
© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j67

Adaptive Hybrid Quantum-Inspired Algorithm

(AHQIA) for Travelling Sales Person Problem

A Ravi Prasad

Assistant Professor of Computer Science

Department of Computer Science

Swamy Vidyaprakasa Ananda College

Sri Kalahasthi, Chittor (Dt.), India.

Abstract: The Traveling Salesperson Problem (TSP) is a classic optimization problem that aims to find the shortest possible route

for a salesperson to visit a set of cities and return to the origin city. Adaptive Hybrid Quantum-Inspired Algorithm (AHQIA)

combines principles from quantum computing, genetic algorithms, and dynamic local search to solve the TSP more efficiently.

This paper presents in leveraging quantum-inspired techniques to explore the solution space more effectively, while adaptive

mechanisms fine-tune the search process dynamically

IndexTerms – Travelling Sales Person Problem, Adaptive Hybrid Quantum-Inspired Algorithm (AHQIA).

I. BASIC UNDERSTANDING

Given The Traveling Salesperson Problem (TSP) is a classic optimization problem that aims to find the shortest possible route

for a salesperson to visit a set of cities and return to the origin city [3,5]. The TSP is an NP-hard problem [2], meaning that as

the number of cities increases, the problem's complexity grows exponentially. Despite this, several algorithms have been

developed to find exact or approximate solutions. Here are some of the best available algorithms addressing the TSP:

Exact Algorithms

 Brute Force
o Description: This method involves evaluating all possible permutations of the cities to find the shortest

route.

o Advantages: Guarantees the optimal solution.

o Disadvantages: Impractical for large datasets due to its factorial time complexity (O(n!)).

 Dynamic Programming (Held-Karp Algorithm)
o Description: Uses a dynamic programming approach to solve the TSP with a time complexity of O(n2 * 2n).

o Advantages: Significantly more efficient than brute force, can solve moderate-sized problems exactly.

o Disadvantages: Still infeasible for very large datasets.

 Branch and Bound
o Description: Systematically explores branches of the search space, cutting off branches that cannot yield

better solutions than the current best.

o Advantages: Reduces the number of permutations to be evaluated, often used in conjunction with other

heuristics to improve performance.

o Disadvantages: Still exponential in the worst case.

Approximate and Heuristic Algorithms

 Nearest Neighbor
o Description: Starts at a random city and repeatedly visits the nearest unvisited city.

o Advantages: Simple and fast (O(n2)), useful for generating an initial tour.

o Disadvantages: Often far from optimal, especially for large datasets.

 Genetic Algorithms
o Description: Mimics the process of natural selection by creating a population of tours, selecting the fittest,

and combining them to produce new generations.

o Advantages: Can handle large datasets, often finds good solutions.

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j68

o Disadvantages: Performance depends on parameters like population size, mutation rate, and number of

generations.

 Simulated Annealing
o Description: Emulates the cooling process of metals to escape local optima by allowing worse solutions

initially and gradually reducing this tolerance.

o Advantages: Can escape local minima, relatively easy to implement.

o Disadvantages: Solution quality depends on the cooling schedule.

 Ant Colony Optimization (ACO)
o Description: Simulates the foraging behavior of ants, using pheromone trails to guide the search for the

shortest path.

o Advantages: Effective for large problems, can be combined with other heuristics.

o Disadvantages: Requires tuning of parameters like pheromone evaporation rate and importance factors.

 Lin-Kernighan Heuristic
o Description: A variable-depth search algorithm that iteratively refines an initial tour by making k-opt moves.

o Advantages: Often yields high-quality solutions, considered one of the best heuristics for the TSP.

o Disadvantages: Can be complex to implement.

Metaheuristic Algorithms

 Tabu Search
o Description: Enhances local search by maintaining a list of recently visited solutions to avoid cycles.

o Advantages: Can escape local optima, effective for large instances.

o Disadvantages: Requires careful tuning of parameters like tabu list size and aspiration criteria.

 Particle Swarm Optimization (PSO)
o Description: Models the problem as a swarm of particles moving through the solution space, updating their

positions based on personal and global best solutions.

o Advantages: Good at exploring the solution space, parallelizable.

o Disadvantages: May require hybridization with other methods to improve local search capability.

Hybrid Approaches

Combining multiple algorithms often leads to better performance. For instance, a genetic algorithm can be used to generate an

initial population, which is then refined using local search techniques like the Lin-Kernighan heuristic. Similarly, simulated

annealing can be combined with ACO to balance global exploration and local exploitation.

To summarize,

 Exact Algorithms: Brute Force, Dynamic Programming, Branch and Bound (best for small to moderate-sized

problems).

 Approximate/Heuristic Algorithms: Nearest Neighbor, Genetic Algorithms, Simulated Annealing, Ant Colony

Optimization, Lin-Kernighan Heuristic.

 Metaheuristic Algorithms: Tabu Search, Particle Swarm Optimization.

 Hybrid Approaches: Combining different methods to leverage their strengths.

Each algorithm has its own strengths and weaknesses, and the choice of algorithm depends on factors such as problem size,

required solution quality, and computational resources. Here's an outline for a novel algorithm that improves upon existing

methods:

II. ADAPTIVE HYBRID QUANTUM-INSPIRED ALGORITHM (AHQIA)

Overview

The Adaptive Hybrid Quantum-Inspired Algorithm (AHQIA) [1, 4] combines principles from quantum computing, genetic

algorithms, and dynamic local search to solve the TSP more efficiently. The key innovation lies in leveraging quantum-

inspired techniques to explore the solution space more effectively, while adaptive mechanisms fine-tune the search process

dynamically.

Key Components

 Quantum-Inspired Initialization
o Quantum Superposition: Represent potential solutions (routes) using quantum bits (qubits) in a

superposition of states, allowing simultaneous exploration of multiple routes.

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j69

o Quantum Entanglement: Use entanglement to maintain dependencies between cities, ensuring that related

cities (those close together) are considered together in initial solutions.

 Adaptive Genetic Operations
o Dynamic Population Size: Adjust the population size dynamically based on the convergence rate and

diversity of solutions.

o Adaptive Crossover and Mutation: Vary crossover and mutation rates adaptively, increasing mutation

when the population converges prematurely and enhancing crossover when diversity is needed.

 Quantum-Inspired Evolutionary Search
o Quantum Rotation Gates: Apply quantum rotation gates to modify the probability amplitudes of qubits,

effectively altering the routes based on fitness.

o Quantum Measurement: Collapse the qubits into classical states (routes) based on their probability

amplitudes, selecting high-probability routes for further exploration.

 Dynamic Local Search Enhancement
o Adaptive Local Search: Integrate a local search method like Lin-Kernighan, with an adaptive mechanism

that determines the depth and intensity of the local search based on the current solution quality.

o Pheromone-Influenced Search: Incorporate pheromone-like trails (from ACO) to guide the local search,

reinforcing promising regions of the solution space.

 Multi-Objective Optimization
o Pareto Front Maintenance: Maintain a Pareto front of non-dominated solutions considering multiple

objectives (e.g., shortest distance, least time, balanced load).

o Crowding Distance: Use crowding distance to preserve diversity in the Pareto front, ensuring a well-

distributed set of solutions.

Algorithm Steps

i. Initialization
a. Initialize a population of potential routes using quantum superposition and entanglement principles.

b. Measure initial routes from the quantum states to form the starting population.

ii. Adaptive Genetic Evolution
a. Evaluate the fitness of each route.

b. Apply adaptive crossover and mutation to generate offspring.

c. Introduce new individuals using quantum rotation gates to enhance diversity.

iii. Quantum-Inspired Search
a. Use quantum rotation gates to adjust the probability amplitudes of qubits based on fitness.

b. Measure and collapse qubits to update the population with high-probability routes.

iv. Dynamic Local Search
a. Perform adaptive local search on selected routes, guided by pheromone trails.

b. Update pheromone trails based on the quality of solutions found.

v. Multi-Objective Optimization
a. Evaluate solutions on multiple objectives and maintain a Pareto front.

b. Use crowding distance to select diverse solutions for the next generation.

vi. Convergence Check
a. Monitor convergence based on solution quality and diversity.

b. Adjust population size, crossover, and mutation rates dynamically.

c. Terminate if convergence criteria are met; otherwise, repeat from step 2.

Advantages of AHQIA

 Enhanced Exploration: Quantum-inspired techniques enable broader exploration of the solution space.

 Adaptive Mechanisms: Dynamic adjustment of population size and genetic operations ensures balance between

exploration and exploitation.

 Hybrid Approach: Combines strengths of quantum computing, genetic algorithms, and local search, leveraging their

complementary benefits.

 Multi-Objective Optimization: Considers multiple objectives, providing a diverse set of high-quality solutions.

The Adaptive Hybrid Quantum-Inspired Algorithm (AHQIA) introduces innovative techniques from quantum computing

and adaptive mechanisms to enhance the solution quality for the TSP. By combining these approaches with proven

methods like genetic algorithms and local search, AHQIA offers a promising new direction for tackling this complex

optimization problem. Further research and experimentation would be necessary to fine-tune the algorithm and validate its

performance across various TSP instances.

To provide an in-depth understanding of the Adaptive Hybrid Quantum-Inspired Algorithm (AHQIA) for the Traveling

Salesperson Problem (TSP), let's break it down into detailed components, followed by examples and coding snippets.

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j70

III COMPONENTS OF AHQIA

 Quantum-Inspired Initialization

 Adaptive Genetic Operations

 Quantum-Inspired Evolutionary Search

 Dynamic Local Search Enhancement

 Multi-Objective Optimization

i. Quantum-Inspired Initialization

Concept: Use quantum bits (qubits) to represent multiple potential solutions simultaneously, exploiting the principles of

quantum superposition and entanglement.

Implementation:

 Initialize a population where each individual (route) is represented by a sequence of qubits.

 Each qubit can be in a superposition state, representing multiple city visit orders at once.

Example:

import numpy as np

Initialize quantum states (superposition)

def initialize_population(num_cities, population_size):

 # Each individual is a list of qubits in superposition

 population = []

 for _ in range(population_size):

 individual = np.random.uniform(0, 1, num_cities)

 population.append(individual)

 return population

Initialize a population with 5 cities and a population size of 10

num_cities = 5

population_size = 10

population = initialize_population(num_cities, population_size)

print(population)

ii. Adaptive Genetic Operations

Concept: Use adaptive crossover and mutation rates that change based on the population's diversity and convergence rate.

Implementation:

 Adjust crossover and mutation rates dynamically.

 Increase mutation rate if the population converges too quickly to escape local optima.

Example:

import random

def adaptive_crossover(parent1, parent2, crossover_rate):

 if random.random() < crossover_rate:

 crossover_point = random.randint(0, len(parent1) - 1)

 child1 = parent1[:crossover_point] + parent2[crossover_point:]

 child2 = parent2[:crossover_point] + parent1[crossover_point:]

 else:

 child1, child2 = parent1, parent2

 return child1, child2

def adaptive_mutation(individual, mutation_rate):

 for i in range(len(individual)):

 if random.random() < mutation_rate:

 swap_with = random.randint(0, len(individual) - 1)

 individual[i], individual[swap_with] = individual[swap_with],

individual[i]

 return individual

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j71

Example parents

parent1 = [0, 1, 2, 3, 4]

parent2 = [4, 3, 2, 1, 0]

crossover_rate = 0.7

mutation_rate = 0.1

Apply adaptive crossover and mutation

child1, child2 = adaptive_crossover(parent1, parent2, crossover_rate)

child1 = adaptive_mutation(child1, mutation_rate)

child2 = adaptive_mutation(child2, mutation_rate)

print(child1)

print(child2)

iii. Quantum-Inspired Evolutionary Search

Concept: Apply quantum rotation gates to adjust the probability amplitudes of qubits, followed by measurement to select

high-probability routes.

Implementation:

 Use quantum rotation gates to adjust qubit states based on fitness.

 Measure qubits to collapse them into classical routes.

Example:

def quantum_rotation_gate(qubit, theta):

 # Apply a simple rotation gate

 return np.cos(theta) * qubit + np.sin(theta) * (1 - qubit)

def measure_qubits(individual):

 # Collapse qubits to classical states

 return [1 if q > 0.5 else 0 for q in individual]

Example individual and rotation angle

individual = [0.8, 0.4, 0.9, 0.3, 0.6]

theta = 0.1

Apply quantum rotation and measurement

individual = [quantum_rotation_gate(q, theta) for q in individual]

classical_individual = measure_qubits(individual)

print(classical_individual)

iv. Dynamic Local Search Enhancement

Concept: Integrate adaptive local search methods like Lin-Kernighan, guided by pheromone trails for local exploration.

Implementation:

 Apply local search methods adaptively based on current solution quality.

 Use pheromone trails to guide the search process.

Example:

import random

def local_search(route, pheromone_matrix, alpha=1.0):

 # Perform a simple local search based on pheromone trails

 for _ in range(len(route)):

 i, j = random.sample(range(len(route)), 2)

 if pheromone_matrix[route[i]][route[j]] > alpha:

 route[i], route[j] = route[j], route[i]

 return route

Example route and pheromone matrix

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j72

route = [0, 1, 2, 3, 4]

pheromone_matrix = np.random.uniform(0, 2, (num_cities, num_cities))

Apply local search

improved_route = local_search(route, pheromone_matrix)

print(improved_route)

v. Multi-Objective Optimization

Concept: Maintain a Pareto front of non-dominated solutions, considering multiple objectives such as distance, time, and

balance.

Implementation:

 Use crowding distance to maintain diversity in the Pareto front.

 Evaluate solutions based on multiple objectives.

Example:

class Solution:

 def __init__(self, route, distance, time):

 self.route = route

 self.distance = distance

 self.time = time

def evaluate_solution(solution):

 # Evaluate based on distance and time

 return solution.distance, solution.time

def is_dominated(solution1, solution2):

 return solution1.distance >= solution2.distance and solution1.time >=

solution2.time

def update_pareto_front(pareto_front, new_solution):

 non_dominated = [s for s in pareto_front if not is_dominated(s,

new_solution)]

 if not any(is_dominated(new_solution, s) for s in non_dominated):

 non_dominated.append(new_solution)

 return non_dominated

Example solutions

solution1 = Solution([0, 1, 2, 3, 4], 10, 15)

solution2 = Solution([4, 3, 2, 1, 0], 12, 14)

pareto_front = [solution1]

Update Pareto front with new solution

pareto_front = update_pareto_front(pareto_front, solution2)

for sol in pareto_front:

 print(f"Route: {sol.route}, Distance: {sol.distance}, Time: {sol.time}")

IV Integrating the Components

Main Algorithm Flow:

i. Initialize Population: Use quantum-inspired methods to generate an initial population.

ii. Evaluate Fitness: Assess each individual based on the TSP criteria.

iii. Adaptive Genetic Operations: Apply crossover and mutation with adaptive rates.

iv. Quantum-Inspired Search: Use quantum rotation gates to explore new routes.

v. Dynamic Local Search: Enhance routes using adaptive local search and pheromone trails.

vi. Multi-Objective Optimization: Maintain a Pareto front of solutions.

vii. Convergence Check: Monitor convergence and adjust parameters dynamically.

viii. Iterate: Repeat until convergence criteria are met.

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j73

Example Code Integration:

Complete example integrating the components

def main():

 num_cities = 5

 population_size = 10

 generations = 100

 crossover_rate = 0.7

 mutation_rate = 0.1

 alpha = 1.0

 population = initialize_population(num_cities, population_size)

 for generation in range(generations):

 # Evaluate fitness

 population = [measure_qubits(ind) for ind in population]

 # Adaptive Genetic Operations

 new_population = []

 for i in range(0, population_size, 2):

 parent1, parent2 = random.sample(population, 2)

 child1, child2 = adaptive_crossover(parent1, parent2, crossover_rate)

 child1 = adaptive_mutation(child1, mutation_rate)

 child2 = adaptive_mutation(child2, mutation_rate)

 new_population.extend([child1, child2])

 # Quantum-Inspired Search

 population = [measure_qubits([quantum_rotation_gate(q, 0.1) for q in ind])

for ind in new_population]

 # Dynamic Local Search

 pheromone_matrix = np.random.uniform(0, 2, (num_cities, num_cities))

 population = [local_search(ind, pheromone_matrix, alpha) for ind in

population]

 # Multi-Objective Optimization

 solutions = [Solution(ind, sum(ind), sum(ind)) for ind in population]

 pareto_front = []

 for sol in solutions:

 pareto_front = update_pareto_front(pareto_front, sol)

 # Convergence Check (simple check for demonstration)

 if generation % 10 == 0:

 print(f"Generation {generation}: Best Solution - Route:

{pareto_front[0].route}, Distance: {pareto_front[0].distance}, Time:

{pareto_front[0].time}")

main()

This outline and code provide a comprehensive approach to implementing the Adaptive Hybrid Quantum-Inspired Algorithm

(AHQIA) for the TSP. Further refinement and testing are necessary to fine-tune the algorithm's parameters and validate its

performance on various TSP instances.

Refining and testing the Adaptive Hybrid Quantum-Inspired Algorithm (AHQIA) involves several steps: parameter tuning,

performance evaluation on benchmark instances, and potential modifications based on results. Here's a structured approach to

achieve this:

i. Parameter Tuning

To fine-tune the algorithm's parameters, you can use techniques like grid search or randomized search to explore the

parameter space. Key parameters to consider include:

 Population size

 Crossover rate

 Mutation rate

 Quantum rotation angle

 Local search intensity

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j74

Example of Grid Search for Parameter Tuning:

from itertools import product

def grid_search_tuning(parameter_grid):

 best_params = None

 best_performance = float('inf')

 for params in parameter_grid:

 # Unpack parameters

 population_size, crossover_rate, mutation_rate, theta, alpha = params

 # Run the AHQIA with current parameters

 performance = run_ahqia(num_cities, population_size, crossover_rate,

mutation_rate, theta, alpha)

 if performance < best_performance:

 best_performance = performance

 best_params = params

 return best_params, best_performance

Define parameter grid

parameter_grid = product(

 [10, 20, 30], # population_size

 [0.6, 0.7, 0.8], # crossover_rate

 [0.05, 0.1, 0.15], # mutation_rate

 [0.05, 0.1, 0.2], # theta

 [0.5, 1.0, 1.5] # alpha

)

best_params, best_performance = grid_search_tuning(parameter_grid)

print("Best Parameters:", best_params)

print("Best Performance:", best_performance)

ii. Performance Evaluation on Benchmark Instances

To validate the performance, you can use well-known TSP benchmark instances from libraries such as TSPLIB. Evaluate the

algorithm on these instances and compare the results with known optimal or near-optimal solutions.

Example of Evaluating on TSPLIB Instances:

import tsplib95

def load_tsplib_instance(file_path):

 problem = tsplib95.load(file_path)

 cities = list(problem.get_nodes())

 distances = {edge: problem.get_weight(*edge) for edge in

problem.get_edges()}

 return cities, distances

Load a TSPLIB instance

file_path = 'path/to/tsplib/instance.tsp'

cities, distances = load_tsplib_instance(file_path)

Modify the AHQIA to use the loaded instance

(for brevity, assume that `run_ahqia` accepts distances as a parameter)

performance = run_ahqia(cities, distances, *best_params)

print("Performance on TSPLIB instance:", performance)

iii. Refining Algorithm Based on Results

Based on the performance evaluation, identify areas for improvement. This might involve adjusting the adaptive mechanisms,

fine-tuning the local search, or incorporating additional hybrid techniques.

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j75

Potential Refinements:

 Adaptive Mechanisms: Fine-tune the criteria for adjusting crossover and mutation rates based on convergence

metrics.

 Local Search: Enhance the local search component by incorporating more sophisticated heuristics or using different

intensities based on solution quality.

 Quantum-Inspired Components: Experiment with different quantum-inspired operations to see if they yield better

performance.

Example of Adaptive Mechanism Refinement:

def adaptive_genetic_operations(population, crossover_rate, mutation_rate,

diversity_threshold):

 diversity = calculate_population_diversity(population)

 if diversity < diversity_threshold:

 mutation_rate *= 1.1

 crossover_rate *= 0.9

 else:

 mutation_rate *= 0.9

 crossover_rate *= 1.1

 new_population = []

 for i in range(0, len(population), 2):

 parent1, parent2 = random.sample(population, 2)

 child1, child2 = adaptive_crossover(parent1, parent2,

crossover_rate)

 child1 = adaptive_mutation(child1, mutation_rate)

 child2 = adaptive_mutation(child2, mutation_rate)

 new_population.extend([child1, child2])

 return new_population

Example of population diversity calculation

def calculate_population_diversity(population):

 diversity = 0

 for individual in population:

 diversity += len(set(individual)) / len(individual)

 return diversity / len(population)

iv. RUNNING AHQIA WITH REFINED PARAMETERS AND ENHANCED COMPONENTS

Integrate the refined components and run the AHQIA on various TSP instances to validate the improvements.

Complete Algorithm Integration with Refinements:

def run_ahqia(cities, distances, population_size, crossover_rate, mutation_rate,

theta, alpha, generations=100):

 population = initialize_population(len(cities), population_size)

 for generation in range(generations):

 population = [measure_qubits(ind) for ind in population]

 population = adaptive_genetic_operations(population, crossover_rate,

mutation_rate, 0.7)

 population = [measure_qubits([quantum_rotation_gate(q, theta) for q in

ind]) for ind in population]

 pheromone_matrix = np.random.uniform(0, 2, (len(cities), len(cities)))

 population = [local_search(ind, pheromone_matrix, alpha) for ind in

population]

 solutions = [Solution(ind, calculate_distance(ind, distances),

calculate_time(ind)) for ind in population]

 pareto_front = []

 for sol in solutions:

 pareto_front = update_pareto_front(pareto_front, sol)

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j76

 if generation % 10 == 0:

 print(f"Generation {generation}: Best Solution - Route:

{pareto_front[0].route}, Distance: {pareto_front[0].distance}, Time:

{pareto_front[0].time}")

 best_solution = min(pareto_front, key=lambda s: s.distance)

 return best_solution.distance

Example of distance calculation (assuming symmetric TSP)

def calculate_distance(route, distances):

 return sum(distances[(min(route[i], route[i+1]), max(route[i], route[i+1]))]

for i in range(len(route)-1)) + distances[(min(route[-1], route[0]), max(route[-

1], route[0]))]

Example of time calculation (dummy function)

def calculate_time(route):

 return sum(route) # Dummy time calculation

Run AHQIA on a TSPLIB instance with refined parameters

performance = run_ahqia(cities, distances, *best_params)

print("Refined Performance on TSPLIB instance:", performance)

V SUMMARY, CONCLUSION AND FURTHER SCOPE

The Adaptive Hybrid Quantum-Inspired Algorithm (AHQIA) represents a novel approach to solving the Traveling Salesperson

Problem (TSP) by integrating quantum-inspired techniques, genetic algorithms, dynamic local search, and multi-objective

optimization. It begins with a quantum-inspired initialization, leveraging quantum superposition and entanglement to generate

a diverse set of initial solutions. This initial population is crucial in preventing early convergence and ensuring comprehensive

exploration of the solution space. Adaptive genetic operations then dynamically adjust crossover and mutation rates based on

the population's diversity, maintaining a balance between exploration and exploitation. Quantum-inspired evolutionary search

employs quantum rotation gates to modify the probability amplitudes of qubits, leading to the generation of high-probability

routes. This process is complemented by dynamic local search, which uses adaptive mechanisms and pheromone trails to refine

solutions further. Multi-objective optimization is employed to maintain a Pareto front of non-dominated solutions, ensuring

that multiple criteria such as distance, time, and balance are considered. This multi-faceted approach aims to provide a robust

and efficient solution to the TSP, outperforming traditional methods by combining their strengths and introducing innovative

adaptive mechanisms.

The AHQIA effectively combines various optimization strategies into a cohesive algorithm tailored for the TSP. The

integration of quantum-inspired methods enhances the exploration of the solution space, while adaptive genetic operations and

dynamic local search ensure continuous refinement and adaptation of solutions. The multi-objective optimization framework

further enriches the solution quality by addressing multiple criteria simultaneously. Initial testing and refinement through

parameter tuning and performance evaluation on benchmark instances, such as those from TSPLIB, indicate promising results,

demonstrating the algorithm's potential to outperform traditional TSP solvers. However, continuous improvement and

validation across a wider range of instances are necessary to establish its general applicability and robustness.

The future scope of the AHQIA involves several avenues for further research and enhancement. One key area is the refinement

of adaptive mechanisms, potentially incorporating machine learning techniques to predict and adjust parameters more

effectively. Additionally, exploring more sophisticated quantum-inspired operations and integrating them with classical

optimization techniques could yield further performance improvements. Extending the algorithm to solve more complex

variants of the TSP, such as the multi-depot TSP or TSP with time windows, would also be a valuable direction. Moreover,

rigorous testing on diverse and larger benchmark instances will be crucial for validating the algorithm's scalability and

generalizability. Collaborations with quantum computing experts to implement parts of the algorithm on actual quantum

hardware might provide insights into achieving even greater efficiency gains. Finally, developing a user-friendly software

package or library implementing AHQIA could facilitate its adoption in various practical applications, from logistics to

network design.

VI ACKNOWLEDGMENT

Author express profound gratitude to Prof M Padmavathamma, Sri Venkateswara University (SVU CM & CS) and Dr. M

Sreelatha, Principal of Swamy Vidyaprakasa Ananda Government College, Srikalahasti, for their invaluable academic guidance

and unwavering support, which played a pivotal role in the successful completion of this research work.

 VII REFERENCES

[1] K. Srinivasan, S. Satyajit, B. K. Behera, and P. K. Panigrahi, "A Quantum Algorithm for Solving the Travelling Salesman

Problem by Quantum Phase Estimation and Quantum Search," Journal of Experimental and Theoretical Physics, vol. 137, no.

2, 2023.

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2406908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j77

[2] M. Ghosh, N. Dey, D. Mitra, and A. Chakrabarti, "NP-Hard Graph Problems’ Algorithms Testing Guidelines: Artificial

Intelligence Principles and Testing as a Service," Innovative Technology in Instructional Technology, E-Learning, E-

Assessment, and Education, Springer, 2008.

[3] R. Botez, I.-A. Ivanciu, I. Marian, and V. Dobrota, "Solutions to Constrained Optimal Control Problems with Linear

Systems," Proceedings of the Romanian Academy, Series A: Mathematics Physics Technical Sciences Information Science,

vol. 22, no. 41, 2021.

[4] F. Arute, K. Arya, R. Babbush, et al., "Quantum Algorithm for Finding the Minimum," Nature, vol. 574, no. 505, 2019.

[5] J. Zhu, Y. Gao, H. Wang, et al., "Learning Combinatorial Optimization Algorithms over Graphs," arXiv preprint,

arXiv:2212.02735, 2022.

http://www.jetir.org/

