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Abstract - Electricity theft poses a major problem for utility 

companies, leading to financial losses, safety risks, and increased 

costs for legitimate consumers. With the deployment of smart grids 

and Advanced Metering Infrastructure (AMI), large volumes of 

consumption data are generated, offering a promising avenue for 

detecting such anomalies using machine learning techniques. This 

paper presents a novel approach to electricity theft detection in smart 

grids, leveraging Artificial Neural Networks (ANN) and Deep Neural 

Networks (DNN). The proposed methodology involves the collection 

of consumption data, followed by preprocessing techniques such as 

data imputation, normalization, and feature extraction in both time 

and frequency domains. These features are then fed into ANN and 

DNN models, which classify the data as either normal or indicative of 

theft. To address challenges like class imbalance and missing data, 

techniques like synthetic data generation and interpolation are 

applied. Experimental results show the effectiveness of the proposed 

method in accurately detecting electricity theft while minimizing 

false positives, providing a robust and scalable solution for real-time 

monitoring and theft prevention in smart grids. 

 

Index Terms - Electricity theft, smart grids, machine learning, 

deep neural networks, artificial neural networks, anomaly 

detection, advanced metering infrastructure, data pre-

processing, feature extraction, class imbalance, synthetic data 

generation, real-time monitoring etc. 

 

I.  INTRODUCTION 

1.1 Background 

 Electricity theft, a significant issue for utility providers 

globally, leads to annual losses amounting to billions of 

dollars. This illegal activity not only destabilizes the revenue 

streams of utility companies but also causes disruptions in the 

energy market, often resulting in higher prices for legitimate 

consumers and safety risks, including fire and electrocution 

hazards [1]. Traditional theft detection approaches, such as 

manual meter inspections and audits, are labor-intensive, 

costly, and inadequate in today’s expansive and complex 

power grids [2]. The recent adoption of smart grid technology 

has provided an opportunity for more effective theft detection 

through advanced metering infrastructure (AMI), which 

captures high-resolution consumption data from consumers. 

With this data, utility companies can deploy automated and 

data-driven detection systems capable of identifying unusual 

consumption patterns that may indicate theft [3]. 

 Smart grids employ machine learning (ML) and deep 

learning (DL) methods to analyze large amounts of real-time 

data generated by smart meters. These technologies allow for a 

more nuanced and adaptive approach to theft detection by 

recognizing subtle irregularities that traditional methods may 

overlook. In particular, the deployment of convolutional neural 

networks (CNNs) and ensemble models has enabled advanced 

anomaly detection methods, with CNNs capable of extracting 

features from time-series data and ensemble methods 

improving robustness and accuracy through model diversity 

[4,5]. However, applying these methods in real-time settings 

remains challenging due to the high computational demands 

and latency constraints associated with processing and 

analyzing massive volumes of data in smart grids. 

 

1.2 Challenges in Existing Literature 

 Despite the advancements brought by machine learning 

and deep learning, existing literature highlights several 

challenges that limit the effectiveness of these methods in real-

time electricity theft detection. One of the primary issues is 

data quality. Electricity consumption datasets often contain 

missing values and imbalanced classes, with theft cases 

representing a small fraction of the overall data [6]. Missing 
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values introduce bias in ML models, reducing prediction 

accuracy, while class imbalance often leads to models that 

perform well on non-theft data but fail to detect theft reliably. 

Techniques such as interpolation [7] and synthetic data 

generation methods, like SMOTE, have been employed to 

address these issues, but challenges remain in ensuring data 

integrity and generalizability [6]. 

Another challenge is the complexity of theft detection models. 

While deep learning architectures, such as CNNs and 

autoencoders, capture intricate patterns in consumption data, 

they require substantial computational power, which can 

hinder real-time processing. For example, Zheng et al. [4] 

demonstrated that wide and deep CNNs are effective for theft 

detection but may not be suitable for real-time applications due 

to high resource demands. Additionally, the variety of theft 

tactics—ranging from meter tampering to bypassing 

necessitates adaptable models that can detect diverse theft 

patterns, further increasing computational requirements. 

Ensemble learning, which combines multiple classifiers to 

enhance robustness, has been proposed as a solution, but its 

deployment in real-time environments remains limited due to 

latency and computational constraints [9,10]. 

 Furthermore, the deployment of these methods in live, 

large-scale environments faces challenges related to latency 

and scalability. Real-time applications require fast processing 

to monitor high-frequency data streams effectively, but 

existing algorithms often struggle to meet these demands 

without sacrificing accuracy [6,11]. Edge computing and task 

offloading strategies have been proposed to address latency, 

yet they are in early stages of application in theft detection and 

require further research to validate their efficacy [6]. 

1.3 Motivation 

 The limitations of current detection methods underscore 

the need for more robust, real-time theft detection models 

capable of handling data quality issues and providing accurate, 

low-latency responses. Ensemble learning techniques, which 

have demonstrated success in other anomaly detection fields, 

offer a promising solution for electricity theft detection in 

smart grids. By leveraging diverse models, ensemble 

approaches can mitigate the impact of data noise and class 

imbalance, while utilizing advanced preprocessing methods to 

improve real-time application viability. This review is 

motivated by the need to explore the effectiveness of 

ensemble-based techniques in overcoming the limitations of 

existing models and enhancing theft detection in smart grid 

environments. 

1.4 Objectives of the Paper 

The primary objectives of this paper are as follows: 

1. To review existing electricity theft detection 

techniques, focusing on ensemble-based approaches, 

and analyze their strengths and limitations. 

2. To examine the challenges posed by data quality 

issues, such as missing values and class imbalance, 

and evaluate preprocessing methods for improving 

detection accuracy. 

3. To provide a comprehensive assessment of ensemble 

models’ potential to enhance theft detection 

performance in real-time applications within smart 

grids. 

4. To identify open challenges and suggest future 

research directions to further improve detection 

models in terms of accuracy, latency, and scalability. 

 

1.5 Contributions 

This paper makes several key contributions: 

1. A systematic review of current methods for electricity 

theft detection, highlighting the role of ensemble 

learning techniques in addressing model robustness 

and accuracy challenges. 

2. An evaluation of data preprocessing methods, 

including interpolation and synthetic data generation, 

that address common data quality issues in electricity 

consumption datasets. 

3. An analysis of the strengths and weaknesses of 

ensemble-based models in the context of real-time 

theft detection, particularly in their capacity to handle 

high-frequency smart grid data. 

4. Recommendations for future research directions, 

emphasizing improvements in model scalability, 

adaptability, and the integration of edge computing 

solutions to support real-time deployment. 

 This paper is organized into five chapters. Chapter 1 

introduces the problem of electricity theft, highlighting its 

significance and the need for effective detection methods in 

smart grids. Chapter 2 provides a comprehensive literature 

review, summarizing existing approaches and techniques used 

for electricity theft detection, including the challenges and 

advancements in the field. Chapter 3 delves into the 

application of machine learning techniques, particularly 

focusing on their role in identifying anomalous consumption 

patterns that could indicate theft. Chapter 4 presents the 

proposed methodology, outlining the steps from data 

collection and pre-processing to the training of Artificial 

Neural Networks (ANN) and Deep Neural Networks (DNN) 

for real-time theft detection. Finally, Chapter 5 concludes the 

paper by summarizing the findings, discussing the potential 

impact of the proposed approach, and suggesting future 

directions for research in this area 

II. LITERATURE REVIEW 

2.1 Electricity Theft Detection in Smart Grids 

Electricity theft presents significant financial and 

operational challenges for utility providers. Traditional theft 

detection approaches, such as manual inspections and audits, 

have proven to be insufficient for addressing large-scale theft 

in modern power grids. The transition to smart grids has 

provided utility companies with a range of advanced 

monitoring tools, including smart meters and AMIs, which 

collect large volumes of consumer data. This data enables the 

development of data-driven theft detection approaches, 
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primarily based on machine learning (ML) and deep learning 

(DL) models, which analyze consumer usage patterns to detect 

anomalies indicative of theft [1, 2]. 

2.2 Machine Learning Approaches for Theft Detection 

Several machine learning techniques have been 

explored to identify abnormal electricity consumption 

behaviors effectively. Chen et al. [3] conducted a 

comprehensive review of electricity consumption abnormality 

detection methods, highlighting the advantages and limitations 

of various ML techniques. Among these, supervised learning 

methods, such as decision trees, support vector machines 

(SVMs), and k-nearest neighbors (KNN), have been widely 

used but face challenges related to data quality, particularly in 

managing missing values and class imbalance [4]. 

To improve detection accuracy, convolutional neural 

networks (CNNs) have been applied to capture complex 

spatial and temporal patterns in electricity usage data [4, 5]. 

Zheng et al. [4] proposed wide and deep CNNs to address 

these complexities, demonstrating their effectiveness in 

detecting theft. However, deep learning models often require 

high computational resources, which can limit their 

deployment in real-time environments. 

2.3 Data Quality Challenges 

Data quality issues, such as missing values and class 

imbalance, are common in electricity consumption datasets. 

These issues adversely affect the performance of theft 

detection models, as missing data can introduce biases, and 

class imbalance often results in low sensitivity to theft 

instances. Ding et al. [7] proposed an interpolation method to 

address missing data by leveraging trends in the data. 

Additionally, synthetic data generation methods, such as the 

Synthetic Minority Over-sampling Technique (SMOTE), have 

been used to tackle class imbalance [5, 6]. 

A significant advancement in this area is the 

application of reinforcement learning for efficient data 

handling in intelligent transport and power systems [6]. Such 

methods enhance the data preprocessing pipeline by making 

real-time predictions feasible, improving the reliability of ML-

based theft detection models. 

2.4 Ensemble Learning for Improved Detection 

Ensemble learning, which combines multiple 

classifiers to improve accuracy and robustness, has shown 

promising potential in electricity theft detection. Liao et al. [9] 

demonstrated that ensemble models using Euclidean and graph 

convolutional neural networks outperformed single-model 

approaches by leveraging diverse data perspectives. Similarly, 

Yan and Wen [14] applied extreme gradient boosting 

(XGBoost) in theft detection, showing that ensemble methods 

can effectively handle complex and high-dimensional data, 

improving detection accuracy. 

Despite the potential of ensemble methods, their 

computational demands remain a concern, particularly for real-

time detection scenarios in smart grids. Cui et al. [13] explored 

methods to mitigate these issues, proposing a two-step 

detection strategy using convolutional autoencoders and 

regression algorithms to enhance economic returns. Ensemble 

approaches have also been applied with success to other 

anomaly detection problems, including IoT data streams, 

further supporting their relevance for smart grid applications 

[16]. 

2.5 Addressing Deployment Challenges in Real-Time 

Settings 

Real-time deployment of theft detection models 

requires efficient algorithms that minimize latency and can 

handle the high data inflow of smart grids. Researchers have 

proposed strategies, such as task offloading to edge 

computing, which help mitigate latency issues while 

maintaining detection accuracy [6]. Furthermore, the use of 

memory-augmented autoencoders has been suggested to 

improve anomaly detection in IoT time series data, offering 

potential for application in electricity theft detection by 

enhancing model memory and response time [16]. 

Cui et al. [17] proposed a strategy that combines 

convolutional autoencoders with economic analysis for theft 

detection. This approach optimizes for both detection accuracy 

and cost-efficiency, which is essential for large-scale 

deployment in utility companies. Pereira and Saraiva [18] 

focused on handling unbalanced data within theft detection, 

comparing various techniques and highlighting ensemble 

models’ ability to maintain accuracy in low-theft instances, a 

key consideration for reliable real-time deployment. 

2.6 Emerging Techniques and Future Directions 

Recent advancements in neural network architectures, 

such as attention mechanisms, are beginning to gain traction in 

electricity theft detection. Finardi et al. [19] applied self-

attention models to enhance anomaly detection capabilities by 

focusing on relevant portions of the data, which improves both 

detection accuracy and model interpretability. As the field 

progresses, incorporating advanced techniques like attention-

based models and memory-augmented networks may further 

enhance real-time theft detection systems. 

To summarize, the literature demonstrates a clear 

progression from traditional ML methods to more 

sophisticated ensemble and DL-based approaches, which 

better accommodate the unique challenges of electricity theft 

detection. Future research should continue to explore 

ensemble-based models and emerging deep learning 

architectures to address real-time deployment challenges in 

smart grids, emphasizing robustness, computational efficiency, 

and adaptability. 

 

III. MACHINE LEARNING TECHNIQUES ELECTRICITY THEFT 

DETECTION   

Machine learning (ML) techniques are increasingly 

utilized in electricity theft detection to identify abnormal 

consumption patterns, which may indicate theft, tampering, or 

other fraudulent activities. Here’s an overview of the most 

common ML techniques applied in this field: 
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3.1. Supervised Learning Techniques 

Supervised learning techniques are widely used in 

electricity theft detection as they leverage labeled data 

(historical consumption data tagged as either normal or 

fraudulent) to train models. Key supervised learning methods 

include: 

a. Decision Trees and Random Forests 

 Decision Trees classify data by making decisions 

based on feature values, which is helpful in capturing 

patterns in consumption behavior. 

 Random Forests, an ensemble of decision trees, 

improve accuracy and generalizability by aggregating 

results across multiple trees. These models are 

popular for theft detection due to their interpretability 

and robustness in handling different theft patterns. 

b. Support Vector Machines (SVM) 

 SVM is effective for binary classification problems 

and works by finding a hyperplane that best separates 

normal and fraudulent consumption behaviors. It is 

especially useful in detecting theft when the data is 

linearly separable but requires extensive tuning to 

handle high-dimensional data. 

c. Logistic Regression 

 Logistic regression is a probabilistic model that 

estimates the likelihood of an event (e.g., theft) 

occurring based on consumption features. Despite its 

simplicity, it provides a quick baseline model for 

detecting anomalous behavior in electricity 

consumption. 

d. k-Nearest Neighbors (k-NN) 

 This method identifies theft by comparing a 

consumer’s data with its nearest neighbors. If a user’s 

consumption pattern significantly deviates from its 

neighbors, it may be flagged as suspicious. However, 

k-NN is computationally intensive, especially on 

large datasets. 

3.2. Unsupervised Learning Techniques 

Unsupervised learning methods are beneficial when 

labeled data is limited, as they can identify abnormal patterns 

without requiring explicit labels. 

a. Clustering (e.g., k-Means) 

 Clustering methods like k-Means group users based 

on similar consumption behaviors. Users in clusters 

with abnormal patterns may be flagged for further 

investigation. Clustering is advantageous in detecting 

new or evolving theft patterns that may not be evident 

in labeled data. 

b. Principal Component Analysis (PCA) 

 PCA is a dimensionality reduction technique that 

identifies the most significant features for analysis, 

highlighting anomalies that deviate from regular 

consumption patterns. It’s useful for pre-processing 

large datasets to improve computational efficiency 

and reveal hidden patterns. 

 

c. Autoencoders 

 Autoencoders, which are neural networks used for 

dimensionality reduction, learn to compress data into 

a lower-dimensional space and then reconstruct it. 

When applied to normal consumption data, they 

reconstruct it well, but theft cases are often 

reconstructed poorly, making them easy to identify. 

3.3. Deep Learning Techniques 

Deep learning techniques are increasingly popular for 

electricity theft detection due to their ability to handle complex 

patterns and large-scale datasets in smart grids. 

a. Convolutional Neural Networks (CNNs) 

 CNNs are well-suited for grid data with spatial or 

temporal dependencies. For theft detection, CNNs 

extract hierarchical features from consumption 

patterns, identifying even subtle abnormalities. CNN-

based models can process time-series data or grid 

snapshots, enabling them to detect tampering or 

irregular usage more accurately. 

b. Recurrent Neural Networks (RNNs) and Long 

Short-Term Memory (LSTM) 

 RNNs and their variants like LSTM networks are 

designed for sequential data, making them ideal for 

analyzing time-series consumption data. LSTMs 

capture long-term dependencies and detect patterns in 

energy usage that may indicate theft (e.g., sudden 

drops or spikes in consumption). 

c. Generative Adversarial Networks (GANs) 

 GANs can generate synthetic data similar to real 

consumption patterns, which is useful for addressing 

data imbalance in theft detection. By training on both 

real and synthetic data, GANs help create more 

robust detection models that perform well on minority 

classes, such as theft cases. 

 

3. 4. Ensemble Learning Techniques 

Ensemble techniques combine multiple models to 

enhance prediction accuracy and robustness, making them 

suitable for handling the complexity of electricity theft 

detection. 

a. Random Forests and Gradient Boosting Machines 

(GBM) 

 Random Forests and GBMs aggregate decisions from 

multiple trees to improve the predictive accuracy and 

reduce overfitting. Gradient Boosting techniques 

(e.g., XGBoost) iteratively correct errors from 

previous models, producing more refined and reliable 

theft detection models. 

b. Extreme Gradient Boosting (XGBoost) 

 XGBoost is an optimized implementation of gradient 

boosting that is efficient in handling large datasets 

and can model complex relationships in consumption 

data. It has become a popular choice for electricity 

theft detection due to its high accuracy and speed. 

 

http://www.jetir.org/


© 2024 JETIR November 2024, Volume 11, Issue 11                                                   www.jetir.org (ISSN-2349-5162) 

JETIR2411257 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org    c469 
 

c. Stacking and Voting Classifiers 

 Stacking combines the predictions of various base 

models (e.g., decision trees, logistic regression) and 

uses a meta-classifier to make the final prediction. 

Voting classifiers aggregate predictions from multiple 

models, making the final decision by majority or 

weighted vote. These ensemble techniques improve 

accuracy by capitalizing on the strengths of different 

models. 

3.5. Hybrid Approaches 

Hybrid models combine multiple ML techniques to 

leverage their respective strengths. For example, a common 

approach is combining clustering with supervised learning, 

where the clustering algorithm identifies groups with potential 

theft cases, and a classifier (e.g., SVM) is then used to refine 

the detection. 

Example: CNN-RNN Hybrid Models 

 Hybrid models that integrate CNNs and RNNs benefit 

from both spatial feature extraction and temporal 

sequence analysis. CNNs extract high-level features 

from consumption data, while RNNs analyze the 

sequence of these features over time to capture 

irregular consumption patterns that may indicate 

theft. 

3.6. Anomaly Detection Techniques 

Anomaly detection models focus on identifying 

deviations from established consumption norms without 

requiring labeled theft data. 

a. Isolation Forest 

 Isolation Forest isolates observations by randomly 

selecting features and splitting values. The fewer 

splits required to isolate a point, the more likely it is 

an anomaly, making it effective in identifying theft 

cases as outliers. 

b. One-Class SVM 

 This method is trained on normal consumption data 

and identifies theft as deviations from this normal 

class. One-Class SVMs are useful when only non-

theft data is available for training but may be less 

accurate if theft cases are similar to regular 

consumption patterns. 

c. Hidden Markov Models (HMM) 

 HMMs are probabilistic models that can model 

sequences, making them suitable for time-series 

consumption data. By learning typical consumption 

sequences, HMMs detect anomalies when sequences 

deviate from normal behavior. 

7. Reinforcement Learning 

Reinforcement learning (RL) is an emerging area for 

electricity theft detection, where models learn optimal actions 

(e.g., detecting or ignoring certain consumption patterns) 

through trial and error, guided by reward mechanisms. RL-

based models can improve detection by adapting to new types 

of theft patterns over time. 

Each of these machine learning techniques has its 

strengths and limitations in detecting electricity theft, and their 

effectiveness depends on factors such as data availability, 

computational resources, and real-time processing 

requirements. Techniques such as ensemble learning and 

hybrid models show great promise, combining multiple ML 

approaches to build more accurate and robust theft detection 

systems. Integrating these models with edge computing and 

advanced data preprocessing techniques can further support 

real-time detection and enhance the scalability of these 

solutions in large-scale smart grids 

IV. PROPOSED METHOD  

 The proposed method for electricity theft detection 

involves several stages, starting with the acquisition of data 

from smart meters and other sources in the smart grid. The 

input data typically includes electricity consumption patterns, 

meter readings, and contextual information like weather and 

location. The pre-processing stage addresses common issues 

such as missing data, noise, and class imbalance. Techniques 

like data imputation, synthetic data generation, and 

normalization are applied to ensure the dataset is clean and 

suitable for machine learning. Feature extraction follows, 

where both time-domain features (such as consumption mean, 

peak, and variability) and frequency-domain features (like 

harmonic components) are extracted. These features help 

capture patterns and anomalies that could indicate theft. The 

core of the method involves training machine learning models, 

specifically Artificial Neural Networks (ANN) and Deep 

Neural Networks (DNN), which are well-suited for detecting 

complex, non-linear patterns in large datasets. These models 

learn to classify consumption data as either normal or 

indicative of theft. Finally, the output consists of real-time 

predictions, with the model flagging unusual consumption 

behavior as a potential case of theft. Performance is evaluated 

using various metrics like accuracy, precision, recall, and F1-

score to ensure the model detects theft effectively while 

minimizing false positives. The proposed approach offers a 

robust and scalable solution for real-time electricity theft 

detection in smart grids. 

 

 
Figure 1: Proposed method Architecture 
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The process of using machine learning, specifically Artificial 

Neural Networks (ANN) and Deep Neural Networks (DNN), 

for electricity theft detection. The approach involves multiple 

stages, from data acquisition and preprocessing to feature 

extraction, model training, and output generation. 

1. Input from Dataset 

 Data Acquisition: The primary input for electricity 

theft detection models comes from the smart grid or 

Advanced Metering Infrastructure (AMI) system. 

This data typically includes: 

o Consumption Data: Hourly, daily, or 

monthly electricity usage per customer or 

meter. 

o Metering Data: Meter readings from the 

smart meters, which include consumption 

time series and voltage/current values. 

o Historical Data: Previous consumption data 

for customers, which helps to understand 

typical consumption behavior. 

o Environmental/Contextual Data: Factors 

such as weather, location, and demographic 

data can be integrated to enhance the 

model's ability to detect anomalies. 

 Data Characteristics: The dataset will often contain 

time-series data that reflects the consumption pattern 

over time, including regular consumption, spikes, 

dips, or unusual activity which may suggest theft. 

2. Pre-processing 

 Handling Missing Data: Missing or incomplete data 

is common in real-world datasets. Several techniques 

can be applied to handle this: 

o Imputation: Missing values can be filled 

using techniques like mean imputation, 

interpolation (linear or cubic), or using more 

sophisticated methods like KNN imputation. 

o Synthetic Data Generation: For 

imbalanced classes (normal vs. theft cases), 

synthetic data (such as through SMOTE—

Synthetic Minority Over-sampling 

Technique) can be used to augment the 

minority class (theft cases). 

 Data Normalization/Standardization: Scaling 

features to a standard range (e.g., 0 to 1) or normal 

distribution is critical for neural networks. This helps 

prevent certain features from dominating the model’s 

learning process, especially when the dataset includes 

features with different units or magnitudes. 

 Dealing with Class Imbalance: Since theft cases are 

typically much rarer than normal consumption 

patterns, techniques like class weighting, 

oversampling the minority class (synthetic data), or 

undersampling the majority class may be applied to 

balance the dataset and improve the model's 

performance. 

 Noise Removal: Any noise in the data (e.g., 

erroneous readings or outliers) should be filtered to 

improve the model’s robustness and prevent 

overfitting. 

3. Feature Extraction 

 Time Domain Features: These features capture 

patterns within the raw time-series data: 

o Mean Consumption: Average consumption 

over a given period (e.g., daily or monthly). 

o Peak Consumption: Highest usage within a 

given time window. 

o Consumption Variability: The variance or 

standard deviation of consumption. 

o Time-Series Trend: Long-term 

consumption trends or seasonal effects. 

 Frequency Domain Features: These features are 

derived using techniques like Fast Fourier Transform 

(FFT) to capture periodic patterns and frequencies 

within the time-series data: 

o Frequency Components: Identify dominant 

frequencies that might indicate unusual 

consumption behavior. 

o Harmonics: Anomalies in the harmonic 

spectrum can reveal tampering or other non-

typical usage patterns. 

 Statistical Features: Features such as skewness, 

kurtosis, and percentiles (e.g., 25th, 50th, and 75th 

percentiles) can provide a statistical summary of the 

data and highlight outliers or irregular consumption. 

 Behavioral Features: Patterns of consumption based 

on customer behavior, such as sudden spikes or drops 

in consumption, can be significant indicators of theft. 

Temporal features like time of day, 

weekday/weekend, and holidays may also help 

identify abnormal patterns. 

 Contextual Features: Environmental or 

demographic factors such as weather conditions, 

time-of-day, or neighborhood energy consumption 

patterns can be used to refine the detection model. 

4. Model (ANN & DNN) 

 Artificial Neural Networks (ANN): 

o Architecture: A basic ANN for electricity 

theft detection typically consists of an input 

layer, one or more hidden layers with 

activation functions like ReLU or Sigmoid, 

and an output layer (binary classification: 

theft or no theft). 

o Training: The model is trained using 

backpropagation and gradient descent 

techniques. The model learns to map the 

extracted features to the target labels 

(normal or theft). 

o Activation Function: ReLU or Tanh is 

commonly used in hidden layers for better 
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learning. The output layer uses a Sigmoid 

activation function for binary classification. 

 Deep Neural Networks (DNN): 

o Architecture: DNNs are a more advanced 

version of ANNs with deeper networks 

(more hidden layers), which allow for better 

modeling of complex, non-linear 

relationships in the data. These are 

particularly useful when the dataset is large 

and contains complex consumption patterns. 

o Training: DNNs are trained with more 

advanced techniques such as Adam or 

RMSprop optimizers to deal with issues like 

vanishing gradients and overfitting. Dropout 

regularization or batch normalization may be 

applied to improve generalization. 

o Backpropagation: DNNs use multi-layer 

backpropagation, which adjusts the weights 

in a deeper network to minimize the error 

(loss function) across multiple layers. 

 Model Hyperparameter Tuning: To achieve 

optimal results, hyperparameters such as learning 

rate, number of layers, number of neurons per layer, 

batch size, and epochs are tuned using techniques like 

grid search or random search. 

 Loss Function: The binary cross-entropy loss 

function is typically used for classification problems 

to measure how well the predicted labels match the 

true labels (normal or theft). 

5. Output 

 Predictions: After training, the model outputs a 

prediction for each input sample. This prediction will 

be either: 

o Normal Consumption: When the model 

classifies the consumption as regular. 

o Theft or Anomaly: When the model detects 

consumption patterns that deviate from the 

norm and classify them as abnormal, which 

may indicate theft or tampering. 

 Thresholding: Depending on the application, a 

threshold may be applied to the model's output 

probabilities to make the final classification. For 

instance, if the output probability for theft exceeds a 

certain threshold (e.g., 0.5), the model will classify 

the observation as a theft case. 

 Output Analysis: The results can be analyzed in 

terms of: 

o Confusion Matrix: To measure the 

performance, including precision, recall, F1-

score, and accuracy. 

o False Positives and False Negatives: The 

impact of misclassifying a normal 

consumption case as theft (false positive) or 

missing an actual theft case (false negative) 

needs to be evaluated. 

6. Model Evaluation 

 Cross-validation: Cross-validation techniques (e.g., 

k-fold cross-validation) are used to ensure the model 

generalizes well across different subsets of data. 

 Performance Metrics: Evaluate performance using 

metrics such as accuracy, precision, recall, F1-score, 

ROC-AUC, and confusion matrix. Special attention is 

given to the recall metric to ensure that theft cases are 

detected as accurately as possible. 

 Testing: After training and tuning, the model is 

evaluated on a separate test dataset to verify its ability 

to detect theft in unseen data. 

. 

V. CONCLUSION 

Electricity theft remains a persistent and costly challenge for 

utility providers globally, undermining revenue and 

jeopardizing energy security. With the advent of smart grids 

and advanced metering infrastructure (AMI), new 

opportunities have emerged to combat electricity theft using 

sophisticated, data-driven techniques. This review has 

examined current approaches to real-time electricity theft 

detection, focusing on the application of ensemble learning 

models and their potential to enhance detection accuracy and 

robustness. The review highlighted that traditional machine 

learning and deep learning models have shown promise but are 

often hindered by challenges such as data quality issues, 

computational demands, and the need for real-time processing. 

Ensemble learning, which combines multiple models to boost 

predictive performance, has demonstrated potential in 

addressing these limitations, particularly in terms of handling 

missing values, class imbalance, and complex consumption 

patterns. Studies also show that ensemble methods can offer 

improved resilience to noise and variability in smart grid data, 

which is critical for accurate theft detection. 
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