ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

A REVIEW ON GREY WATER TREATMENT

Muruganantham Iniyan¹,D. Thayalnayaki¹* Jayaprakash Santhosh²*

1-Final year M. Tech Environmental Engineering Student

1*- Asst.Professor (SG) and Head

2*- Asst. Professor(SG)

Department of Civil Engineering, Periyar Maniammai Institute of Science & Technology (Deemed to be University),

Thanjavur 613403, Tamil Nadu, India,.

Abstract- The global mishandling of grey wastewater management poses a significant danger to the circular economy, particularly in developing nations. This literature review aims to provide relevant information on the environmental impact and mitigation of surfactants found in greywater, targeting two major challenges: water scarcity and water management. Because there is less water available, recycling greywater has become crucial in today's world. Greywater, however, can only be used for non-potable uses. The term "grey water" refers to waste water that is produced by home equipment, such as washing machines, kitchens, and bathrooms, but does not include any feces. The goal of our project is to investigate the properties of greywater and the efficacy of the adsorption method in eliminating pollutants from it by employing natural adsorbents. Assuring access to clean water and tackling the problems brought on by urbanization, population expansion, and climate change require sustainable water management. Greywater, which comprises everything except toilet waste, makes up 50-80% of the wastewater generated each day in a typical household. It is distinguished by its huge volume and low organic strength. Large urban wastewater treatment facilities built for high-strength operations may find this to be problematic. Therefore, for the proper management of greywater employing distinct treatment options, segregation of greywater at the source is required for decentralized wastewater treatment. Reusing greywater may therefore result in lower transportation costs, improved adaptability and resilience of regional water systems, and fit-for-purpose reuse. Assuring access to clean water and tackling the problems brought on by urbanization, population expansion, and climate change require sustainable water management. For big urban wastewater treatment plants built for high-strength operations, this may be a problem. Greywater must thus be segregated at the source in order to be properly managed utilizing different treatment techniques for decentralized wastewater treatment. Therefore, greywater reuse may result in lower transportation costs, improved durability and adaptability of regional water systems, and fit-for-purpose reuse..

Keywords: Greywater, segregation, decentralization, and sustainable water management

I. INTRODUCTION

Since freshwater resources are rapidly declining, it is imperative that treated wastewater be reused and recycled in order to conserve freshwater. When a substantial amount of treated wastewater is reused, particularly in closed loop systems, water recycling attains zero discharge from domestic sources (kitchen, laundry, and bathroom). Up to 75% of all wastewater, including light and dark grey water is domestic wastewater. Grey water is now consistently and successfully treated, making it a more important resource than garbage. The distinction between grey and black water is obvious in terms of metrics (i.e., quantity and quality); yet, in many nations, domestic water is collected and sent to a centralized wastewater treatment plant via municipal sewage systems. Emphasized the discrepancy between the amount of wastewater generated and the capability for treatment. It can be meritoriously resolved by treating the source and efficiently separating effluent. A few examples of the variables that influence the amount of grey water generated are income, population density, ease of access to water, cultural differences, and frequency of cleaning product use.

Rarely are studies conducted on the identification of novel pollutants from household wastewater. also impacted by the substances that every home uses. Effective and efficient storm water management is necessary to reduce the effects of urban storm water and address related issues. Similar to this, recycling and reusing grey water from homes has several advantages, including lower pollution loads in streams, cost (conveyance and treatment), and a considerable decrease in water bills and infrastructure. Numerous research studies have been conducted to better understand the possibility of on-site wastewater treatment; yet, it still has certain limits because of local area considerations (such as the quality of recovered water, socioeconomic and psychological hurdles).

Many aspects of social and economic barriers remain unchanged, such as people's aversion to reusing grey water, their fixed mindset regarding the risks involved in using treated grey water, cost considerations and the comparison of treated and freshwater, speculative fears regarding the quality of treated water due to ignorance of the treatment process, environmental awareness, and sociodemographic factors.

The consequences of urbanization, population growth, and climate change are making sustainable water use more difficult. Increasing water management's robustness is a major development aim for many nations since it is closely linked to human rights, food security, education, ecological services, and public health. Searching locally for reusable water sources offers two key benefits over the long-distance approach: it can increase the resilience and adaptability of the local water system and save the need to move water over long distances, which could result in significant cost savings. Decentralized water installations acting as independent systems are necessary for the treatment of low wastewater flows in local reuse.

The implementation of decentralized water management units can serve as a supplement to a centralized grid by facilitating the gathering, processing, release, and recycling of wastewater flows in close proximity to the production site, ideally close to the point of consumption. Problems with small-scale installations include pathogens and nutrients having to be removed from a complex

water stream, as well as harmful shocks and uneven flow distribution. This can be facilitated by source separation, which divides wastewater flows at the site of origin, which makes treatment solutions simpler and increases the It is easiest to separate household wastewater into two categories: grey water and black water, or wastewater from toilets. Wastewater from all domestic uses, excluding backwater, is referred to as grey water.

Water from sinks, showers, bathtubs, and washing machines, for instance, is included. Moreover, a typical grey water output. If reused properly, grey water becomes an appealing water resource due to its comparatively large quantity and lower degree of fecal pollution. It's interesting to note that the availability of grey water matches human activity, meaning it may balance water supply and demand as long as a little buffer is in place.

1. GREY WATER:

Greywater is the term used to describe domestic wastewater produced in homes or offices from streams free of feces, all streams except those that contain toilet waste. Greywater can be obtained from sinks, showers, bathtubs, washing machines, and dishwashers. Greywater is often safer to handle, easier to treat, and can be reused on-site for non-potable uses including crop or landscape irrigation, toilet flushing, and other applications because it contains less pathogens than black water. decreasing the volume of conveyed and processed wastewater, hence mitigating the demand for fresh, clean water and the wastewater subsystems.

Treated greywater has several applications, including toilet flushing and irrigation. Grey water treatment procedures are primarily determined by the volume of grey water, its physical, chemical, and biological properties, energy requirements, and the intended use of treated water. There is no globally acknowledged technology for treating greywater.

Grey water treatment technologies include physical, chemical, and biological procedures, as well as combinations of these. Grey water must be purified to meet non-potable water quality standards by removing suspended particles, oil and grease, turbidity, bacteria, and other contaminants. It also requires a sufficient level of pH, BOD, and COD in treated water. Grey water treatment includes a variety of components such as screening, sedimentation, filtration, biological treatment, chemical coagulation, and disinfection. The total process typically includes pre-treatment, main treatment, and post-treatment steps.

Filtration:

- •Screening: Use screens or filters to remove big particles and prevent system blockage.
- •Settling tanks eliminate suspended solids by allowing them to settle to the bottom.

Biological Treatment:

Bioremediation involves using microorganisms to break down organic materials in water.

This can be accomplished by procedures such as aerobic (oxygen) or anaerobic (no oxygen) therapy.

Chemical Treatment:

Water can be disinfected using chemicals like chlorine or hydrogen peroxide to ensure its safety for reuse.

However, this step is not necessarily required for non-potable applications.

Storage and Distribution:

- •Treated greywater can be stored in tanks for future use. Adequate storage aids in fulfilling demand at times when greywater generation is low.
- •Piping and distribution systems can distribute treated greywater to specific end users, including irrigation.

Regulations & Guidelines

•Comply with local greywater legislation and treatment recommendations. Some places may have particular policies in place for greywater treatment and reuse.

System Design:

Greywater treatment systems are designed based on the source and volume of greywater, planned reuse application, and local laws. Systems can vary from simple gravity-driven systems to more complicated treatment processes.

II. LITERATURE REVIEW:

Smruti Ranjan Dash, Korneel Rabaey (2023) Sustainable water management is critical for ensuring access to safe water and managing the issues of climate change, urbanization, and population expansion. Greywater, which comprises everything except toilet waste, accounts for 50-80% of daily wastewater creation in the average household and is distinguished by its low organic strength and high volume. Greywater reuse may thus contribute to greater resilience and adaptation of local water systems, reduced transportation costs, and realization of fit-for-purpose reuse. After discussing greywater properties, we provide an overview of current and forthcoming greywater treatment technology. Biological treatment technologies, such as nature-based technologies, biofilm technologies, and membrane bioreactors (MBR), conjugated with physicochemical treatment methods, such as membrane filtration, sorption and ion exchange technologies, and ultraviolet (UV) disinfection, may be able to produce treated water within allowable parameters for reuse.

Sneha Gautam and Pavankumar Muralkar (2023) Greywater reuse and recycling is a cost-effective and appealing approach for meeting future water demand. Grey water reuse and treatment depend on criteria such as BOD, pH, EC, turbidity, suspended particles, and others. To achieve sustainability, household wastewater reuse and recycling may be a viable solution for ZLD. Hardness and chlorides are two of the chemical characteristics being examined. BOD is one of the biological parameters being examined.

K. Gautam et al. (2020) conducted an experimental investigation to remove lead from synthetic textile effluent utilizing the natural adsorbents Moringa oleifera, Prosopis julifora, and peanut shell. The adsorbents were rinsed with distilled water, sun-dried for a week, and baked in an oven at 70° C for two days. The adsorbent was pulverized and passed 150 μ m before being kept on a 75 μ m screen for the experiment. A 1000 μ g lead solution in 1 mL was produced. Jar test apparatus was used to conduct the batch investigation. A one-litre wastewater sample was collected in each jar, with a variable adsorbent dose and a mixing speed of 120 rpm.

Ositadinma Chamberlain Iheanacho et al. (2021) examined packed bed column adsorption of phenol onto corn cob activated carbon using linear and nonlinear regression analysis. The activation of corn cob increased the surface area and micropore volume of activated carbon to 903.7 m2/g and 0.389 cm3/g, respectively. The physical parameters of corn cob activated carbon (CCAC) were analyzed, and it comprised 33.47% fixed carbon, 5.82% ash content, 18.01% volatile matter, 0.63 g/mL bulk density, 5.50% moisture content, and a pH of 6.30. SEM pictures confirmed the presence of interspatial holes inside the matrix of the adsorbent, while FTIR studies revealed that the predominant functional groups in CCAC were alkanol, alkanes.

Siham Akhouairi et al. (2019) investigated the adsorption of an anionic dye, Eriochrome Black T (EBT), from aqueous solutions onto sawdust, a natural, eco-friendly, widely available, and low-cost biosorbant. The project's goal is to provide values to waste generated by the wood industry. Thus, sawdust was employed as an adsorbent in both batch reactors (BR) and fixed bed columns (FBC), and various operating factors that influenced the adsorption process were examined. The kinetic and equilibrium adsorption data were found to be consistent with the predictions of the pseudo-second-order equation and the Langmuir model.

Miguel Angel'Lopez'Zavala et al. (2020) investigated the removal of Cr(VI) from clay, perlite, and clay-perlite iron suspensions. Then, ceramic-type membranes To remove Cr(VI) from surface water for human consumption, clay-perlite-iron solutions were developed. Seven centimeter diameter and one centimeter thick membranes were sintered at 950 degrees Celsius with varying weight percentages of iron filings in the clay-perlite matrix (0, 0.5, 1, or 1.5 wt.%). Then, Cr(VI) surface water solutions were vacuum-filtered (50.7 K Pa). Membrane performance was tested in terms of Cr(VI) adsorption capacity and removal efficiency. Turbidity, pH, electrical conductivity, cation and anion content were also measured. The results indicate that membranes produced with 1.5 wt.% iron Filings had the maximum adsorption capacity (0.122 mg/g) and removal effectiveness (> 99%), similar to clay-perlite-iron suspensions, which had a removal efficiency of 100% at pH 2 when the iron filings level exceeded 1 g. The Langmuir model was used to better describe the adsorption process in ceramic membrane modules; additionally, Cr(VI) adsorption in clay-perlite-iron ceramic membranes is a multilayer physisorption process that occurs on the membrane's outer surface.

K.M. Chukwu et al. (2022) published their findings on the efficiency of activated carbon made with coconut fiber and potassium hydroxide (KOH) for wastewater treatment. Utilizing a range of operational parameters (activation temperature, X1, and impregnation ratio, X2) from 350 to 550oC and 1 to 3g/g for a 5-minute activation time, the activated carbon yield was examined. The study employed iodine-laden wastewater to test the prepared activated carbon's ability to absorb iodine. The testing results showed that the activated carbon yield (Y1) ranged from 3.99 to 17.45%, while the iodine adsorption capacity (Y2) ranged between 44.140 and 192.070 mg/g, respectively.

Vidyadhar V. Gedam et al. (2019) studied the use of activated teak leaf powder (Tectona grandis) as a biosorbent to effectively remove Congo red (CR) dye from aqueous solutions. Fourier transform infrared spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, and X-ray diffraction were used to study the biosorbent. The effect of several parameters, such as starting dye concentration, adsorbent dosage, contact time, pH, and temperature, was investigated in detail.

R.Dey et al. (2021) employed orange peels as a biosorbent, which is one of the best for removing ammonia and nitrate from water. The biosorbent concentration of 4gm found in orange peels is particularly effective at removing ammonia and nitrate from water. The optimal conditions for ammonia and nitrate biosorption using orange peel biosorbent were pH = 5.5, contact time = 60 min, temperature = 35 °C, and agitation speed = 90 rpm. Orange peel biosorbents were characterized using various techniques, including XRD, FTIR, BET, and SEM-EDX. These findings are interpreted in terms of the structure of orange peels' active biosorbent. The reusability of orange peel biosorbent was also examined, and no significant change in performance was seen even after multiple reuses.

Boaka Hlordze. Raphael Gameli et al. (2022) used wasted green tea to extract mercury (Hg2+), lead (Pb2+), and cadmium (Cd2+) from greywater. The study was conducted in a mono-system with an adsorbent dosage of 100 mL, varied beginning metal concentrations in greywater, a constant rotatory speed of 14.6 U/min, and a contact time of 60 minutes. The adsorption effectiveness of the adsorbent from tea waste at various concentrations in mono systems ranged from 99.99% to 100% for mercury and lead, and from 11.11% to 18.28% for cadmium.

In the Gujba local region of Yobe state, Nigeria, M.S. Lawan et al. (2020) evaluated the efficacy of rice husk, a plentiful agricultural byproduct, in creating a greywater reclamation system. The efficacy of rice husk material in treating greywater to a non-portable level for use in family agriculture and livestock feeding is demonstrated by the performance of this unorthodox reclamation system. The questionnaire study's findings indicate that each family in Gujba was only able to produce 720 l of greywater per day at most. Furthermore, approximately 95% of respondents to the poll showed social acceptability of reclaimed greywater for non-potable use.

Sırma Bener et al. (2020) applied a hybrid technique to pretreated genuine textile wastewater. The hybrid process employs electrocoagulation, adsorption, and photo Fenton-like oxidation techniques. In our earlier study, we explored the electrocoagulation (EC) method and found the optimal settings. The EC stage produced efficiency of about 35% total organic carbon (TOC), 18.6% chemical oxygen demand (COD), 90% turbidity, and 50% color removal. Adsorption and photo Fenton-like oxidation were used consecutively to treat the effluent in this investigation.

EC step. The activated carbon was made from agricultural wastes such as walnut shells and corncobs. After the adsorption step, the TOC removal effectiveness was determined to be about 75%, and the color, turbidity, and total dissolved solids met the criteria.

Samah Babiker Daffalla et al. (2020) investigated the physicochemical properties of chemically and thermally treated rice husk adsorbents for phenol removal in aqueous solutions. Fourier transform infrared spectroscopy revealed new functional groups on rice husk adsorbents, and scanning electron microscopy demonstrated significant changes in the pore structure (from macro-mesopores to micro-mesopores) of the developed rice husk adsorbents.

Jagessar RC and Lord B (2020) found that Guyana's surface and residential water require continuous monitoring to check the levels of harmful anions and cations. The status of surface water in five selected areas, Blairmont, Bath, Bushlot, Belladrum, and Mahaicony, was analyzed using the measures described. In all cases, the cation and anion concentrations were below the WHO threshold. Only at Mahaicony surface water, the concentration of Cl⁻ exceeded WHO requirements. The adsorbents (coconut fibers) were selective in their removal of Pb2+ from Bushlot, Mahaicony, and Belladrum surface waters. Furthermore, it demonstrated selectivity for Fe3+ removal in all circumstances, while the concentration of Mn2+ remained constant between treated and untreated water.

According to Andarge (2019) and Boano (2020), the average percentages of greywater sources are 20% from kitchen wastewater, 30% from laundry, and 50% from bathrooms. Common contaminants found in bathroom greywater include hair, colors, shampoos, soaps, toothpaste, body fats and oils, nutrition, and cleaning supplies. Laundry greywater may be polluted with oils, grease, chemicals, soaps, nutrients, and other substances.

Oteng-Peprah (2020) detected chemicals used for cooking, cleaning, and bathing may be the source of GW pollutants. As per USEPA (2005), greywater's pH is somewhat dependent on its acidity and alkalinity, and the permitted pH range for water supplies is between 5 and 9. Greywater has a high pH because of the alkaline elements in detergents. Among the chemical components of greywater that are produced by washing operations are surfactants. Greywater contains ammonium from cationic surfactants, which are based on salt.

Narges Shamabadi (2019) suggested the use of plastic media suspended in trickling filters. Using this procedure, a 1 cm mesh screen is used to filter out waste particles, if any are present. The grey water is then directed to a subterranean septic tank, and the resulting liquid is pumped to a trickling filter that holds suspended plastic media and sludge, returning the pumped water to the septic tank three times over. Water is directed to the settling tank, where the generated sludge is settled, after going through the trickling filter. Ultimately, the processed effluent is disinfected using a chlorination system. Note that pre-treatment of the kitchen effluent is required in order to eliminate fat.

AM Abdel-Kader (2020) treated grey water to a degree that complies with reuse guidelines and regulations can be used again for a variety of tasks, such as toilet flushing, landscaping, and agriculture. The effectiveness and treatment capacity of Rotating Biological Contactors (RBC) to treat grey water were examined using the mathematical model. The proposed RBC plant was simulated in this study using the GPS-X (version 5.0) simulation program. The RBC tank unit, settling tank unit, and disinfection tank unit make up the three components of the planned Rotating Biological Contactors (RBC) plant. The suggested mathematical model was ran with three distinct grey water concentrations following model optimization.

Fazna Nazim (2019) used of garbage enzyme is becoming more and more popular as a greywater treatment technique. The effluent limits were reached after 27 days when the synthetic greywater treatment was carried out right away following the filtration of the garbage enzyme solution. When the enzyme solution was filtered 60 days later, the treatment period was shortened to 5 days. There is a lot of organic material in the enzyme solution. For the treatment of synthetic greywater, the lesser concentrations of 5% and 10% garbage enzymes worked well. The use of Garbage Enzyme solution resulted in the total removal of ammonia, nitrogen, and phosphates. To learn more about the removal mechanisms, more testing is necessary.

Shlok Sangarpal(2022) examined to complete the study, a layer of dark cotton soil was added to a vermifilter pack containing rock. It molds the phrase "filter bed." The accumulation chamber's base is designed to collect separated water, which is released by a pipe that has a tap attached to it. Dark cotton soil with a pH of 7 is used for vermifilters. The vermifilter exhibits a rate reduction in the convergence of COD ranging from 74 to 80 and BOD ranging from 85 to 93.

N.Samson Maria Louis(2020) corn cob, a biopolymer waste product. In order to save time and achieve a 32% output, corn cobs are roasted at a high percentage using inexpensive chemicals as a catalyst and specific inexpensive chemicals added to produce activated carbon. The following ideal conditions—2 N phosphoric acid activating solution, 20 hours of impregnation, 60 minutes of activation at 600 O C, and pH5—are reached for use in dye wastewater treatment in order to reduce the process's energy cost.

Anamika Paul and Maham Malik(2020) activated carbon is employed to decolorize three solution samples: copper sulphate (blue), potassium permanganate (purple), and potassium dichromate (orange). Activated charcoal is used to calculate the change in normalcy of the aforementioned samples before and after treatment, with the maximum absorbance data obtained prior to treatment serving as a benchmark. Additionally, activated charcoal is used to treat sullage water, and the physical and chemical characteristics of the water are compared before and after the treatment.

C. Santos F. Taveira-Pinto (2019) provided a study on an experimental greywater reuse system that is inexpensive, requires little maintenance, and has a collection tank and a treatment system that includes a pump, filter, and UV disinfection. This study aims to evaluate the qualitative potential of treated greywater as well as analyze treatment efficiency. Raw greywater was collected for this investigation from the showers in a changing room and the washing basins of public and private access restrooms.

E Aizenchtadt, D Ingman(2021) evaluated the effectiveness of the RBC, MBR, and standalone sand filter as three different greywater treatment technologies. The amounts of pollutants in raw greywater showed a long-term rise. While the performance of the sand filter

was significantly worse, the RBC and MBR demonstrated great removal efficiency. Dynamic regression SPC (DRSPC), statistical process control (SPC) with changeable control limits, was created to apply control measures. DRSPC frequently provided a longer-term trend's underlying description

III. CONCLUSION

Greywater treatment using activated carbon filtration proves to be a realistic and long-term solution. This process effectively removes pollutants, odors, and contaminants from greywater, conserving water and benefiting the environment. Because of its low cost and ease of use, activated carbon filtration is a useful technology for improving water quality and encouraging responsible water usage in a number of settings. Activated carbon, vetiver, bio balls, pebbles, and Moringa seeds are the materials used in the filtration process.

References

- 1. Bulut Yasemin, Tez Zek, Removal of heavy metals from aqueous solution by sawdust adsorption, Journal of Environmental Sciences 19(2007) I60-166.
- 2. Chanda Verma, Santosh K. Sar, J.Mathew, Natural Adsorbent: Removal of Anionic surfactant from grey water and its comparison with chemical adsorbent, Journal of Energy Technologies and Policy, ISSN 2224-3232, Vol. 3, No. 11, 2013.
- 3. Dalrene Teresa Keerthika James, Augustine Osamor Ifelebuegu, Low cost sustainable materials for grey water reclamation, Water Science & Technology, Bonus Issue 3,2017.
- 4. Dhanu Radha Samayamanthula, Chidambaram Sabarathinam, Harish Bhandary, Treatment and effective utilization of greywater, Applied Water Science (2019) 9:90.
- 5. Ghita El Mouhri, Mohammed Merzouki, Hajar Belhassan, Youssef Miyah, Halima Amakdouf, Rabea Elmountassir and Anissa Lahrichi Continuous Adsorption Modeling and Fixed Bed Column Studies: Adsorption of Tannery Wastewater Pollutants Using Beach Sand, Hindawi Journal of Chemistry Volume 2020, Article ID 7613484, 9 pages.
- 6. Hirut Gebretsadik, Abraha Gebrekidan and Libargachew Demlie, Removal of heavy metals from aqueous solutions using Eucalyptus Camaldulensis: An alternate low cost adsorbent, Cogent Chemistry (2020), 6: 1720892.
- 7. K. Nithya, Asha Sathish, P. Senthil Kumar, Packed bed column optimization and modeling studies for removal of chromium ions using chemically modified Lantana camara adsorbent, Journal of Water Process Engineering, 33 (2020) 101069.
- 8. L.M. Lalitha and S. Mariraj Mohan, Performance Evaluation of Multibed Adsorbent on Removal of Hexavalent Chromium Through Various Kinetic Models, Journal of Environmental Engineering and Landscape Management, Volume 26 Issue 4: 285–298,2018.
- 9. Maha A. Tony, Helen L. Parker, James H. Clark, Evaluating Algibon adsorbent and adsorption kinetics for launderette water treatment: towards sustainable water management, Water and Environment Journal. Print ISSN 1747-6585, 2018.
- 10. Ola abdelwahab, Ahmed el nemr, Amany El Sikaily, Azza Khaled, Use Of Rice Husk For Adsorption Of Direct Dyes From Aqueous Solution: A Case Study Of Direct F. Scarlet, Egyptian Journal Of Aquatic Research, Vol. 31,1110-0354 NO.1, 2005.
- 11. Ositadinma Chamberlain Iheanacho , Joseph Tagbo Nwabanne , Christopher Chiedozie Obi, Chijioke Elijah Onu, Packed bed column adsorption of phenol onto corn cob activated carbon: linear and nonlinear kinetics modeling, South African Journal of Chemical Engineering 36 (2021) 80–93.
- 12. Pawan R.Wani and Sonali B. Patil, Treatment of Dairy Waste Water by Using Groundnut Shell as Low Cost Adsorbent, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 6, Issue 7,2017.
- 13. Pushpraj Patel, Abdul Muteen, Prasenjit Mondal, Treatment of greywater using waste biomass derived activated carbons and integrated sand column, Science of the Total Environment, 2019.
- 14. Samah Babiker Daffalla, Hilmi Mukhtar, Maizatul Shima Shaharun, Preparation and characterization of rice husk adsorbents for phenol removal from aqueous systems, PLoS ONE 15(12), 2020.
- 15. Sevil Veli, Ayla Arslan, Eylem Topkaya, Hatice Kurtkulak, Şehriban Zeybek, Çisil Gülümser, Anatoli Dimoglo, Investigation of Greywater Treatment by Adsorption Process Using Polymeric Composites Supported with Activated Carbon, Eurasian Journal of Environmental Research Volume 2 Issue 2, 2018.
- 16. Siham Akhouairi, Hassan Ouachtak, Abdelaziz Ait Addi, Amane Jada, Jamaa Douch, Natural Sawdust as Adsorbent for the Eriochrome Black T Dye Removal from Aqueous Solution, Water Air Soil Pollut (2019) 230:181.
- 17. Smruti Ranjan Dash, Korneel Rabaey Greywater reuse as a key enabler for improving urban wastewater management 13pages (2023)
- 18. Steffi Joseph Perumpully, Sneha Gautam, Pavankumar Muralkar, B. Jebasingh Characterization of segregated greywater from rural Indian Households: An instrumental case study 13 pages (2023)
- 19. Tania Mitra, Nirjhar Bar, Sudip Kumar Das, Rice husk: green adsorbent for Pb(II) and Cr(VI) removal from aqueous solution—column study and GA– NN modeling, SN Applied Sciences (2019) 1:486.