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Abstract 

Among discrete mathematics, graph theory is a highly popular and interesting field. In 1736, E.Euler published the 

first known article on graph theory, which described the seven bridges of Königsberg.If every pair of a graph’s 

vertices has a Hamiltonian path connecting them, the graph is said to be Hamilton-connected. It is an NP-complete 

task to determine if a graph is Hamilton-connected. We demonstrate the Hamiltonian connection between the line 

graphs of the generalized Petersen, antiprism, and wheel graphs by using these proof strategies.  Incorporating it with 

some existing 
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1 Introduction 

Let G = (V, E) be a non-empty graph of order n ≥ 2, and l is a positive integer, We denote by V l is the set of 

words of length l on alphabet V . The letters of a word u of length l are denoted by u1, u2, u3   ul. The 

concatenation of two words u and v is denoted by uv. Klavzar and Milutinovic 

introduced in [1] the graph S(Kn, l), l ≥ 1, whose vertex set V l, where {u, v} is an edge if and only if there exists 

i ∈  {1, 2, l} such that 

(i) uj = vj, if j < i 
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(ii) ui ̸= vi 

(iii) uj = vi and vj = ui if j > i 

As noted [2], in a compact form, the edge sets can be described as 

 
{{wuiu

d−1, wuju
d−1} : ui, uj ∈  V, i ̸= j; d ∈  [t]; w ∈  V l−d} The graph S(K3, l) is isomorphic to 

j i 

the graph of the Tower of Hanoi with l disks [1]. Later, those graphs have been called Sierpinski graphs in [3] and 

they were studied by now from numerous points of view. For instance, the authors of [4] studied identifying 

codes, locating- dominating codes, and total-dominating codes in Sierpin- ski graphs. In [5] the authors propose 

an algorithm, which makes use of three automata and the fact that there are at most two internally vertex 

disjoint shortest paths between any two vertices, to determine all shortest paths in Sierpinski graphs. The 

authors of [3] proved that for any n ≥ 1 and l ≥ 1, the Sierpinski graph S(Kn, l) has a unique 1-perfect code (or 

efficient dominating set) if l is even, and S(Kn, l) has exactly n 1-perfect codes if l is odd. The Hamming 

dimension of a graph G was introduced in [6] as the largest dimension of a Hamming graph into which G embeds 

as an irredudant induced subgraph. That paper gives an upper bound for the Hamming dimension of the 

Sierpinski graphs S(Kn, l) for n ≥ 3. It also shows that the Hamming dimension of S(K3, l) grows as 3l−3. The 

idea of almost-extreme vertex of S(Kn, l) was introduced in [7] as a vertex that is either adjacent to an 

extreme vertex of S(Kn, l) or is incident to an edge between two subgraphs of S(Kn, l) isomorphic to S(Kn, l −  1). 

The authors of [7] deduced explicit formulas for the distance in S(Kn, l) between an arbitrary vertex and an almost-

extreme vertex. Also they gave a formula of the metric dimension of a Sierpinski graph, which was independently 

obtained by Parreau in her Ph.D. thesis. The eccentricity of an arbitrary vertex of Sierpinski graphs was studied 

in [8] where the main result gives an expression for the average eccentricity of S(Kn, l). For a general 

background on Sierpinski graphs, the reader is invited to read the comprehensive survey [9] and references ther 

in. 

This construction was generalized in [10] for any graph G = (V, E), by defining the l-th generalized Sierpinski 

graph of G, denoted by S(G, l), as the graph with vertex set V l and edge set defined as follows, {u, v} is an 

edge if and only if there exists i ∈  {1, 2,  l} such that 

(i) uj = vj, if j < i 

(ii) ui ̸= vi 

(iii) uj = vi and vj = ui if j > i 

In a compact form, the edge sets can be described as 
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{{wuiu
d−1, wuju

d−1} : {ui, uj} ∈  E; d ∈  [t]; w ∈  V l−d} 
j i 

Figure 1 shows a graph G and the genenalized Sierpinski graph S(G, 2), while Figure 2 shows the Sierpinski graph 

S(G, 3) 

Notice that if {u,v} is an edge of S(G, l), then there is an edge {x,y} of G and a word w such that 

u = wxyyy....y and v = wyxxx.  x. In general, S(G, t) can be contructed recursively from G with the following 

process: S(G, 1) = G and, for t ≥ 2, we copy n times S(G, l −  1) add the letter x at the begining of each label of 

the vertices belonging to the copy of S(G, l −  1) corresponding to x. Then for every edge {x,y} of G, add an edge 

between vertex xyy....y and vertex yxx.  x. See, for 

instance, Figure 2, vertices of the form xx...x are called extreme vertices of S(G, l). Notice that for any graph G 

of order n and any integer t ≥ 2, S(G, l) has n extreme vertices and, if x has degree d(x) in G, then the extreme 

vertex xx...x of S(G, l) also has degree d(x). Moreover the degrees of two vertices yxx...x and xyy y, which 

connect two copies of S(G, l −  1), are equal to d(x) + 1 and 

d(y) + 1, respectively. 

For any w ∈  V l−1 and l ≥ 2, the subgraph (Vw) of S(G, l), induced by Vw=wx : x ∈  V , is isomorphic to G. Notice 

that there exists only one vertex u ∈  Vw of the form w′xx. x, where w′ ∈  V r for some 

r ≤ t −  2. We will say that w′xx. x is the extreme vertex of (Vw), which is an extreme vertex in 

S(G, l) whenever r = 0 By definition of S(G, l) 

Suppose that W is an interconnection network (network for short). A path (cycle) in W is called a Hamiltonian 

path (Hamiltonian cycle) if it contains every node of W is called a Hamiltonian if there is a Hamitonian cycle in W , 

and it is called Hamiltonian-connected [15] if there is a Hamilto- nian path between every two distinct nodes of W 

. Some topologies, such as the hierarchical cubic network [16], are Hamiltonian-connected. 

Since node faults and link faults may develop in a network, it is practically important to consider faulty networks.  

A network W is called k −  node (k-link) Hamiltonian if it remains Hamiltonian after removing any k nodes (links) 

[17]. If W has node (link) connectivity k + 2 and is k −  node (k-link) Hamiltonian, then it can tolerate a 

maximal number of node(link) faults while embedding a longest fault-free cycle. Some networks have been 

shown to be k −  node Hamiltonian and k −  link Hamiltonian. For example, the hierarchical cubic network with 

connectivity n + 1 is n −  1-link Hamiltonian [18]. The n −  dimensional twisted cube [19] is n −  2-node Hamiltonian 

and n −  2-link Hamiltonian. 

Note that an n −  link Hamiltonian graph cannot be guaranteed to be n −  node Hamiltonian. For example, the n − 

cube is n −  2-link Hamiltonian, but not n −  2-node Hamiltonian [20]. In [21], the 
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WK-recursive network with connectivity d −  1 was shown to be d −  3-link Hamiltonian. It is not possible to reuse 

their approach of replacing link failures with node failures because a faulty node will cause d − 1 links to fail 

and because their approach can handle at most d − 3 faulty links. 

 

2 Preliminaries 

Each node of S(Wk, l) is labelled as a l −  digit radix k number. Node ul−1ul−2....u1u0 is adjacent to 1. 

ul−1ul−2....u1v, where v ̸= u0 and adjacent to 2. ul−1ul−2....uj+1v1(v0)j if uj ̸= uj−1 and uj−1 = uj−2 = ....u0, 

where v1 = uj−1 v0 = uj and (b0)j denotes j consecutive v0s. The links of 1 are called substituting links and 

are labelled 0. The link 2 is called a j flipping link and is labelled 

j. For example, the 2-flipping link connects node 033 and node 300 in S(W5, 3) . In addition, if 

ul−1 = ul−2 =  u0, then an open link labelled l is incident with ul−1ul−2  u1u0. The open link is 

reserved for further expansion; hence, its other end node is unspecified. 

Note that S(Wk, 1) is a k-node Wheel graph augmented with l open links. Each node of S(Wk, l) is incident 

with l −  1 substituting links and one flipping link (open link). The substituting links are those within basic 

building blocks, and the j-flipping links are those connecting two embedded S(Wk, j)s. 

 

3 Hamiltonian-Connectedness 

In this section, we show that S(Wk, l) is Hamiltonian-connected, where k ≥ 4 and l ≥ 1 

The basic idea is to use induction. Assume that we can prove that S(Wk, l −  1) is Hamiltonian- connected. 

We want to prove that S(Wk, l) is also Hamiltonian-connected. That is, we want to construct a 

Hamiltonian path between two arbitrary distinct nodes U = ul−1ul−2....u1u0 and 

V = vl−1vl−2....v1v0 in S(Wk, l). When U and V are networks of level l −  1,That is ul−1 ̸= vl−1, an U − V 

Hamiltonian path for S(Wk, l), can be constructed by connecting the l −  1-flipping links and the Hamilton paths 

for each subnetwork of level l −  1 

When U and V are in the same subnetwork of level l −  1. That is ul−1 = vl−1, two l −  1-frontiers in ul−1.S(Wk, l − 

1) are chosen. Then, two disjoint paths from U to one l −  1-frontier and from V to another l −  1-frontier, 

respectively, are constructed. These two disjoint paths must contain all the nodes in ul−1.S(Wk, l −  1), the l − 1-

flipping links, and the Hamiltonian paths for the remaining subnetworks of level l−1. We can first prove a lemma for 

the existence of two such disjoint paths and then use the lemma to construct a U −  V -Hamiltonian path for S(Wk, 

l). However, if S(Wk, l − 2) 
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l l 

that {U, V } = {b (b )l, b (b l 

l 

is Hamiltonian-connected, then constucting the two disjoint paths in ul−1.S(Wk, l −  1) is Hence 

,proving Hamiltonian-Connectedness and constructing two disjoint paths simultaneously will make the latter task 

shorter and easier(refer to the proof in Theorem 1 ). As a result, we combine them together in the following 

theorem: 

Theorem 1. Let U = ul−1ul−2....u1u0 and V = vl−1vl−2....v1v0 be two distinct nodes in S(Wk, l), where d ≥ 4 

1. There is an U −  V Hamiltonian path for S(Wk, l). 

2. Given two distinct constants a, b ∈  0, 1, 2....k − 1 with {c, e} ≠  ul−1, vl−1 there exists an U −  X 

path V −  Y path such that they are disjoint and contain all the nodes of S(Wk, l) where {X, Y } = 

{(a)l, (b)l} (Since{a, b} ̸= ul−1, vl−1}), we have {X, Y } ̸= {U, V }, that is, it is possible that U = X or V = Y but 

not both. Note that if both U = X and V = Y , then the U −  X path degenerates to a node U and the V − Y path 

degenerates to a node V . As a result the U −  X path and the V −  Y path cannot contain all the nodes of S(Wk, 

l) 

Proof. We proceed by by induction on l. Clearly the theorem holds for l = 1. Assume it holds for l = t ≥ 1. The 

situation in the case of l = t + 1 is discussed below. In the rest of the proof, we will use → to denote a l-

flipping link in S(Wk, l + 1). First we will prove part 1 

Case 1: ul = vl, that is, U and V are not in the same subnetwork of level l. Let a0 = u0 and 

{b0, b1, ...bk−1} = {0, 1, ...k −  1}. Thus b0S(Wk, l), b1S(Wk, l)  bk−1S(Wk, l) denotes k subnetworks 

of level l. By assumption, there exists nodes in biS(Wk, l) between two arbitrary distinct nodes in biS(Wk, l) for 

each i ∈  {0, 1, 2...k −  1}. Let =
H
⇒  denote this path. An U −  V Hamiltonian path for S(Wk, l + 1) constructed as 

follows (see Fig. 2): 

U =
H
⇒  a0(a1)

l → a1(a0)l =
H
⇒  a1(a2)l →.....→ bk−2(bk−3)l =

H
⇒  bk−2(bk−1)

l → bk−1(bk−2)
l =

H
⇒  V 

Case 2: ul = vl 

Let a0 = ul, {b0, b1, ....bk−1} = {0, 1, 2...k −  1} and {b1, bk−1} ≠ {ul−1, vl−1}. Thus it is impossible 
′ ′ 

0  1 0  k−1) }. By assumption, there exist an U −  X path and V −  Y path such 
′ ′ 

that they are disjoint and contain all the nodes of b0.S(Wk, l) where {X , Y } = {b0(b1) , b0(bk−1) } 

Let =
P
=⇒
1 

denotes the U −  X
′ 

path and let =
P
=⇒
2 

denotes V −  Y 
′  
. Also by assumption, there exists 

a Hamiltonian path for bi.S(Wk, l) between two arbitrary distinct nodes in bi.S(Wk, l) for each 

i ∈  {1, 2, ....l −  1}. Let =
H
⇒  denotes this path without loss of generality assume that X

′ 
= {b (b )l 

0  1 
′ 

and Y = {b0(bk−1) An {U, V } Hamiltonian path for S(Wk, l) is constructed as follows (see fig3 ) 

U =
P
=⇒

1  
b0(b1)l → b1(b0)

l =
H
⇒  b1(b2)l →.....→ bk−2(bk−2)

l =
H
⇒  bk−1(b0)l → b0(bk−1)

l =
P
=⇒

2  
V 
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