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ABSTRACT: There is a well known correspondence between infinite trees and ultra metric spaces that 

comes from considering the end space of the tree [1]. The correspondence is interpreted here as equivalence 

between two categories, one of which encodes geometry of trees at infinity and other encodes that micro-

geometry of complete ultra metric spaces. 
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0. INTRODUCTION 

In this section we define the functor F from trees to ultra metric space. The functor takes a rooted 

tree to the end space of the tree, so we begin by defining the end space of a rooted R-trees and its natural 

metric. The end space functor F: T→ U is indeed a functor. We shall prove that this functor is full and 

faithful. 

1. FULL AND FAITHFULL FUNCTOR 

The following concept is quite well known [2]. 

Definition 1.1: The end space of a rooted R-tree (T, v) is given by end  

(T, v) = {f: [0, ) → T | f(0) = v and f is an isometric embedding}  

For f, g  end (T1, v), we define 
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Theorem 1.2 : If (T, v) is a rooted R-tree, then (end (T, v), de) is a complete ultra metric space of diameter ≤ 

1. 

Proof: To check the ultra metric inequality, let f, g, h  end (T, v) and show that 

de(f, q)  max {de(f, h), de(g, h) 

Without any loss of generality suppose that 

1 2( , ) ( , ) .t tde f h e de h g e   
 
Then t1  t2, 

f = h on [0, t1] and h = g on [0, t2]. Thus f = g on [0, 1] and de (f  g) ≤ 1te
. 

The statement about the diameter is obvious. To verify that (en (T, v), de) is complete, let  1 1i
f





 

be a 

Cauchy sequence in end (T, v). By passing to a subsequence we may assume that there is a non decreasing 

sequence of integers [3]  

1  i1,  i2,  i3,  ……… 

that fi = f; on [0, 1], whenever i, j ≥ n. 
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Define f : [0, ∞) → T by setting ƒ| [0, n] = ƒ | [0, n] for each n. 

Then f is well defined isometric embedding and lim .i
i

f f




 
Theorem 1.3: Let (f, Cr, Cs) : (T, v) → (S, ) be an isometry at infinity between geodesically complete 

rooted R-trees. Then there is an induced local similarity equivalence 
* : end( , ) end( , ).f T v S   Moreover if 

( , , )l l

T Sg C C  is another such symmetry at infinity and 1

*[ ] [ ],f g  then f* = g*. 

Proof: In order to define f*, let 

 : [0, ) → Τ 

be an element of end (T, v). Since Cr is a cut set, there exists a unique tp > 0 such that  (t0)  CT. Moreover, 
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Then clearly f*()  end (S, ). To see that ƒ is a local similarity equivalence, we will first show, given a as 

above, there exist  > 0 and  > 0 such that 

* : ( , ) ( ( ),f B f      
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If   end (T, v) with    and de(, ) < , then 

t = Sup {t ≥ 0 |  | (t) =  (t)} > -log = t0. 

In particular, 0
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To see that 
* *( , ) ( , )f B B f       is subjective, let   B (f* , ) 

Then 0( )
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Since f  : T (t0) → Sf (t0) is an isometry, 

we can define  : [0, ] → T by 
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Then   end (T, v) and   B (, ) and f*  = . Under the similar argument, we can show that: 

f*  end (T, v) → end (S, ) is surjective. Here are the detail. 

If   end (S, ), then there exists a unique t > 0, such that (t)  Cs, and there exists a unique c  

CT  such that f(c) = (t). 

Let ̂ : [o, ||c||] → T be unique isometric embedding such that ̂ (o) = v and ̂ (||c||) = c. Define  : [0, ) → 

T by 
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To see that f* is injective, suppose that f*  = f*  for some ,   end (T, v). Then there exists t1 > 0 

such that 
1 1( , ) ( , )t t     is a domain of ƒ and f ([t1, ] = f([ t1, )). 

Since ƒ is a homeomorphism, it follows that  ([t1, ] = ([ t1, )) and hence  = . We know that if 

c  CT and x  Tc, then 

||x|| - ||c|| = ||f(x)|| - ||f(c)|| [1, 2]. 

Hence f* is independent of representation of [f]. The definition of f*() will not change if another cut 

set 
TC   for (T, v) larger than CT is used in place of CT. For such a cut set, there exists a unique t1 > 0 such 

that 
1( ) Tt C  . If follows that t1 ≥ t0,  (t1)  Ta (t0) and 1 0( ) ( ).faf t T t   
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would be defined if 
TC   were used in place of CT. However, since S is an R-tree and 

 1 0 0( ) ( ),f t f t    if follows that  1 00, ( ) .f t    Also we have 

1 0 1 0 1 0( ) ( ) ( ) ( )t t t t f t f t         

and, hence 
1 1 0 0( ) ( ) .t f t t f t     

It follows that 
*

1 *( ) ( )f f   and 
*

1 *.f f  
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