### ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue



# JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

# AN EQUIVALENCES OF GEOMETRY OF TREES WITH MICRO-GEOMETRY

#### S. R. Pathak

Department of Mathematics, A.S. Campus, Kathmandu, Nepal Email: pathaksr2030@gmail.com

**ABSTRACT:** There is a well known correspondence between infinite trees and ultra metric spaces that comes from considering the end space of the tree [1]. The correspondence is interpreted here as equivalence between two categories, one of which encodes geometry of trees at infinity and other encodes that microgeometry of complete ultra metric spaces.

**KEY WORDS:** Ultra metric end spaces, Isometry, Trees, Similarity Equivalence.

#### 0. INTRODUCTION

In this section we define the functor F from trees to ultra metric space. The functor takes a rooted tree to the end space of the tree, so we begin by defining the end space of a rooted R-trees and its natural metric. The end space functor  $F: T \rightarrow U$  is indeed a functor. We shall prove that this functor is full and faithful.

#### 1. FULL AND FAITHFULL FUNCTOR

The following concept is quite well known [2].

**Definition 1.1:** The end space of a rooted R-tree (T, v) is given by end

$$(T, v) = \{f: [0, \alpha) \to T \mid f(0) = v \text{ and } f \text{ is an isometric embedding}\}\$$

For  $f, g \in \text{end}(T_1, v)$ , we define

$$de(f,g) = \begin{cases} 0 & \text{if } f = g \\ \frac{1}{e^{t_0}} & \text{if } f \neq g \text{ and } t_0 = \sup\{t \ge 0 | f(t) = g(t)\} \end{cases}$$

where, 
$$\{t \ge 0 | f(t) = g(t)\} = \begin{cases} [0, \alpha) & \text{if } f = g \\ [0, t_0) & \text{if } f \ne g \end{cases}$$

**Theorem 1.2:** If (T, v) is a rooted R-tree, then (end (T, v), de) is a complete ultra metric space of diameter  $\leq$ 

**Proof:** To check the ultra metric inequality, let  $f, g, h \in \text{end}(T, v)$  and show that

$$de(f, q) \le \max \{ de(f, h), de(g, h) \}$$

Without any loss of generality suppose that

$$de(f,h) = e^{-t_1} \ge de(h,g) = e^{-t_2}$$
. Then  $t_1 \le t_2$ ,

$$f = h$$
 on  $[0, t_1]$  and  $h = g$  on  $[0, t_2]$ . Thus  $f = g$  on  $[0, 1]$  and  $de(f \cdot g) \le e^{-t_1}$ .

The statement about the diameter is obvious. To verify that (en (T, v), de) is complete, let  $(f_1)_{i=1}^{\infty}$  be a Cauchy sequence in end (T, v). By passing to a subsequence we may assume that there is a non decreasing sequence of integers [3]

$$1 \le i_1, \le i_2, \le i_3, \le \dots$$

that  $f_i = f$ ; on [0, 1], whenever  $i, j \ge n$ .

Define  $f: [0, \infty) \to T$  by setting f|[0, n] = f|[0, n] for each n.

Then f is well defined isometric embedding and  $\lim f_i \to f$ .

**Theorem 1.3:** Let  $(f, C_r, C_s) : (T, v) \to (S, \omega)$  be an isometry at infinity between geodesically complete rooted *R*-trees. Then there is an induced local similarity equivalence  $f_* : \operatorname{end}(T, v) \to \operatorname{end}(S, \omega)$ . Moreover if  $(g, C_T^l, C_S^l)$  is another such symmetry at infinity and  $[f_*^1] = [g]$ , then  $f_* = g_*$ .

**Proof:** In order to define  $f_*$ , let

$$\alpha: [0, \infty) \to T$$

be an element of end (T, v). Since  $C_r$  is a cut set, there exists a unique  $t_p > 0$  such that  $\alpha(t_0) \in C_T$ . Moreover,  $\alpha([t_0,\infty]) \leq T_{\alpha(t_0)}$ .

Let  $\hat{\alpha}:[0,\Box f \hat{\alpha}(t_0)\Box] \to S$  be the unique isometric embedding such that  $\alpha(0) = \omega$  and  $\hat{\alpha}: (\Box f \hat{\alpha}(t_0) \Box) \to f \alpha(t_0).$ 

Define

$$f_*\alpha(t) = \begin{cases} \alpha(t), & \text{if } 0 < t \le f \alpha(t_0) \square \\ f \alpha(t - \square f \alpha(t_0) \square + t_0), & \text{if } \square f \alpha(t_0) \square \le t \end{cases}$$

Then clearly  $f_*(\alpha) \in \text{end } (S, \omega)$ . To see that f is a local similarity equivalence, we will first show, given a as above, there exist  $\in > 0$  and  $\lambda > 0$  such that

$$f_* | : B(\alpha, \in) \to \beta(f(\alpha), \lambda \in$$

is a subjective  $\lambda$  similarity. Let  $\in = e^{-t_0}$  and  $\lambda = e^{t_0 - \Box f \alpha | (t_0) \Box}$ .

If  $\beta \in \text{end}(T, v)$  with  $\alpha \neq \beta$  and  $de(\alpha, \beta) < \in$ , then

$$t\beta = \operatorname{Sup} \{t \ge 0 \mid \alpha \mid (t) = \beta(t)\} > -\log \in t_0.$$

In particular,  $de(\alpha, \beta) = e^{t_0}$ ,  $\alpha(t_0) = \beta(t_0)$  and  $f\alpha(t_0) = f\beta(t_0)$ .

It follows that

$$f \cdot (b)(t) = \begin{cases} \hat{\alpha}(t) & \text{if } 0 \leq t \leq |f\beta(t_0)| \square \\ f\beta(t-\square f\beta(t_0))\square + t_0, & \text{if } \square f\beta(t_0)\square < t, \end{cases}$$

$$= \begin{cases} \hat{\alpha}(t) & \text{if } 0 \leq t \leq |f\beta(t_0)| \square \\ f\alpha(t-\square f\alpha(t_0))\square + t_0, & \text{if } \square f\alpha(t_0) \square \leq t \leq t\beta - t_0 + \square f\alpha(t_0) \square \\ f\beta(t-\square f\alpha(t_0))\square + t_0, & \text{if } \square \text{if } t\beta - t_0 + \square f\alpha(t_0) \square \leq t, \end{cases}$$

Hence  $\sup\{t \ge 0 | f \cdot \alpha(t) = f \cdot \beta(t)\} = t_{\beta} - t_0 + \Box f \alpha(t_0) \Box$ 

and 
$$de(f, \alpha, f \cdot \beta) = e^{-t_{\beta} + t_{0} - \Box f \alpha(t_{0})\Box}$$
  

$$= e^{t_{0} - \Box f_{\alpha}(t_{0})\Box} de(\alpha, \beta)$$
  

$$= \lambda de(\alpha, \beta)$$

To see that  $f_*|B(\alpha, \in) \to B(f_*\alpha, \lambda \in)$  is subjective, let  $\lambda \in B(f_*\alpha, \alpha \in)$ 

Then  $d(\gamma, f_*\alpha) = \lambda \in = e^{-\Box f \alpha(t_0)\Box}$ . It follow that

$$\gamma(\Box f\alpha(t_0)\Box) = f\alpha(t_0) \text{ and } \gamma([\Box f\alpha(t_0)\Box,\infty]) \subseteq S_{f\alpha}(t_0).$$

Since  $f \mid : T_{\alpha}(t_0) \to S_{f\alpha}(t_0)$  is an isometry,

we can define  $\beta: [0, \infty] \to T$  by

$$\beta(t) = \begin{cases} \alpha(t), & \text{if } 0 \le t \le t_0 \\ \left( f \middle| T_{\alpha}(t_0) t_0 \right)^{-1} \gamma \left( t + \Box f \alpha(t_0) \right) \Box - t_0, & \text{if } t_0 \le t, \end{cases}$$

Then  $\beta \in \text{end}(T, \nu)$  and  $\beta \in B(\alpha, \in)$  and  $f \in \beta = \gamma$ . Under the similar argument, we can show that:  $f \in \text{end}(T, \nu) \to \text{end}(S, \omega)$  is surjective. Here are the detail.

If  $\gamma \in \text{end } (S, \omega)$ , then there exists a unique  $t_{\gamma} > 0$ , such that  $\gamma(t_{\gamma}) \in C_s$ , and there exists a unique  $c \in C_T$  such that  $f(c) = \gamma(t_{\gamma})$ .

Let  $\hat{\gamma}: [o, ||c||] \to T$  be unique isometric embedding such that  $\hat{\gamma}(o) = v$  and  $\hat{\gamma}(||c||) = c$ . Define  $\beta: [0, \infty) \to T$  by

$$\beta(t) = \begin{cases} \hat{\gamma}(t) & \text{if } o \le t \square c \square \\ ((f|T_c)^{-1} \gamma (t+\square \gamma (t_c) \square - \square c \square), & \text{if } \square c \square \le t \end{cases}$$

To see that  $f_*$  is injective, suppose that  $f_*$   $\alpha = f_*$   $\beta$  for some  $\alpha$ ,  $\beta \in$  end  $(T, \nu)$ . Then there exists  $t_1 > 0$  such that  $\alpha(t_1, \infty) \cup = \beta(t_1, \infty)$  is a domain of f and  $f\alpha([t_1, \infty] = f\beta([t_1, \infty))$ .

Since f is a homeomorphism, it follows that  $\alpha([t_1, \infty] = \beta([t_1, \infty)))$  and hence  $\alpha = \beta$ . We know that if  $c \in C_T$  and  $x \in T_c$ , then

$$||x|| - ||c|| = ||f(x)|| - ||f(c)|| [1, 2].$$

Hence  $f_*$  is independent of representation of [f]. The definition of  $f_*(\alpha)$  will not change if another cut set  $C_T$  for (T, v) larger than  $C_T$  is used in place of  $C_T$ . For such a cut set, there exists a unique  $t_1 > 0$  such that  $\alpha(t_1) \in C_T$ . If follows that  $t_1 \ge t_0$ ,  $\alpha(t_1) \in Ta(t_0)$  and  $f\alpha(t_1) = T_{fa}(t_0)$ .

Let  $\hat{\alpha}^1:[0, ||f\alpha(t_1)||] \to S$  be unique isometric embedding

such that  $\hat{\alpha}^1(0) = \omega$  and  $\hat{\alpha}^1 || f \alpha(t_1) ||] = f \alpha(t_1)$ .

The map  $f_*^1(\alpha):[0,\infty)\to\infty$  is given by

$$f_*^1(\alpha)(t) = \begin{cases} \hat{\alpha}^1(t) & \text{if } 0 \le t \le f\alpha(t_1) \square, \\ f\alpha(t-\square f\alpha(t_1)\square + t_1) & \text{if } \square f\alpha(t_1)\square \le t_1. \end{cases}$$

would be defined if  $C_T$  were used in place of  $C_T$ . However, since S is an R-tree and  $\alpha_1(\Box f\alpha(t_0)\Box) = f\alpha(t_0)$ , if follows that  $\alpha_1[0,\Box f\alpha(t_0)\Box] = \alpha$ . Also we have

$$t_1 - t_0 = \square \alpha(t_1) \square - \square \alpha(t_0) \square = \square f \alpha(t_1) \square - \square f \alpha(t_0) \square$$

and, hence  $t_1 - \Box f \alpha(t_1) \Box = t_0 - \Box f \alpha(t_0) \Box$ .

It follows that  $f_1^*(\alpha) = f_*(\alpha)$  and  $f_1^* = f_*$ .

### **REFERENCES**

- [1] Hughes, B. and Ranicki, A. [2002]: Ends of complexes in: Cambridge tracts in Mathematics, Vol., 123, Cambridge Univ. Press, Cambridge.
- [2] Manjul, B [2009]: On P-orderings, ring of integer-valued polynomials and ultra metric analysis, J. of AMS, 22, 963-993.

\*\*\*\*