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Abstract:  The global mortality rate associated with cardiovascular disease (CVD) continues to rise each year. Timely prediction of the disease 
has the potential to save millions of lives. Machine Learning (ML) algorithms utilized for these tasks are capable of recognizing subtle patterns 

and risk factors that might not be evident to medical practitioners. However, existing ML methodologies lack the ability to deliver enhanced 

accuracy and performance. An ensemble technique, the Weighted Majority Voting Ensemble (WMVE) classifier, is implemented to improve the 

performance of CVD prediction. The WMVE classifier undergoes training and testing using the "Sathvi" dataset, a composite of the Cleveland, 

Hungarian, Long Beach, and Switzerland datasets. Pearson's correlation technique was utilized for feature selection to remove highly correlated 

feature. Employing Multilayer Perceptron (MLP), Extreme Gradient Boosting (XGBoost), CatBoost, and Logistic Regression (LR) as the base 

classifiers, the WMVE model has achieved an accuracy rate of 88.78% and an Area Under the Receiver Operating Characteristic curve 
(AUROC) of 0.899, outperforming all base classifiers. 

Keywords- cardiovascular disease, machine learning algorithms, weighted majority voting, ensemble technique, feature 

selection. 

 

I. INTRODUCTION 

Accounting for approximately 32% of global deaths, the World Health Organization (WHO) assessed those 1.79 crore 

individuals expired due to cardiovascular diseases (CVDs) in 2019. This trend of increasing CVD-related casualties has persisted in 

the subsequent years as well [1]. The term 'cardiovascular disease' (CVD) denotes a category of illnesses affecting the heart or 

blood vessels. Coronary artery disease (CAD) is the most prevalent form of heart disease among adults worldwide. It is commonly 

linked to the buildup of lipid deposits within the arteries, a condition known as atherosclerosis. This condition impacts the blood 

flow to the heart, and reduced blood flow may lead to a cardiac event. CVD risk is significantly influenced by hypertension, 

elevated blood cholesterol levels, and usage of tobacco. Nearly half of the United States population (47%) possesses at least one of 

these three risk factors. Adopting a healthy lifestyle can reduce the likelihood of developing CVD [2,3]. 

D. Stojanov et al [4] investigated 167 patients admitted to Villa Scassi Hospital in Genoa, Italy, focusing on predicting coronary 

artery disease versus cardiac failure. They analyzed nine biochemical parameters, including Triglycerides, Aspartate 

Aminotransferase, C-reactive protein, Alanine Transaminase, High-sensitive Cardiac Troponin I, Hemoglobin, High-density 

Lipoprotein, Low-density Lipoprotein, and Serum Creatinine. Through feature selection, they identified Serum Creatinine, High-

sensitive Cardiac Troponin I, Aspartate Aminotransferase, Hemoglobin, and C-reactive protein as crucial parameters for diagnosing 

coronary artery disease against cardiac failure. The logistic regression model was utilized for prediction, yielding an AUROC of 

0.805. Due to the limited dataset containing only 167 patient records, a lower AUROC is observed. The work presented by I. 

Tougui et al [5] utilized the Cleveland heart disease dataset, consisting 303 instances with 14 attributes. The authors used six 

machine learning classification models, namely Naive Bayes, Random Forest, Logistic Regression, Artificial Neural Network, K 

Nearest Neighbors, and Support Vector Machine. The optimal model, achieving an accuracy of 85.86%, was the Artificial Neural 

Network. Further improvement in accuracy is suggested through hyperparameter tuning. 
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II. RELATED WORKS 

 

   A. Ghasemieh et al [6] employed a proprietary dataset from the Massachusetts Institute of Technology (MIT) Laboratory for 

Computational Physiology. Their approach involved a stacking ensemble, with base models including Support Vector Machines, 

Random Forest, K-Nearest Neighbors, Decision Tree, Extreme Gradient Boosting, and Logistic Regression, while Extreme 

Gradient Boosting served as the meta-learner. The stacking ensemble achieved an accuracy of 88%. However, its hierarchical 

structure introduces higher computational complexity, posing a potential drawback in clinical settings. B. A. Tama et al [7] 

introduced a two-tier ensemble technique, combining the gradient boosting machine, random forest, and XGBoost in a stacked 

structure. Feature selection was implemented using the particle swarm optimization (PSO) method. The classification model 

underwent training and testing on diverse heart disease datasets, including Cleveland, Z-Alizadeh Sani, Hungarian, and Statlog. 

The resulting classification model achieved the highest accuracy of 85.71%, surpassing the performance of all its individual base 
classifiers. 

       K. V. V. Reddy et al [8] employed ten classifier algorithms on the Cleveland heart disease dataset. Optimal attributes were 

selected through attribute evaluators, including ReliefF attribute evaluation, feature selection based on correlation, and chi-squared 

attribute evaluation. When using optimal attributes from the chi-squared attribute evaluator, the Sequential Minimal Optimization 

(SMO) classifier obtained an accuracy score of 86.468%, and 85.148% with complete attributes. The authors suggested that 

combining multiple datasets could provide more instances for optimal feature selection, leading to an improved predictive model 

for cardiovascular disease (CVD). The work presented by C. Gazeloğlu et al [9] employed eighteen machine learning algorithms 

and three feature selection methods namely feature selection based on correlation, chi-square feature selection, and fuzzy rough set 

for the Cleveland heart disease dataset. The Radial Basis Function (RBF) Network algorithm achieved an accuracy of 81.188% 

when utilizing chi-square feature selection. Naive Bayes (NB) resulted in an accuracy of 84.818% with feature selection based on 

correlation, while the support vector machine (PolyKernel) algorithm achieved an accuracy score of 85.148% without feature 
selection. 

        C. B. C. Latha at al [10] explored multiple ensemble techniques, including bagging, majority voting, boosting, and stacking on 

the Cleveland heart disease dataset. They selected classifiers such as Naive Bayes (NB), Bayes Net (BN), C4.5, Projective 

Adaptive Resonance Theory (PART), Multilayer perceptron (MLP), and Random Forest (RF). The majority voting ensemble 

yielded the highest accuracy of 85.48%, with Naive Bayes, Multilayer perceptron, Bayes Net, and Random Forest as the base 
classifiers. The study observed enhanced performance across all ensemble techniques when integrating feature selection methods. 

The work presented by D. Ananey-Obiri et al [11] utilized the Gaussian Naive Bayes, decision tree classifier, and logistic 

regression for the Cleveland heart disease dataset. A feature reduction process was implemented by the single value decomposition 

method, reducing the number of features from 13 to 4. Both Gaussian Naive Bayes and logistic regression achieved the maximum 

accuracy score of 82.75% for CVD prediction. Fig. 1 depicts the heart disease prediction method. 

Several studies have been conducted on various ensemble techniques; however, there is a lack of research on training a simple and 

computationally efficient ensemble classifier with a dataset containing more instances and without missing values. This study aims 

to implement a weighted majority voting ensemble (WMVE) classifier with an optimal and diverse selection of base classifiers, and 

the hyperparameters of these classifiers will be finely tuned to improve the performance of the WMVE in predicting the likelihood 

of CVD.  

 

III. METHODOLOGY 

                                                                                      
                                                                  Fig. 1. Heart disease prediction method. 
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3.1 Dataset     

                              

The WMVE classifier was developed using the 'Sathvi' dataset, which is a combination of the Cleveland, Hungarian, Long 

Beach, and Switzerland datasets available in the UCI Machine Learning Repository [13]. The dataset comprised 531 instances with 

12 features and is devoid of missing values. The 'Sathvi' dataset is derived from a Combined or Hybrid dataset, which consists of 

920 instances with 14 features, and exhibits 621 missing values. Due to the presence of more than 50% missing values in the 'ca' 

and 'thal' features, these attributes were discarded from the hybrid dataset. Additionally, row instances with missing values were 

excluded from the dataset. The dataset produced is denoted as the 'Sathvi' dataset, and both the Sathvi and Hybrid datasets can be 

found in the supplemental file provided in reference [12]. The visualization of the 'Sathvi' dataset is presented in Fig. 2. It displays 

the distribution of target values, where 0 indicates instances not at risk of CVD, and 1, 2, 3, and 4 indicate varying levels of CVD 

risk. 

 

                                                    
                                                   Fig. 2. Graphical representation of the 'Sathvi' dataset. 

 

3.2 Data categorization 

 

      Binary classification was employed on the 'Sathvi' dataset, where the target attribute values ranging from 1 to 4 were converted 

to 1, representing the positive class, indicating individuals at risk of CVD, and 0, representing the negative class, indicating those 

without CVD risk. Fig. 3 represents the binary classification analysis. It illustrates the distribution of heart disease presence (1) and 

absence (0), showing that 324 patients are at risk of CVD, while 207 patients are not. 

 

                                                          
                                                                        Fig.3. Analysis of binary classification. 
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3.3 Feature selection 

 

      When training the model, two or more features can convey essentially the same information to the model, resulting in redundant 

information that prevents generalization rather than enhancing model complexity. To mitigate this redundancy and achieve an 

optimal number of features, feature selection technique known as the Pearson correlation coefficient 𝑅(𝑋, 𝑌)  is employed [14]. 

This coefficient assesses the correlation between each pair of attributes, encompassing values within the range of -1 to 1. -1 

signifies an inverse linear correlation, 0 denotes no linear correlation, and 1 signifies a linear correlation. Eq. (1) defines the 

Pearson correlation coefficient 𝑅(𝑋, 𝑌). The Pearson correlation heatmap in Fig. 4 illustrates a considerable correlation between the 

"slope" and "oldpeak" features. To prevent redundant information, one of these features, namely "slope" is discarded. 

Subsequently, the dataset without the "slope" feature is employed for training and testing the classifier. 

Consider a dataset (𝑋, 𝑌) with a sample size of 𝑛. 𝑅(𝑋, 𝑌) represents the Pearson correlation coefficient between 𝑋 and 𝑌, 

𝐶𝑜𝑣(𝑋, 𝑌) is the covariance between 𝑋 and 𝑌, √𝐷(𝑋) and √𝐷(𝑌) denote the standard deviations of 𝑋 and 𝑌 respectively, and 𝑥̅ 

and 𝑦̅ represent the means of 𝑋 and 𝑌 respectively. 

 

𝑅(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝐷(𝑋) √𝐷(𝑌)
 

 

                                  =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1  √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 

 

 

 

                                 
                                                                Fig. 4. Pearson's correlation coefficient heatmap.        

 

IV. Proposed ensemble model 

4.1 The Weighted Majority Voting Ensemble (WMVE) classifier 

        The Weighted Majority Voting Ensemble (WMVE) classifier enhances the performance and robustness of CVD predictive 

model through the integration of predictions from multiple algorithms. The process underlying the WMVE is depicted in Fig. 5. It 

employs Logistic Regression, Extreme Gradient Boosting, CatBoost, and Multilayer Perceptron as its base classifiers. Predictions 

from each classifier are combined through majority or hard voting, wherein the class label with the maximum number of votes from 

all the base classifiers is considered the final prediction for the WMVE classifier. The weights for each classifier are assigned, with 

a lower weight set at 1 and a higher weight at 2. This configuration imparts twice the voting power to the classifier compared to the 

other classifiers. Assigning a higher weight to the Multilayer Perceptron (MLP) considerably improves the performance of the 

WMVE classifier [15]  compared to assigning a higher weight to other classifiers.  

(1) 
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Let 𝑑𝑖,𝑗 symbolizes the decision of the classifier 𝐶𝑖 regarding class 𝑙𝑗, taking the value 1 if 𝐶𝑖 selects 𝑙𝑗 and 0 otherwise. In the 

process of weighted majority voting, the combination of decisions from all classifiers will lead to the choice of class 𝑙𝑗 if 

        ∑ 𝑤𝑖𝑑𝑖,𝑗 ≥ max
𝑗=1

{∑ 𝑤𝑖𝑑𝑖,𝑗

𝐼

𝑖=1

}

𝐼

𝑖=1

  

 

i.e., in Eq. (2) if the cumulative weighted vote assigned to class 𝑙𝑗 exceeds or equals the total vote received by any other class. 

 

                                              
                                                                             Fig. 5. Operation of WMVE classifier. 

 

4.2 Base classifiers 

4.2.1  Logistic regression 

          Binary classification problems are commonly addressed using logistic regression [16]. It employs the logistic or sigmoid 

function, as indicated in Eq. (3) and Eq. (4), to estimate the probability of an instance belonging to one of the two classes. The 

resulting probability values fall within the range of 0 to 1. The threshold serves as a decision boundary, determining whether the 

predicted probability corresponds to class 0 or class 1. 

           𝑃(𝑋; 𝛽0, 𝛽) = 𝑃𝑟(𝑌 = 1|𝑋 = 𝑥; 𝛽0, 𝛽) 

                            =
𝑒𝛽0+𝑥𝑇𝛽

1 + 𝑒𝛽0+𝑥𝑇𝛽
   

 

 1 − 𝑃(𝑋; 𝛽0, 𝛽) = 𝑃𝑟(𝑌 = 0|𝑋 = 𝑥; 𝛽0, 𝛽) 

                        =
1

1 + 𝑒𝛽0+𝑥𝑇𝛽
 

 

𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑛), denote the regression coefficients in Eq. (3) and Eq. (4); 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇; 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛)𝑇, where 

𝑋1, 𝑋2, … , 𝑋𝑛 denote the 𝑛 independent variables, 𝑌 be the dependent variable. 

4.2.2 Extreme gradient boosting 

         XGBoost, abbreviated from Extreme Gradient Boosting, is based on a distributed gradient-boosted decision tree (GBDT) 

[17]. It constructs a sequence of weak learners, typically decision trees, wherein each subsequent tree rectifies the errors of its 

predecessors. Introducing regularization in its cost function, XGBoost aims to mitigate overfitting, thereby enhancing 

generalization. Eq. (5) defines the loss function of the XGBoost algorithm. 

(2) 

(3) 

(4) 

(5) 
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𝐿(𝑡) =  ∑ 𝑙(𝑦𝑖 ,

𝑛

𝑖=1

𝑦̂𝑖
(𝑡−1) + 𝑓𝑡(𝑋𝑖)) + Ω(𝑓𝑡) 

    Ω(𝑓𝑡) =  𝛾𝑇 +
1

2
𝜆 ∑ 𝜔𝑗

2

𝑇

𝑗=1

 

 

Here, 𝑙(𝑦𝑖 , 𝑦̂𝑖
(𝑡−1) + 𝑓𝑡(𝑋𝑖)) denotes the prediction residual of the 𝑖th sample at the 𝑡th iteration, 𝑋𝑖 denotes the 𝑖th sample, Ω(𝑓𝑡) in 

Eq. (6) denotes the regularization term, 𝜔𝑗
2 is the leaf node score, 𝑇 is the count of leaf nodes, 𝛾 denotes the coefficient, and 𝜆 is the 

coefficient for the sum of weights [18]. 

 

4.2.3 CatBoost 

         CatBoost, short for Categorical Boosting, is based on a gradient boosting framework. Its specialized design enables efficient 

handling of categorical features without the requirement for preprocessing like one-hot encoding. CatBoost yields great results with 

default parameters, minimizing the necessity for extensive hyperparameter tuning. During the initial split calculation, quantization 

is utilized for each numerical feature to identify potential data-splitting strategies [19]. The transformation of categorical features 
into numerical features is indicated in Eq. (7) 

Consider a random ordering of the sample, denoted as 𝜎 = (𝜎0, 𝜎1, … , 𝜎𝑛).  Assuming that the sample is randomly sorted as 𝜎𝑝 the 

𝑘th dimensional feature  𝑥𝜎𝑝,𝑘 is treated as a categorical feature. 

    𝑥̂𝑘
𝑖 =  

∑ [𝑥𝜎𝑗 ,𝑘 =  𝑥𝜎𝑝,𝑘] . 𝑌𝜎𝑗
+ 𝑎. 𝑝

𝑝−1
𝑗=1

∑ [𝑥𝜎𝑗 ,𝑘 =  𝑥𝜎𝑝,𝑘] + 𝑎
𝑝−1
𝑗=1

 

 

Here, 𝑥̂𝑘
𝑖  represents a target variable statistic, 𝑥𝜎𝑗 ,𝑘  denotes a categorical feature, 𝑝 signifies the a priori value, 𝑌𝜎𝑗

 represents the 

label value of the respective feature, and 𝑎 >  0 serves as a weight denoting the priori value [20]. 

 

4.2.4 Multilayer perceptron 

         Multilayer Perceptron (MLP) is a variant of artificial neural network architecture [21]. It is structured with an input layer, 

hidden layers, and an output layer. Nodes or neurons are present in each layer. The weights between neurons represent the strength 

of connections, while biases enable the model to consider variations. Weights and biases are adjusted using the optimization 

algorithms to reduce the loss function. Eq. (8) and Eq. (9) describe a neuron 𝑘. 

  𝑢𝑘 =  ∑ 𝑤𝑘𝑗𝑥𝑗

𝑛

𝑗=1

  

 

      𝑦𝑘 =  𝜑(𝑢𝑘 + 𝑏𝑘) 

 

where 𝑥1, 𝑥2, … , 𝑥𝑛  denote the input signals and  𝑤𝑘1, 𝑤𝑘2, … , 𝑤𝑘𝑛 denote the weights of neuron 𝑘; 𝑏𝑘  is the bias, 𝜑 is the 

activation function, and 𝑦𝑘  is the output signal of neuron 𝑘 [22].  

 

4.2.5 Implementation 

         Jupyter Notebook serves as the Integrated Development Environment for all operations using Python (version 3.11.3). Python 

libraries including Seaborn, Scikit-Learn, Pandas, Matplotlib, and NumPy were employed. System specifications utilized in ML 

algorithm generation are presented in Table 1. 

 

                                                                Table 1. System specifications 

 

Hardware configuration for ML algorithms generation 

RAM 8GB 

CPU 12th Gen Intel(R) Core (TM)i5-1235U, 1.30 

GHz, 10 Core(s), 12 Logical Processor(s) 

Storage 512GB SSD 

GPU Integrated GPU 

 

 

 

 

 

 

 

 

 

(6) 

(7) 

(8) 

(9) 
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V. RESULTS AND DISCUSSIONS 

 

5.1 Train and test dataset 

 

      All classifiers are initially trained on the training dataset, and subsequently, the classifiers performance analyzed using the test 

dataset. The dataset is split into an 80:20 ratio, allocating 80% for training and the remaining 20% for testing, consisting of 424 

instances in the training set and 107 instances in the testing set. In Fig. 6, the confusion matrix is presented, depicting the 
association between the actual class and the predicted class. 

 

5.2 Accuracy 

 

      It calculates the proportion of accurately predicted instances relative to the total number of instances in a dataset. Eq. (10) gives 

the accuracy scores for individual classifiers. Fig. 7 illustrates the comparison of accuracy scores of base classifiers Vs. proposed 
WMVE classifier. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
  

 

5.3 Precision 

 

      It assesses the model's capability to accurately identify true positives within all instances it predicted as positive. Eq. (11) gives 

the precision of the model.                                   

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
    

 

5.4 Recall 

 

      It quantifies the proportion of actual positive classes correctly predicted by the model. Recall of the model is described in Eq. 
(12).   

             𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    

5.5 F1 Score 

 

      It is expressed as the harmonic average of precision and recall of the model with a desirable value of 1 and an undesirable value 
of 0. Eq. (13) provides the F1 score of the model.     

          𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
     

 

5.6 ROC curve 

 

      An ROC curve known as receiver operating characteristic curve [23], is a pictorial representation that depicts the classification 

algorithm performance. It illustrates the balance between a model's true positive rate (sensitivity) and its false positive rate (1-

specificity) at different probability thresholds. Through the execution of soft voting, probability estimates for each class are 

provided by each individual classifier in the ensemble. This feature is valuable for calculating the ROC curve, as it allows a detailed 

examination of the classifier performance across different probability thresholds. 

 The AUROC (Area Under the Receiver Operating Characteristic Curve) was calculated using the trapezoidal rule as described in 

Eq. (14). Eq. (15) and Eq. (16) give the true positive rate (TPR) and false positive rate (FPR) values. Fig. 9 illustrates the ROC plot 

of individual classifiers with their corresponding AUROC values. 

 

𝐴𝑈𝑅𝑂𝐶 = ∑ 𝑇𝑃𝑅(𝑖) ∗ ∆𝐹𝑃𝑅(𝑖)

𝑁

𝑖=1

   

                      

    𝑇𝑃𝑅(𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   

                                       

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
   

 

                                                                                   ∆: 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙                             
 

 

 

 

 

 

(10) 

(11) 

(12) 

(13) 

(14) 

 (15) 

(16) 
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                                          (a)                                                                                                       (b)          

 

                                                  
                                            (c)                                                                                                    (d) 

 

                                                              
                                                                                                (e) 

                                     

                         Fig. 6. Confusion matrix of (a) LR (b) XGBoost (c) CatBoost (d) MLP (e) WMVE. 
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                                       Fig. 7. Comparison of accuracy scores: base classifier Vs. proposed WMVE classifier. 

 

 

 

 

 

                                          
                                          Fig. 8. Performance evaluation: base classifier Vs. proposed WMVE classifier. 

 

 

A confusion matrix for the WMVE classifier in Fig. 6 (e) revealed the accurate identification of 36 cases with CVD (true positives) 

and the precise classification of 59 instances without CVD (true negatives). However, the WMVE model displayed limitations, 

misclassifying 3 cases as false positives and overlooking 9 cases with CVD (false negatives). In the comparative analysis between 

the base classifiers and the proposed WMVE classifier in Fig. 7, the WMVE classifier demonstrated an improvement in accuracy, 

achieving a score of 88.78%. This comparison highlights the efficacy of the WMVE classifier in enhancing predictive accuracy 

compared to its constituent base classifiers. 
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                                                                                          Fig. 9. ROC curves. 

                            

A comprehensive performance evaluation between the base classifiers and the proposed WMVE classifier is presented in Fig. 8. 

Regarding precision, the MLP exhibits the highest performance with a score of 96.61%. For recall, XGBoost and CatBoost both 

achieve a score of 89.70%. Finally, when evaluating the F1 score, the WMVE classifier outperforms others with a score of 90.76%. 

Table 2 represents the accuracy comparison among existing cardiovascular disease (CVD) prediction models. In the proposed 

model, the assignment of weights to the base classifiers lacks precise adaptive adjustment based on the individual performance of 

each classifier, and this limitation restricts the potential for increased accuracy. To address this, adaptive weight adjustments could 
be incorporated based on the performance of the individual base classifiers. 

 

                           Table 2. Comparative accuracy analysis of existing CVD risk prediction classifiers 

 

Author ML Algorithm Accuracy (%) 

B. A. Tama et al. [7] Two-tier ensemble with feature selection using 
PSO 

85.71 

Reddy et al. [8] Combination of Chi-squared and SMO 86.46 

C. Gazeloğlu [9] Feature selection using correlation with NB 84.81 

C.B.C Latha et al. [10] Hard voting involving MLP, BN, NB, and RF  85.48 

Proposed method Weighted Majority Voting Ensemble (WMVE) 88.78 

 

 VI. CONCLUSION  

 

        This study has demonstrated the implementation of a WMVE approach for improved accuracy in CVD prediction. The 

WMVE, consisting of four ML models, achieved an accuracy of 88.78% and an AUROC of 0.899, with a higher weight assigned to 

the Multilayer perceptron classifier. The Pearson correlation coefficient was employed to identify the highly correlated features. 

This work can be extended to explore adaptive weight adjustments in the WMVE classifier and have a comparative study with 

additional ensemble techniques, which could lead to enhanced accuracy in the diagnosis of heart disease. Our approach empowers 
healthcare professionals to promptly make critical decisions about patient well-being. 
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