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Abstract :  Due to the reliance on subjective techniques like patient self-reports and therapist assessments, diagnosing mental 

health problems including PTSD, anxiety, and depression can be challenging. These approaches may result in uneven diagnosis, 

belated interventions, and restricted access to care, particularly in underprivileged or isolated locations. In order to identify 

indicators of mental health problems more accurately and effectively, this research suggests an AI-powered diagnostic tool that 

analyses text, speech, and video. The application uses sophisticated AI models, including as transformers and LSTMs, to identify 

patterns linked to certain illnesses, giving clinicians a more trustworthy and impartial evaluation. Fairness, openness, and data 

privacy are highly valued in the tool's design, guaranteeing its moral applicability in practical settings. In order to increase 

access to mental health treatments, increase the accuracy of diagnoses, and ultimately improve patient care and results, an AI 

technology supplements the knowledge of mental health professionals. Individuals with high trait anxiety also displayed high 

baseline state anxiety but a muted physiological response to acute stressors. Overall, these results demonstrate the potential for 

using machine learning tools to identify objective biomarkers useful for diagnosing and monitoring mental health conditions like 

anxiety and depression. 
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1. Introduction 

The first is to identify individuals at high risk for developing PTSD, but who have not yet manifested its symptoms 

(risk assessment). Individuals who are identified as high risk for the future devel opment of PTSD would be eligible 

for prevention efforts. Risk factors for the development of PTSD following a traumatic event include ,peritrauma and 

post-trauma factors Recently, researchers have developed screening measures, known collectively as statistical 

prediction instruments (SPIs), that quantify these risk and resilience factors for the purpose of identifying indi viduals 

who may be vulnerable to PTSD following trauma exposure before symptoms actually develop. In a recent exam ple 

of such an approach, O'Donnell et developed and validated a screening instrument that prospectively identifies, during 

hospitalization, civilian adults at high risk for developing PTSD and/or major depression. Results showed that the 

screening instrument had a sensitivity of 0.82 and a specificity of 0.84 when predicting PTSD and a sensitivity of 0.72 

and a specificity of 0.75 in predicting Major Depression. Marx et tested a similar screening instrument for combat-

related PTSD among Vietnam veterans using previously collected cross sectional data. Drawing on the findings of 

King et al, 2 Marx et al ,5 focused on those risk-resilience factors that were found to have the strongest relations with 

combat-related PTSD status. The resulting instrument, the PTSD SPI, displayed excellent sensitivity (0.90) and good 

specificity (0.80). These results suggest that it is feasible to develop instruments that could identify veterans and 

service members who might be prone to develop PTSD following trauma exposure. However, before this instrument 

or others like it are used for this pur pose, it is necessary to conduct additional research using a longitudinal research 

design with a heterogeneous sample of active duty military personnel and/or veterans. Once such instruments have 

been validated with new data collected in subsequent studies, they will be of tremendous value to local and national 

level screening programs conducted by the Departments of Defense (DoD) and Veterans Affairs (VA) in the 

identification of at-risk individuals for outreach, thorough evaluation, and early intervention efforts. In addition to risk 

assessment, screening provides an oppor tunity for early detection or identification of acute PTSD cases and 

individuals who are experiencing some PTSD symptoms but do not meet full criteria. Screening also affords the possi 

bility of discovering previously unidentified cases of more chronic and severe PTSD. Such individuals would be candi 

dates for currently available evidence-based interventions. Historically, the field has relied upon a variety of PTSD 

screening tools. Many of the early screening instruments, such as the PTSD-Keane scale of the Minnesota Multiphasic 

Personality Inventory the Impact of Events and the Mississippi Scale for Combat-related PTSD8 contained items that 

did not necessarily correspond to PTSD diagnostic criteria. Today, the most widely used screening tools have items 

that directly correspond to PTSD diagnostic criteria in the fourth edition of the Diagnostic and Statistical Manual of 

Mental Disorders .One such scale is the Post-traumatic Diagnostic Scale . 
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2. Literature Survey 
Pharmaceutical businesses have been able to expedite their drug research process with the use of AI technology in 

healthcare. However, it automates the process of identifying targets. Furthermore, AI in medicine facilitates the 

repurposing of drugs through the analysis of off-target molecules. Consequently, AI discovery of drugs expedites and 

decreases repetitious effort in the artificial intelligence and healthcare sectors. 

There are several treatments that top biopharmaceutical companies have found. Pfizer is using IBM Watson, a system 

that is based on machine learning, to assist in the discovery of immuno-oncology medicines. While Roche affiliate 

Genentech is depending on a system using artificial intelligence from GNS Healthcare in the Massachusetts city of 

Cambridge to help with its hunt for cancer medicines, Sanofi has decided to use Exscientia's artificial intelligence 

technology to look for pharmaceuticals for metabolic diseases. Similar partnerships or internal initiatives exist at 

almost all of the big biopharmaceutical companies. If those who support these approaches are right, artificial 

intelligence (AI) and the use of machine learning will usher in an exciting new period of more efficient, affordable, 

and rapid drug development. While some experts are dubious, the majority think that such instruments will become 

increasingly important in the future. This shift presents opportunities as well as challenges for scientists, especially 

when the methods are combined with automation In a clinical study, individuals get newly made medications to 

evaluate their efficacy. It has cost a lot of money and time to complete this. But the success rate is really low. Clinical 

trial digitization has therefore shown to be advantageous for AI as well as the healthcare industry. Moreover, 

healthcare and artificial intelligence help to eliminate laborious data monitoring processes.  

AI algorithms may be used in conjunction with a productive digital infrastructure to clean, aggregate, code, preserve, 

and retain clinical trial data. Additionally, enhanced EDC or electronic data capture could facilitate seamless system 

integration and lessen the effects of mistakes made by people in data collecting.  

Artificial intelligence has an impact on patient outcomes in the medical field. Medical AI companies develop a system 

that supports the patient on all fronts. Clinical intelligence also provides insights to patients to assist them improve 

their quality of life by analyzing their medical data. A few noteworthy clinical intelligence technologies that enhance 

patient care are as follows: One possible method to detect high-risk mothers and lower maternal mortality as well as 

postpartum complications is the following: Using artificial intelligence and electronic health data to predict whether 

expectant moms are much more likely to experience complications during delivery (AI). Making more patients 

eligible for regular and highacuity (i.e., more complex and frequent) care during their pregnancy by utilizing digital 

technologies. High-risk maternal women who give birth at low-acuity clinics run a greater risk of experiencing severe 

maternal morbidity as compared to giving birth in higher-acuity facilities with stronger resources and professional 

experience. Certain medical robots help patients in conjunction with medical professionals.. An additional instance of 

technology in use is a smart prosthesis. With the option to wrap them with bionic skin while connecting them to the 

individual's muscles, such bionic limbs connect sensors that make them more accurate and reactive compared to 

natural body parts. Robots can assist in surgery and recuperation. For example, Cyberdyne's HAL, or Hybrid 

Assistive Limb exoskeleton uses sensors applied to the skin to effectively detect electrical impulses in the patient's 

body and respond with movement at the joint. This technology aids in patients' rehabilitation from conditions that 

cause lower limb disorders, such as strokes and spinal cord injuries. 

 

3. Methodlogy 
3.1 Participants 
Forty (40) participants were recruited between the ages of 18 and 35 (mean = 25.15 / SD = 5.04; 43.5% Female / 

56.4% Male) with no diagnosed psychiatric disorders or psychotropic medication use (based on self-report). 

Participants were recruited from the local community through the Wharton Behavioral Lab. Basic non-PHI 

demographic information (e.g., age, sex, level of education) was collected and a unique subject ID number was 

assigned to each participant (Supplementary Table 1). Participants were instructed to not engage in exercise or 

consume caffeinated beverages for a minimum of two hours prior to their scheduled visit time. Study personnel 

explained the purpose, potential risks of the experiment and completed the informed consent process with each 

participant following protocols approved by the University of Pennsylvania’s Institutional Review Board (IRB) in 

compliance with the Helsinki Declaration. All participants gave written informed consent filed with the University of 

Pennsylvania’s IRB. At baseline, participants were outfitted with a wireless EEG headset (microEEG, Bio-Signal 

Group Corp., Acton, MA) and multiple HR/GSR sensors (Shimmer GSR+, Shimmer Inc., Boston, MA; E4 

Wristband, Empatica Inc., Boston, MA). iMotions (Copenhagen, Denmark) was used to synchronize all the devices. 

3.2 Procedure 

Trait anxiety survey was administered online prior to the visit via Qualtrics. On the session day, set-up, and 

calibration was carried out upon arrival. Following initial briefing and set-up, participants were asked to 

relax for 10 minutes. The first 5 minutes were considered baseline control (BC) and the physiological 

readings during the session were measured relative to this epoch. The next 5 minutes were considered 

baseline period (B). Participants’ self-reports – both subjective units of distress (SUDS) and state anxiety 
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(SA) -- were obtained during the baseline period. Then, participants played a simple video game for 10 

minutes after 2 minutes of practice. In the game, they picked berries from a virtual berry patch[13]. Then the 

cold pressor test (CPT) was administered to induce temporary acute physical stress. During this task 

participants were provided with an arm wrap made of cold gel packs (35-40 ºF). The cold gel packs were 

placed around their dominant forearm for three minutes. The wrap is designed to be stressful and 

uncomfortable but not painful or dangerous. Following this task, participants were instructed to quietly rest 

for 6 minutes. Second set of self-reports – both SUDS and SA -- were obtained at the beginning of the rest 

period. After the quiet rest, participants were asked to talk about something or engaged in casual 

conversation for three minutes. Following this, the Trier Social Stress Test (TSST) was administered. In this 

epoch the participants were asked to prepare and deliver a short speech to a socially evaluative audience. 

Participants were provided with pen and paper to take notes and informed that they had three minutes to 

prepare a five-minute speech about interviewing for their ideal job .  
3.3 Data Analysis 

All data processing and statistical analyses were carried out on MATLAB and Python. It is made available under a 

CC-BY-NC-ND 4.0 International license. (which was not peer-reviewed) is the author/funder, who has granted 

bioRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint State-Trait Anxiety 

Inventory (STAI): All participants completed the STAI (11), which was used for assessing both trait and state anxiety. 

There are 20 items for assessing trait anxiety and 20 for state anxiety. All items are rated on a 4-point scale, with 

higher scores indicating greater anxiety. Subjective Units of Distress Scale (SUDS): Participants completed the SUDS 

both at baseline and following each stress induction task. The SUDS is a widely used tool for assessing the subjective 

intensity of distress and other internal experiences, such as anxiety, anger, and agitation. The scale ranges from 1 to 

100, with 100 signifying the most intense feelings. HR/Heart Rate Variability (HR/HRV): Heart rate data was 

obtained throughout the duration of each session through the use of an E4 Wristband. The E4 is equipped with a PPG 

sensor which measures blood volume pulse (BVP). From this measurement both HR and HRV were derived. HRV is 

the beat-to-beat alteration in heart rate that can be used as a noninvasive biomarker for autonomic nervous system 

activity. Standard time and frequency domain derivatives of HRV were calculated. Electrodermal Activity (EDA) / 

Galvanic Skin Response (GSR): Electrodermal activity (EDA) was continuously recorded throughout the duration of 

each session through the use of a Shimmer GSR+. The GSR sensor monitors skin conductivity which reflects the 

variations in the electrical characteristics of the skin. Skin conductance is modulated by sympathetic activity and it is 

directly correlated with emotional arousal. EEG Activity: microEEG was used to obtain EEG signals throughout the 

duration of the session. Signals were collected at a 250 Hz sampling rate from electrode channels along the scalp. 

EEG signals were first re-referenced to the average of the two earlobes and then filtered between 1 and 50 Hz. Next, 

epochs were extracted and probabilistically improbable data points (3 SD from mean) were detected as artifacts and 

removed. Additional artifact detection to remove eye blink and movement artifact components was subsequently 

performed using independent component analysis. All the preprocessing was done using EEGLAB. For each epoch, 

Welch’s power spectral density estimate was used to transform data from the time domain to the frequency domain in 

order to decompose the signal and calculate absolute and relative band powers, asymmetries, and coherence in 

addition to the phase of the EEG channel signals. Band powers calculated included delta (1-4 Hz), theta (4-8 Hz), 

alpha (8-13 Hz), low beta (13-25 Hz), high beta (25-30 Hz), and gamma (30-50 Hz) from the prefrontal, frontal, 

temporal, parietal, and occipital brain regions. 

3.4 Classifier design 
Following preprocessing, different features were extracted from the HR and EEG data (Supplement table 3). Average 

data (1 to 3 min) from different epochs (stress vs control) were then used to train the classifier. Different machine 

learning algorithms (Supplementary table 2) were trained on the data streams. Data was upsampled to ensure class 

balance. Dataset was split up into partitions (2-10), where data from all-but-one partitions were used as the training set 

and left-out data was used as the testing set. This was repeated for all partitions, so that each epoch was part of the test 

set at least once. Cross-validation also helped to detect and limit overfitting. Feature selection was carried out to 

reduce the feature set size. Grid search was implemented to optimize the parameters used. Grid search and feature 

selection were carried out It is made available under a CC-BY-NC-ND 4.0 International license. The primary metrics 

used to indicate each model’s performance were accuracy, sensitivity, and specificity. For the classifier implemented 

to identify individuals with trait anxiety, leave-one-out crossvalidation approach was followed. In this case one 

participant’s data was left out of the training dataset. The remaining 38 participants’ data was used to train the 

different algorithms. Other training and testing set ratios were also tested. 

3.5 Generalized linear model with mixed effects 

To take advantage of the continuous nature of the trait anxiety scores, we developed generalized linear 

model with mixed effects– including/excluding fixed effect terms, including other interactions terms for 

fixed effects, including random slopes for the participants, etc, were also tested. Since the trait anxiety score 

distribution is right skewed and all-positive, it was modelled using a “Gamma” distribution with an 

“identity” link function. All analyses were carried out in Matlab using the “fitglme” function. 
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4.Results 

 

 
Figure 1 

In this study, 39 participants experienced two types of stressors, cold pressor test (CPT) and Trier social stress test 

(TSST), in the following order (Fig 1). They also played a simple decision making game both before CPT and after 

TSST. They were engaged in casual conversation (Talk epoch) and also received a rest period during the session (Fig 

1). Overall, a session lasted approximately 60 minutes (refer to Methods for more details).  

Self-reported responses to induced stress 

To determine each participants’ stress response, we first examined their self-report scores for subjective units of 

distress (SUDs) and state anxiety (SA). An example participant whose data is plotted in reported a strong response to 

the applied stressors. This participant showed a low baseline score a slightly elevated score post-CPT and a much 

more elevated score post-TSST. Some participants, like the one whose data is plotted did not report an increase in 

stress. For this participant, scores remained close to baseline for SA and decreased from baseline for SUDS  We chose 

an arbitrary threshold for stress response to identify self-reportedstrong responders from weak/non-responders for 

illustrative purposes. Twenty-three of 39 participants qualified as strong responders based the arbitrary threshold For 

the population, the average change in state anxiety was and the change in SUDS scores was 320±61%. Overall, the 

self-reports reflected an increase in anxiety (SA) and distress (SUDS) with the application of the stressors. 

Physiological response to stressors Electrodermal activity (EDA) refers to variation in the electrical properties of the 

skin in response to sweat secretion.  

In summary, individual participant’s EDA, HR, HRV and FAS responded to the two stressors. Although changes in 

these measures reflected changes in self-reported state anxiety, this relationship did not reach statistical significance. 

This could partly be due to mismatch between physiology and self-report. To address this possibility, in the next 

section we describe how these measures can be combined using machine learning algorithms to decode stressful 

epochs, which can be defined objectively. 

 

4. CONCLUSIONS AND FUTURE DIRECTIONS 
Examined the stress responses of healthy participants using self-reports and multiple physiological measures. 

Participants were exposed to 2 kinds of acute stressors and engaged in five non-stressful activities. During this 

experience, we observed robust changes in EEG, HRV, HR, GSR that were weakly correlated with increases in self-

reported stress. By combining select features from these different measures using a machine learning-based algorithm, 

stressful states could be identified from non-stressful states with ~96% accuracy. Further, individuals with high trait 

anxiety were identified with ~84% accuracy using a decision tree to optimally combine physiological measures with 

self-reported state anxiety. While individuals with high trait anxiety displayed high baseline state anxiety, their 

response to acute stressors was muted. Identifying stressful states and non-stressful states In this study, we used 

several physiological measures to understand individual responses to a stressor. GSR has been extensively used to 

measure stress response [22] and, even in this study, GSR increased with stress induction. However, GSR as a 

measure was not as sensitive as heart rate or EEG-based measurements in identifying stress states. HRV reliably 

declines with increases in stress and in our study HRV also decreased with self-reported increases in stress-induced 

state anxiety. Nevertheless, HRV-based measures lacked the specificity of EEG. That is, many non-stressful epochs 

were wrongly identified as stressful epochs, limiting the utility of HRV in this context. Several recent studies have 

attempted to combine different physiological measures to improve the ability of an algorithm to identify stress states. 

By combining select features from these physiological modalities using a support vector machine, we achieved high 

sensitivity and specificity indeed more than that achieve using any independent measure alone.  
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