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ABSTRACT 

The invaluable role played by Dirac equation in some areas of modern quantum field theory is pointed out. In 

particular its role in the phenomenon of fermion number fractionization is discussed in some detail. Using the 

inbuilt super symmetry of the Dirac operator. Dirac equation is shown to be exactly solvable in case of various 

different types of potentials. Some open problems are also pointed out.   
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1.Introduction  

 In general and elementary particle physics in particular. This equation which is applicable to particles with spin 

1/2 (ħ=c=1) is given by  

(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝛹 = 0                                     (1.1) 

This equation immediately predicated the existence of antiparticle of electron i.e. positron with the same mass as 

electron but equal and opposite electric charge. Soon it was realized that this prediction s valid not only for 

electron but for any spin – 1/2 particle and today we of course know that it is true for any elementary particle. 

Another remarkable prediction from Dirac equation follows when one considers the motion of an electron  in 

external electromagnetic field given by  

[𝑖𝛾𝜇(𝜕𝜇 − 𝑖 𝑒 𝐴𝜇) − 𝑚]𝛹 = 0                      (1.2) 
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In this way one was lead to the celebrated problem2 of the Dirac particle in a Coulomb field. As we all know the 

predicted spectrum is in remarkable agreement with experiment but for the Lamb shift and hyperfine spliting3. In 

some sense it is this disagreement which finally lead to the remarkable discovery of quantum electrodynamics-one 

of the most successful theory ever discovered by mankind.  

The Dirac operator of eq. (2) i.e.,  

𝐷 = 𝛾𝜇(𝜕𝜇 − 𝑖 𝑒 𝐴𝜇)                        (1.3) 

Which plays a crucial role in many situations, has an inbuilt super-symmetry. In particular, on defining the SUSY 

charges4  

𝑄± =
1

2
(1 ± 𝛾5)𝐷                      (1.4) 

it easily follows that the operators Q. Q, and H(=D2) satisfy the N=1 super symmetry algebra  

{𝑄+, 𝑄} = 𝐻; [𝐻, 𝑄+] = 0, 𝑄+
2 = 𝑄2 = 0                       (1.5) 

This chiral super- symmetry was first successfully exploited in the context of the study of chiral anomalies. 

Recently we4 have discovered that the Dirac operator has another super -symmetry (the so called complex super- 

symmetry) in four and higher even dimensions.  

 In recent times there has been a renewed interest5 in understanding the zero (energy) modes and also complete 

spectrum of the Dirac operator (1.3) for an Euclidean fermionic theory interacting with the background gauge 

fields. The point is that the zero modes in turn are intimately related to chiral anomalies6, Witten index, fermion 

number fractonization7 etc.  

 In this paper I have decided to focus on the solution of the Dirac equation (2) in the case of various different 

situations. Further, as a concrete application of these solutions (in particular the zero modes) I discuss the 

phenomenon of fermion number fractionization which occurs whenever there are zero modes of the Dirac equation 

in the background of the topologically nontrivial objects. I also point out the possible experimental relevance of 

this phenomenon, and finally point out number of open problems.   

 The plan is the following: In Sec. II first discuss the topologically nontrivial objects. As an illustration, I discuss 

in details the kink solution in 1+1 dimension. In Sec. III I discuss the solution of the Dirac equation in the 

background of the kink solution. In particular I show that these equations can be decoupled and that whenever a 

Schrödinger problem is exactly solvable then always exist a corresponding solvable Dirac problem. In Sec. IV I 

discuss the quantization of Dirac field and show that in view of the zero energy modes the solution acquires 

fractional charge. In Sec. V I discuss the experimental relevance of this result. In Sec. VI I discuss the solution of 

the Dirac equation in other situations and point out some open problems.  

 

2.Topologically Nontrivial Objects: Kink in 1+1 

By now we know many topologically nontrivial examples in field theory. Some of them are; kink in 1+1, charged 

and neutral vortices in 2+1, t’Hooft -Polyakov monopole10 and dyon11 in 3+1, Skyrmion12 in 3+1, 0(3) 𝜎-model 

http://www.jetir.org/


© 2025 JETIR February 2025, Volume 12, Issue 2                                                             www.jetir.org (ISSN-2349-5162) 

  

JETIR2502402 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e10 
 

solution13 etc. All these objects are stable due to nontrivial boundary conditions. More technically all these objects 

are stable since for them there is a  nontrivial mapping from the spacetime manifold on to the group manifold: 

𝜋ɳ(8) ≠ 0. It appears that the topologically nontrival solution is a general feature of nonlinear field theories with 

degenerate minima. As an illustration of these ideas I now discuss the simplest known such example: kink solution 

in 1+1 dimensions.  

 Let us consider the Lagrangian in 1+1 dimensions  

ℒ𝛽 =
1

2
𝜕𝜇ϕ ∂μ −

1

2
S2(ϕ)         (2.1) 

The corresponding field energy is  

𝐸 = ∫ 𝐻𝑑𝑥 = ∫
1

2
𝑑𝑥 [(

𝑑ϕ

𝑑𝑥
)

2

] + (
𝑑ϕ

𝑑𝑡
)

2

+ 𝑆2(ϕ)
∞

−∞

∞

−∞

                    (2.2) 

Clearly 𝐸𝑚𝑖𝑛 = 0 𝑎𝑡 ϕ = ϕmin  which is the ground state of the system. Here without any loss of generality we 

have assumed that 𝑆2(ϕ𝑚𝑖𝑛) = 0. The field equation which follows from here is  

𝑑2ϕ

𝑑𝑡2
−

𝑑2ϕ

𝑑𝑥2
= −𝑆(ϕ)𝑆′(ϕ)                                       (2.3) 

Which in the case of static solution (
𝑑2ϕ

𝑑𝑡
= 0) can be integrated to give  

(
𝑑ϕ

𝑑𝑥
)

2

= 𝑆2(ϕ) + 𝑐                            (2.4) 

Now at ϕ = ϕmin, 𝑆2(ϕmin) = 0 and hence 𝐶1 = 0. Thus the static solution is  

∫
𝑑ϕ

𝑆(ϕ)
= ±𝑥 + 𝑐2                           (2.5) 

One of the most celebrated example of 𝑆2(ϕ) with double minima is  

∫
𝑑ϕ

𝑆(ϕ)
= ±𝑥 + 𝑐2                     (2.6) 

In which case ϕmin = ± μ √λ⁄ . On using (2.6) in (2.5) we find that the static solutions are  

ϕ𝑘
±(𝑥) = ±

𝜇

√𝜆
tanh  𝜇𝑥             (2.7) 

Note that these solutions are topologically nontrivial in the sense that as 𝑥 → ∞, ϕ𝑘
+(𝑥) goes to μ √λ⁄  which as 

𝑥 → ∞it goes to the other vacua −μ √λ⁄ . Thus we can difine a conserved current  

𝑗𝜇 = 𝜀𝜇𝑣𝜕𝑣ϕ, ∂μjμ = 0                (2.8) 

The corresponding conserved charge is  

𝑄 = ∫ 𝑗0(𝑥)𝑑 𝑥 = ϕ(𝑥 = +∞)
∞

−∞
− ϕ(𝑥 = −∞)                    (2.9) 

=
2𝜇

√𝜆
 𝑓𝑜𝑟 ϕ𝑘

+(𝑥) 

= −2𝜇 √𝜆 𝑓𝑜𝑟 ϕ𝑘
(−)(𝑥) ⁄  
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Here conventionally ϕ𝑘
+(𝑥) and ϕ𝑘

(−)(𝑥) are called kink and antikink respectively. Note that both the solutions are 

degenerate in energy i.e. 

𝐸 = 4𝜇2 3𝜆⁄                 (2.10) 

It is worth nothing that E as well as ϕk are inversely proportional to 𝜆. Since 𝜆 is the coefficient of the ϕ4 term, it 

clearly shows that these topological solutions are nonperturbative in nature and that they could not have been 

obtained in perturbation theory.    

3.Solution of Dirac Equation in the Kink Background 

We shall now consider the solution of the Dirac equation in the background of the topologically nontrivial kink 

solution. In particular consider  

ℒ = ℒ𝐵 + Ψ(𝑖 𝛾𝜇  𝜕𝜇 − 𝜆ϕ)Ψ             (3.1) 

Where ℒ𝐵is as given by eq. (2.1). For small 𝜆 one can neglect the 𝛹 − 𝜙 coupling and find solution ℒ𝐵 and then 

one wants to quantize Dirac system with 𝜙 taken as external 𝑐 − 𝑛0  background field. As a first step in that 

direction, one must first obtain the solution of the Dirac equation in the background of the kink solution. The Dirac 

equation to be considered is  

(𝑖 𝛾𝜇𝜕𝜇 − 𝜆𝜙)𝛹(𝑥, 𝑡) = 0                   (3.2) 

Let  

𝛹(𝑥, 𝑡) = 𝑒−𝑖𝜔𝑡𝛹(𝑥)                          (3.3) 

We shall work with the following representation of the γ-matrices  

𝛾0 = 𝜎1 , 𝛾1 = 𝑖 𝜎3                             (3.4) 

On choosing 𝛹(𝑥) = (
𝛹1 (𝑥)
𝛹2 (𝑥)

)  it easily follows that the equation for 𝛹1 and 𝛹2  can be decoupled4 

[
𝑑2

𝑑 𝑥7
+ 𝜆2𝜙2 − 𝜆 𝜙 (𝑥)] 𝛹(𝑥) = ⋯ … … … … … … … … . . ? 

… … … … … … … … … … … … … .. 

(Page 5 Fade PDF) 

We immediately recognize that the operators acting on the l.h.s……. Of eq. (3.5) are the supersymmetric partner 

Hamiltonian 𝐻 ±  defined by  

𝐻 ≡ 𝐴 𝐴,   𝐻 = 𝐴 𝐴                                            (3.6) 

Where  

𝐴 =
𝑑

𝑑𝑥
+ 𝜆𝜙(𝑥);     𝐴+ =

𝑑

𝑑𝑥
+ 𝜆𝜙(𝑥)            (3.7) 

The super-symmetry charges 𝑄   𝑄4 are easily written in terms of A and A+  

𝑄 = (
0 𝐴
0 0

) . 𝑄4 (
0 0
𝐴 0

)                                 (3.8) 
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 𝑄, 𝑄4 ≡ (
𝐻 0
0 𝐻+

) can now be shown to satisfy the SUSY algebra (1.5). One can now use the whole machinery of 

supersymmetirc quantum mechanics using which large number of potentials have been solved in nonrelativisitc 

quantum mechanics17 and expressions for eigenvalues, eighnfunctions and scattering matrix have been obtained. 

All that machinery can now also be used for the solution of Dirac eq. (3.2) when the kink solution 𝜆 ϕ (x) is to be 

indentified with the super potential in the Schrӧdinger problem. In this way, we conclude that if a Schrӧdinger 

problem can be solved then there always existis a corresponding Dirac problem eq. (3.2) which can be exactly 

solved with   ϕ identified as the superpotenial.  

 Zero Energy Solutions: We shall see in the next section that the zero energy solution play a crucial role in the 

phenomena of fermion number fractionization. Clearly eq. (3.5a) and (3.5b) have acceptable zero modes if the 

solution of the equations.  

𝐴𝛹1
(0)(𝑥) = 0                              (3.9a) 

𝐴+𝛹2
(0)(𝑥) = 0                              (3.9a) 

is square integrable. Using eq. (3.7) we see that the solutions of (3.9a) and (3.9b) are  

𝛹1
(0)(𝑥) = 𝑁 (𝑒−∫

𝑥

𝜆ϕ(𝑦)𝑑 𝑦
0

)                      (3.10a) 

𝛹2
(0)(𝑥) = 𝑁 (

0

𝑒−∫
𝑥

𝜆ϕ(𝑦)𝑑 𝑦
0

)                      (3.10b) 

Clearly 𝛹1
(0)(𝑥) 𝛹2

(0)(𝑥) is square integrable if ϕ(∞) > 0(𝜙(∞) < 0) and if ϕ(−∞) has opposite sign to that 

ϕ(∞). Thus we see that both H+ cannot simultaneously have a zero mode. As an illustration, when ϕ(𝑥) is the 

kink solution 
𝜇

√𝜆
  tanh 𝜇 𝑥 then it follows that only H has a zero mode with  

𝛹1
(0)(𝑥) = 𝑁 ((sech 𝜇 𝑥)√𝜆

0
)                     (3.11) 

It is worth noting that this solution is self charge conjugate i.e. 

𝛹0
ℒ(𝑥) = 𝜎3𝛹0

∗(𝑥) = 𝛹(0)(𝑥)                      (3.12) 

This is also true for the general solutions (3.10a) and (3.10b) with eigenvalues +1 and -1 respectively.  
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4.Fermion Number Fractionization  

We shall now discuss the quantization of the Dirac field in the solitonic background. To appreciate the role of the 

zero modes it might be worthwhile to first discuss the standard quantization around the normal vacuum which in 

our case is ϕ = ±μ√λ. On expanding the Dirac field  

𝛹(𝑥, 𝑡) = ∑[𝑒−𝑖𝜀𝑘𝑙𝑏𝑘𝑢𝑘
(+)

+ 𝑒−𝑖𝜀𝑘𝑙𝑑𝑘
+𝑣𝑘

(−)
(𝑥)]

𝑘

                    (4.1) 

Where 𝑏𝑘
+(𝑏𝑘)  are the creation (annihilation) operators for the particles while 𝑑𝑘

+  (𝑑𝑘)  are the same for 

antiparticles. We can then immediate calculate the expression for the fermion number operator Q defined by  

𝑄 =
1

2
∫ 𝑑 𝑥 ∑[𝛹𝑖

+(𝑥)𝛹𝑖 (𝑥) − 𝛹𝑖 (𝑥)𝛹𝑖
+(𝑥)]                    4.2

2

𝑖=1

 

by using eq. (4.1). we get  

𝑄 = ∑ 𝑏𝑘
+ 𝑏𝑘 − 𝑑𝑘

+

𝑘

𝑑𝑘              (4.3) 

Which immediately shows that the normal vacuum state 𝜙 = ± 𝜇 √𝜆⁄   has zero fermion number: Q1 vacuum >=0. 

How does the discussion change in the case of solutions? In this case we have seen that the solution of Dirac 

equation in the background of soliton consists of a zero energy state and then non-zero energy Dirac spectrum 

which is symmetric about E=0. This is a consequence of the fact that the Dirac Lagrangian (3.1) is invariant under 

charge conjugation. As a result we find that the discussion now is almost parallel to the previous case except for 

the zero modes which however make a profound difference. The point is that now the expansion on of Dirac field 

(4.1) gets  

𝛹(𝑥) = 𝑎𝛹0(𝑥) + ∑[𝑒−𝑖𝑒𝑘𝑙𝐵𝑘𝑈𝑘
(+)(𝑥) ]

𝑘

                          (4.4) 

Where  

+𝑒−𝑖𝑒𝑘𝑙𝐷𝑘
+ 𝑉𝑘

(−)
(𝑥) 

 

{𝛹(𝑥), 𝛹+(𝑥′)}𝑥0=𝑥0
′ = 𝛿(𝑥 − 𝑥′)                         (4.5) 

 

leads to  

{𝑎, 𝑎+} = 1                                                                (4.6) 

As a result, the expression for Q defined y (4.2) takes the form  

𝑄 = (𝑎+𝑎 −
1

2
) + ∑(𝐵𝑘

+ 𝐵𝑘 − 𝐷𝑘
+𝐷𝑘)

𝑘

                       (4.7) 

This clearly shows that the soliton state is doubly degenerate having fermion number ± 1 2⁄ . Let us denote the two 

degenerate states by 1 𝑆, +and 1𝑆, −〉. Clearly  
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𝑎⎟𝑆, −>=; 𝑎+⎟𝑆, +> 0                     (4.8) 

𝑎⎟𝑆, +>= ⎥ 𝑆, −>; 𝑎+⎥𝑆, −>= ⎥ 𝑆, +>                                                                       (4.9) 

So that 

𝑄⎥𝑆, −>=
1

2
⎥ 𝑆, −>; 𝑄⎥𝑆, +>=

1

2
⎥ 𝑆, +>                                                            (4.10) 

Is this fractional fermion number allowed in quantum field theory? Answer is yes. The point is that in field theory 

the local operators must carry integral fermion number and hence the difference in fermion number between any 

two quantum states in a given sector must be integral:  

𝑁 − 𝑁′ − 𝑛, ⎥𝑛⎥ = 0, 1, 2 … ..                (411) 

If the theory has charge conjugation symmetry then if a state has fermion number N then the antistate must have 

fermion 

  number – 𝑁 so that 2𝑁 = 𝑛 𝑖. 𝑒., a state can have either an integer or half integer fermion number. It must be 

emphasized here that if the theory does not have charge conjugation symmetry then the state can have any 

fractional charge. Goldstone-Wilczek14 have explicitly demonstrated this phenomenon in a model without charge 

conjugation symmetry. 

This phenomena of fermion number of fractionization is not restricted to this model alone but occurs whenever 

solutions of Dirac equation in the topologically nontrival background are considered7. This phenomenon s at the 

heart of the so called Callan-Rubakov effect15.   

5.Experimental Relevance  

It is well known that in polymers like polyacetylene (CH)x electrons move primarily in one-dimension.   

  

 

 

 

 

 

It has been observed that the polyacetylene appears in two phases A and B which are reflected images of each 

other. It has also been observed that many a times (CH), chain is in the A phase at one end while at the other end it 

is observed in B-phase. Clearly in between, at some point a transformation must occur from phase A to B  
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The transformation between the two phases is what is termed as soliton. However, in all this analysis there is an 

extra complication arising from the doubling of the degrees of freedom due to spin. As a result one does not 

observe the charge fractionization but one does observe unusual charge spin relationship. One finds that whereas 

the charged solitons are spinless, the neutral ones carry spin-1/2. These have been experimentally observed in 

electron spin resonance experiments.    

6.General Remarks and Open Problems 

There are several situations in which one considers the solution of Dirac equation. One of the famous situation is 

when electron is moving in a plane under the influence of the external magnetic field. The Dirac equation reads  

𝑖 𝛾𝜇(𝜕𝜇 − 𝑖 𝑒𝐴𝜇)𝛹 = 0                      (6.1) 

on choosing 

𝛹(𝑥⃗, 𝑡) = 𝑒𝑙 𝐸 𝑡𝛹(𝑥⃗); 𝐴0(𝑥⃗, 𝑡) = 0                   (6.2) 

 

We find that the problem to be solved is  

𝐻𝛹 = −𝛼⃗. (𝑝⃗ − 𝑒𝐴) = 𝐸𝛹    (6.3) 

We  choose 

α1 = −σ2, α2 = σ1, 𝛽 = σ3    (6.4) 

 

Note that  

{𝐻, 𝛽}+ = 0                  (6.5) 

As a result of which σ3 takes the positive energy eigen function to its charge conjugate negative energy are  

σ3ΨE = Ψ−E      (6.6) 

We are interested in looking for the zero modes. To that purpose let Ψ0 = (
𝑢
𝑣

) and choose the Coulomb gauge for 

A, which is assumed to be single valued and well behaved at the origin16 

𝐴𝑖 = ε𝑖𝑗𝜕𝑗𝑎                            (6.7a) 

𝐵 = ε𝑖𝑗𝜕𝑗𝐴𝑗 = ∇⃗⃗⃗2𝑎          (6.7b) 

In this case the Dirac eq. (6.3) reduces to the pair 

(𝜕𝑥 + 𝑖 𝜕𝑦)𝑢 − 𝑒(𝜕𝑥 + 𝑖 𝜕𝑦)𝑎𝑢 = 0           (6.8a) 

(𝜕𝑥 + 𝑖 𝜕𝑦)𝑣 − 𝑒(𝜕𝑥 + 𝑖 𝜕𝑦)𝑎 𝑣 = 0           (6.8b) 

These eqs. have the solutions 
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𝑢 = exp(𝑒 𝑎) 𝑓 (𝑥 + 𝑖 𝑦)                               (6.9a) 

𝑣 = exp(−𝑒 𝑎) 𝑔 (𝑥 − 𝑖 𝑦)                           (6.9a) 

Where f and g are arbitrary entire functions. One can show that either of the self-conjugate solutions (
𝑢
0

) or  (
0
𝑣

) 

are normalizable and that if  

ϕ = ∫ 𝐵 𝑑2𝑥      (6.10) 

then the no. of zero energy states on the largest integer less than 𝑒 ϕ − 1. This is a variant of the famous Antiyash-

Singer Index theorem.  

One of the most important case is the solution of the Dirac eq. (1.2). In several special cases such solution have 

already been obtained. For example  

(𝑖)𝐴𝜇(𝑥⃗) = 𝑉(𝑥⃗)𝛿𝜇0 

This is the famous case of static potential. The most famous example is 𝑉 (𝑥) = −𝑒2/⎥𝑥⃗⎥which is exactly 

solvable. However, the classification of solutions of Dirac eq. for arbitrary V(r) in 1 or 3 dimensions is nonexistent  

(𝑖𝑖)𝐴𝜇(𝑥) = 𝐴𝑙(𝑥); 𝐴𝑜(𝑥) = 0 

Using tricks of super -symmetric quantum mechanics. Several solvable cases have been indenfied4. 

 What about the zero modes of the Dirac equation in the background of charged vortices8. Only one mode has 

been obtained so far and that too for odd integer flux. Clearly is tisvery interesting to see if there are more zero 

modes and if there is an index theorem. Similarly it is worthwhile considering the zero modes of the σ-model with 

fermions which could be relevant in the context of high-Tc super-conductivity.  
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