improve the software quality by indicating the software modules in advance where faults are more 

likelyto occur. Prediction and prevention of software faults at the initial stages of software development canreduce 

the overall development time and cost by limiting the testing efforts. Artificial Neural Network (ANN) is a widely 

accepted supervised learning approach to deal with the prediction problems in multiple domains of software 

engineering such as effort estimation, cost estimation, and defect prediction. Three layers make up an ANN's 

structure: the input layer, the output layer, and the hidden layer (s). A connection exists from the nodes in the input 

layer with the nodes in the hidden layer and then from the nodes of the hidden layer with the nodes of the output 

layer. Through the input layer, input data are fed into the neural network. Classifiers in the supervised machine 

learning category require a training set of data (called training data) with a predetermined output class in order to 

function data set includes various features which are categorized as dependent and independent features.dependent 

feature is one which is going to be predicted, also known as the output class. Independent features are those that do 

not include the output class. The supervised classifier creates a classification model during training by identifying 

hidden patterns and relationships between the dependent and independent data. After training, the classifier is given 

test data, which has an unknown output class. Based on patterns and rules extracted from the training data, the 

classification model predicts the class of the test data. Software fault prediction is accomplished by classifying a 

specific software instance (method, class, module, file, andpackage) as either defective or non-defective data set 

used for softwarefault prediction includes  the historical software defect data collected from previous releases of 

same project (or in some cases from other projects), which is made up of several qualities or characteristics, often 

known as metrics. Predictive techniques can assist the development team in making efficient use of their testing 

resources, hence reducing expenses and time.One widely adopted approach in software fault prediction is the use 

of Artificial Neural Networks (ANNs), a supervised learning method capable of handling prediction problems 

across various domainsof software engineering. ANNs consist of three layers: the input layer, the output layer, and 

one or morehidden layers. These layers are interconnected, allowing input data to be processed through the 

networkto generate predictions. During training, ANNs require a dataset containing both dependent (output class) 

and independent features, enabling the classifier to learn patterns and relationships.  
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Architecture of Neural Networks: 

 

 

 

 

 

 

  

 

 

 

 

        

                                            Fig.1 Architecture of Neural Networks 

The dataset used for software fault prediction typically comprises historical software defect data collected from 

previous releases of the same project or, in some cases, from other projects. This datasetincludes various metrics or 

qualities associated with software modules, such as methods, classes, modules, files, or packages. By leveraging 

predictive techniques, development teams can efficiently allocate testing resources, thereby reducing expenses and 

development time. In practice, software fault prediction involves classifying specific software instances as either 

defectiveor non-defective based on the learned patterns and rules extracted during training. By identifying 

potentially faulty modules early in the development process, teams can prioritize testing efforts and implement 

preventive measures to address potential issues before they manifest into critical defects. Overall, software fault 

prediction contributes to enhancing software quality, reducing development costs, and ensuring the reliability and 

stability of software systems in increasingly complex environments 

 

2.LITERATURE SURVEY 

In recent years, wide variety of deep learning models have been proposed and applied to different domains by 

researchers. However, in defect prediction context, to the best of our knowledge few works have been done which 

we will review in this section. .[1] “established a Selection of features for apps scheme the unequal dataset of 

software defects. Next, the selection with attributes built on the wrapper is implemented, culminating in the 

collection of subsets of attributes.[2] have “proposed a study for the prediction of software defects using a machine 

learning method focused on the neural network. Github databases are regarded in this work for the study of defect 

prediction 

Machine learning is a powerful methodology for prediction, software defect prediction model proposed by Wang 

et al. [3] for increasing the quantity of application software systems. Databases of defective software comprise of 

unbalanced data which produces random patterns. This problem encourages the creation of an effective and reliable 

classifier of situations for academic and industrial applications. Xu et al. [4] researched “software defect prediction 
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strategies and hypothesized that traditional techniques use vectorization and feature selection” framework to 

minimize trivial features, but still exclude other essential features resulting in degraded performance of defect 

prediction strategy. A piece of maximum information, data correlation-based technique is proposed to tackle this 

problem. Recently, Duksan et al.[5] discussed the unbalanced nature of software defect results, and very few 

occurrences display attributes that belong to the defective class during the prediction process. This phase creates a 

reduction of efficiency in software industries and therefore involves a specific classification scheme. To resolve 

this problem, the whole issue is transformed into an issue of multi-objective optimization, where a Multi goal system 

of learning is implemented by analyzing a varied cross-project environment. Shan et al.[6] “utilized a well-known 

methodology in machine learning, i.e. SVM (support vector machine). Besides, predictability in attributes is 

discussed through the diligence of a locally linear embedding strategy with a support vector classifier. SVM 

constraints are indeed configured with a tenfold cross-validation process and grid search scheme according to this 

approach”. Experimental analysis reveals that the LLE-SVM works well for detecting defects. Yang et al.[7] 

“proposed the Predicting Software Deficiencies using a neural network method in which the neural network concept 

is incorporated along with the Bayesian approach as a radial basis. The efficiency of the radial neural network can 

be enhanced by optimizing the weight update framework, using a single Gaussian and two Gaussian structures, 

while the motivation-minimization scheme is often employed for weight realization”. Han et al., [8] “as stated in 

the proposed software development based stable program quality estimation model. Our approach involves an 

advanced software reliability template, a system building forecast model, a Rayleigh model, and a computer-

assisted software safety estimate to boost predictive results”. Parthipan et al.[9] “have presented an analytical model 

describing the signs of design uncertainty using an aspect-oriented approach for measuring uncertainty. Noticed 

that defect prediction models are mainly developed in the design phase and code level either to differentiate between 

unreliable and non-faulty (binary classification) or to estimate the number of defects (regression analysis)”. 

Panichella et al.[10] “enhanced the recognition of defect-prone instances in software projects through a unified 

predictor of defects that brings into consideration the clusters provided by different approaches of machine 

learning”. Felix et al. A NN is applied with the aid of registry relationships between software codes and their faults, 

and to obtain classification and prediction. In classification and prediction strategy based on machine learning, 

feature section and reduction will increase performance. By referring to that as a significant aspect”. Lu et al. [12] 

“used a version of the algorithm for self-study, to examine the implementation of a semi-supervised learning 

technique for software defect prediction. The research concluded that trust fitting could be used as a replacement 

for existing supervised algorithms. In conjunction with dimensional reduction, the semi-supervised algorithm 

behaved significantly better than a random forest model when training modules with typical defects were used”. 

Shepperd et al.[13] “carried out a meta-study of all the factors affecting output in predictions. As calculated based 

on the Matthews correlation coefficient, they checked the efficiency of their defect prediction system by evaluating 

the conditions that strongly impact the predictive results of the software defect classificatory. They noticed that 

classifier choice affects output only marginally, while model building factors (i.e. Factors specific to the study 

group) produce a major impact. This is since the group of researchers is in charge of preprocessing the data”. 

Jayanthi et al. In the next process, random sampling is implemented to help reduce the negative impact of the 

unbalanced dataset”. 
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3.METHODOLOGY 

In this section, we detail the methodology employed for software fault prediction utilizing Artificial Neural 

Networks (ANN). ANN was selected due to its capability to learn complex patterns from data, making it suitable 

for predictive modeling tasks. For this study, we employed a feedforward neural network architecture, a 

fundamental type of ANN characterized by its layered structure. The feedforward nature of the network enables 

information to flow in one direction, from the input layer through one or more hidden layers to the output layer, 

without forming cycles or loops. We trained the ANN model using a dataset comprising features extracted from 

software artifacts and corresponding labels indicating the presence or absence of faults. The dataset was 

preprocessed to ensure compatibility with the neural network architecture, including steps such as normalization 

and feature scaling. The architecture of the ANN model consisted of an input layer, one or more hidden layers, and 

an output layer. Each neuron in the hidden layers utilized activation functions to introduce non-linearity and enable 

the model to learn complex relationships within the data. During the training phase, we employed backpropagation, 

a common learning algorithm for neural networks, to adjust the weights of the connections between neurons 

iteratively This process involved propagating the error backward through the network and updating the weights to 

minimize the difference between the predicted outputs and the actual labels. 

The assigned as the network of connections between the neurons that can share information to connect. The working 

of an ANN is defined as follows. First, the neural network accepts the values of the data variables as an input node 

of the input layer. Weighs are allocated to the ties that bind nodes. These numerical Weights are balanced according 

to the NN able to learning and adapt. Nodes are crossed and the values of the variables are determined to move 

through the network. The weight of each connection affects the result of the parameter value. At the output node, 

the parameter value is matched with the target value and the impact is expected. 

 In this Work, we implemented a software fault prediction system utilizing Artificial Neural Networks (ANNs) and 

hyperparameter tuning techniques. The implementation process involved dataset preparation, where features 

extracted from software artifacts were combined with fault labels to form the training and testing datasets. The core 

of the implementation centered around a custom ANN architecture constructed using the Keras library. This 

architecture consisted of multiple densely connected layers with varying numbers of neurons, incorporating 

activation functions such as hyperbolic tangent and rectified linear units (ReLU). To optimize the model's 

performance, we employed a custom wrapper class to integrate Keras models with scikit-learn's GridSearchCV, 

enabling systematic exploration of hyperparameter space. Hyperparameters including the number of neurons, batch 

size, and epochs were tuned using grid search, ensuring the selection of optimal values for improved predictive 

accuracy. The trained ANN model was evaluated on an independent testing set, assessing its ability to generalize 

to unseen data and effectively predict software faults. Our implementation was executed in Python, leveraging the 

capabilities of libraries such as Keras, scikit-learn, and NumPy, on a computational platform equipped with 

sufficient resources to facilitate efficient training and evaluation of the predictive model. 

Dataset Preparation: Begin by preparing your dataset suitable for software fault prediction. This dataset should 

consist of features extracted from software artifacts (such as code metrics, complexity measures, etc.) along with 

labels indicating the presence or absence of faults for each software artifact. 
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Model Architecture Definition: Define the architecture of your Artificial Neural Network (ANN) model using the 

Keras library. Specify the number of layers, types of layers (e.g., densely connected layers), number of neurons in 

each layer, activation functions, kernel initializers, and the optimizer to be used. Ensure that the input dimensions 

match the number of features in your dataset. 

Custom Wrapper Definition: Implement a custom wrapper class that extends the functionality of scikeras' 

KerasClassifier. This wrapper class allows for the integration of additional parameters, such as the number of 

neurons in the first layer, and facilitates compatibility with scikit-learn's GridSearchCV for hyperparameter tuning. 

Hyperparameter Tuning: Set up a grid search using scikit-learn's GridSearchCV to systematically explore a range 

of hyperparameter values for the ANN model. Specify the hyperparameters to be tuned, such as the number of 

neurons, batch size, and epochs. Execute the grid search to find the optimal combination of hyperparameters that 

maximize the model's predictive performance. 

Model Training: Split your dataset into training and testing sets using a suitable ratio (e.g., 70% training, 30% 

testing). Fit the ANN model to the training data using the optimal hyperparameters obtained from the grid search. 

During training, monitor performance metrics such as accuracy to assess the model's convergence and effectiveness 

in learning from the training data. 

Model Evaluation: Evaluate the trained ANN model on the independent testing set to assess its generalization 

ability. Measure performance metrics such as accuracy, precision, recall, F1-score, and ROC-AUC to quantify the 

model's predictive performance in identifying software faults. 

Experimental Setup and Execution: Execute the implementation in a Python environment, leveraging libraries such 

as Keras, scikit-learn, and NumPy. Ensure access to a computational platform with adequate hardware resources to 

facilitate efficient training and evaluation of the ANN model. 

Analysis and Interpretation: Analyze the results obtained from the model training and evaluation process. Interpret 

the performance metrics to gain insights into the effectiveness of the ANN model in predicting software faults. 

Identify any patterns or trends observed in the predictions and correlate them with the characteristics of the software 

artifacts. 

 

System architecture: 

 

http://www.jetir.org/


 © 2024 JETIR May 2024, Volume 11, Issue 5                                                                    www.jetir.org (ISSN-2349-5162) 

 

JETIR2405554 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f468 

 

 

 

  

 

 

 

 

 

 

 

 

 

                                                   Fig.2 System architecture 

We experimented with different configurations of the ANN model, including variations in the number of hidden 

layers, the number of neurons in each layer, and the choice of activation functions. Hyperparameter tuning was 

conducted to optimize the performance of the model, adjusting parameters such as learning rate and batch size 

through systematic experimentation. The training process aimed to minimize a predefined loss function, such as 

mean squared error or binary cross-entropy, by iteratively updating the model parameters. We monitored the 

training progress using metrics such as training loss and validation accuracy to assess the convergence and 

generalization ability of the model. Once trained, the performance of the ANN model was evaluated using standard 

metrics such as accuracy, precision, recall, and F1-score. Additionally, techniques such as cross-validation and 

confusion matrix analysis were employed to validate the model's predictive capabilities and assess its robustness. 

In summary, the methodology employed for software fault prediction using Artificial Neural Networks involved 

the training of a feedforward neural network model on a labeled dataset of software artifacts. Through systematic 

experimentation and hyperparameter tuning, we aimed to develop an effective predictive model for identifying 

potential faults in software systems. 

 

4.RESULTS                     

The performance evaluation of various machine learning models for software fault prediction using the provided 

dataset is presented in Table 1. Each model was assessed based on multiple metrics including accuracy, precision, 

recall, F1 score, AUC ROC, Brier score, and Jaccard score. The proposed model based on Artificial Neural 

Networks (ANN) achieved the highest accuracy of 93.51%, indicating its effectiveness in predicting software faults. 

This model also exhibited strong precision (93.51%) and F1 score (71.44%), highlighting its ability to correctly 

classify instances of faults. The high AUC ROC value of 85.47% further confirms the model's robustness in 

distinguishing between faulty and non-faulty software. 
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Table 1. Obtained Results 

 

 
 

 

 

 

Comparatively, other machine learning models such as XGBoost, Random Forest, and Extra Trees also 

demonstrated competitive performance, albeit with lower accuracy and F1 scores compared to the proposed ANN 

model. These models are known for their ensemble learning techniques and tree-based algorithms, which can 

effectively handle complex datasets. Moreover, the proposed ANN model outperformed traditional machine 

learning algorithms such as Support Vector Machine, Naive Bayes, and Logistic Regression, indicating the 

superiority of neural network-based approaches in software fault prediction tasks. It’s worth noting that while some 

models achieved high accuracy scores, their precision, recall, and F1 scores were relatively lower, suggesting a 

trade-off between correctly identifying faults and minimizing false positives or negative. Overall, the results 

underscore the efficacy of utilizing Artificial Neural Networks for software fault prediction, offering promising 

prospects for enhancing software quality and reliability. Our models outrun all the existing machine learning models 

and also gives us a comparative analysis between all the models which are present. 
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                                                     Table 2. Mean Square Error 

Dataset DTR SVM KNN NB RF ANN 

KC2 0.116 0.138 0.178 0.152 0.11 0.048 

Ant-1.7 1.258 1.635 1.051 1.433 1.05 0.136 

Jm1 0.117 0.137 0.157 0.126 0.10 0.046 

Cm1 1.185 1.409 1.333 0.882 0.69 0.119 

       

          The RF and ANN models perform well in minimizing MSE across datasets, while KNN shows     relatively 

poorer performance. The performance of each model varies across datasets, suggesting the importance of model 

selection and tuning based on specific data characteristics. 

    

                                                    Table 3. R-Square Score 

Dataset DTR SVR KNN NB RF ANN 

KC2 0.311 0.186 0.05 0.098 0.32 0.357 

Ant-1.7 0.29 0.078 0.407 0.192 0.407 0.438 

Jm1 0.156 0.008 0.134 0.092 0.253 0.262 

Cm1 0.183 0.029 0.082 0.392 0.528 0.543 

 

Random Forest (RF) and Artificial Neural Network (ANN) models tend to perform well across datasets in terms of 

R-Square scores, suggesting better model fit and predictive ability. However, the performance of each model varies 

across datasets, indicating the importance of selecting the appropriate model for specific data characteristics. 

Correlation for KC2: 
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Fig3. Correlation for KC2 

 

For the KC2 dataset, the correlation matrix provides insights into the relationships between variables. Each cell in 

the matrix represents the correlation coefficient between two variables, ranging from -1 to 1. 

High positive values suggest a strong positive correlation, meaning the variables move in the same direction. 

Conversely, high negative values indicate a strong negative correlation, where the variables move in opposite 

directions 

      Correlation for JM1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig4. Correlation for JM1 
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For the JM1 dataset, the correlation matrix serves as a valuable tool for understanding the interrelationships between 

variables. Each element in the matrix represents the correlation coefficient between two variables, ranging from -1 

to 1. 

High positive correlation coefficients indicate a strong positive linear relationship between variables, suggesting 

they move in the same direction. Conversely, high negative correlation coefficients imply a strong negative linear 

relationship, where variables move in opposite directions. 

Correlation for CM1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig5. Correlation for CM1 

For the CM1 dataset, the correlation matrix serves as a critical tool for understanding the relationships between 

variables. Each cell in the matrix represents the correlation coefficient between two variables, ranging from -1 to 

1. 

High positive correlation coefficients indicate a strong positive linear relationship between variables, suggesting 

they move in the same direction. Conversely, high negative correlation coefficients imply a strong negative linear 

relationship, where variables move in opposite directions. 

 

5.CONCLUSION 

In this project , we conducted an extensive evaluation of machine learning models for software fault prediction 

using a comprehensive dataset. The objective was to identify effective methodologies for detecting potential faults 
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in software systems, thereby enhancing software quality and reliability. Our findings demonstrate the effectiveness 

of Artificial Neural Networks (ANN), particularly the proposed model, in accurately predicting software faults. The 

proposed ANN model achieved an impressive accuracy of 93.51% along with high precision, recall, and F1 score, 

surpassing other machine learning algorithms evaluated in this study. Comparative analysis revealed that ensemble 

learning techniques such as XGBoost, Random Forest, and Extra Trees, while competitive, were outperformed by 

the ANN model in terms of predictive performance. Traditional machine learning algorithms, such as Support 

Vector Machine, Naive Bayes, and Logistic Regression, also exhibited inferior performance compared to the ANN 

model, highlighting the advantage of neural network-based approaches in software fault prediction tasks. The 

superior performance of the ANN model underscores the capability of neural networks to learn complex patterns 

from data and make accurate predictions. By leveraging the inherent capabilities of ANN in handling non-linear 

relationships and high-dimensional data, we can effectively identify potential faults in software systems, enabling 

proactive measures to mitigate risks and enhance overall software quality. In conclusion, our study highlights the 

significant potential of Artificial Neural Networks in software fault prediction and underscores the importance of 

employing advanced machine learning techniques to enhance software reliability and mitigate risks associated with 

software defects. 
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