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Abstract :  Optimizing CPU and GPU performance is critical for improving computational efficiency and reducing energy 

consumption in modern computing systems. Traditional resource allocation and workload scheduling techniques primarily rely on 

static or heuristic-based approaches, which often fail to adapt to dynamically changing workloads. This paper presents a novel 

machine learning (ML)-based approach that integrates Reinforcement Learning (RL) and XGBoost to optimize CPU and GPU 

resource allocation. The proposed RL model learns an optimal scheduling strategy by interacting with the system and generating a 

dataset containing key performance metrics such as CPU/GPU utilization, execution time, and energy consumption. The collected 

dataset is then utilized by an XGBoost model to predict the most efficient workload distribution based on reward values, enabling 

real-time optimization of computational resources. To validate the effectiveness of our approach, we conduct extensive simulations  

using real-world workload traces from SPEC CPU 2017, PARSEC, and Google TPU workloads. Performance evaluations 

demonstrate that our ML-driven resource allocation method significantly outperforms conventional static scheduling algorithms in 

terms of execution time, energy efficiency, and overall system throughput. The proposed method adapts dynamically to workload 
variations, leading to optimized power consumption without compromising performance. This research provides a scalable and 

adaptable solution for intelligent resource management in heterogeneous computing environments, making it applicable to high-

performance computing (HPC), cloud computing, and embedded systems. 

 

IndexTerms - CPU-GPU Optimization, Reinforcement Learning, XGBoost, Resource Allocation, Machine Learning, 

Performance Efficiency. 

I. INTRODUCTION 

 

 

In modern computing systems, both Central Processing Units (CPUs) and Graphics Processing Units (GPUs) play a crucial role in 

handling diverse and computationally intensive workloads. CPUs, with their advanced instruction sets and optimized architectures, 

are well-suited for executing sequential tasks and managing system-level operations. On the other hand, GPUs, with their massive 

parallelism, excel in accelerating parallelizable computations such as deep learning, scientific simulations, and large-scale data 

processing. Efficient coordination between CPUs and GPUs is essential to maximize performance, minimize energy consumption, 

and ensure optimal resource utilization in heterogeneous computing environments. 

 

Traditional workload scheduling and resource allocation strategies primarily rely on static heuristics, predefined scheduling policies, 
or rule-based approaches. While these methods offer simplicity, they often lack the adaptability required to handle dynamically 

changing workloads and system conditions. As computational demands vary over time, static scheduling techniques may lead to 

suboptimal resource utilization, increased energy consumption, and performance bottlenecks. This necessitates the development of 

intelligent and adaptive scheduling mechanisms that can respond to workload variations in real time. 

 

Machine Learning (ML) has emerged as a promising solution for dynamic and data-driven resource allocation. By leveraging ML 

techniques, it is possible to learn and predict optimal workload distribution strategies, enabling intelligent decision-making for 

CPU-GPU scheduling. In this work, we propose an ML-based approach that integrates Reinforcement Learning (RL) and XGBoost 

to optimize workload distribution dynamically. The RL model interacts with the system environment to learn an optimal scheduling 

strategy based on key performance metrics, such as CPU/GPU utilization, execution time, and energy efficiency. The generated 

dataset is then used to train an XGBoost model, which predicts the most efficient workload allocation based on reward values. 

 

To validate the effectiveness of our approach, we conduct extensive simulations using real-world workload traces, including SPEC 

CPU 2017, PARSEC, and Google TPU workloads. Experimental results demonstrate that our proposed ML-based scheduling 

method significantly outperforms conventional static scheduling techniques in terms of computational efficiency, energy 

conservation, and workload adaptability. By enabling intelligent and adaptive workload distribution, our approach provides a 

scalable solution for optimizing CPU-GPU resource management in high-performance computing (HPC), cloud computing, and 
embedded systems. 
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II. LITERATURE REVIEW 

Several studies have explored machine learning-based approaches for optimizing CPU-GPU workload distribution, energy 
efficiency, and resource allocation. This section reviews existing research on reinforcement learning (RL) and supervised 

learning techniques applied to heterogeneous computing environments. 

 

A. Dynamic Workload Balancing in Heterogeneous Systems Using Reinforcement Learning 

A reinforcement learning (RL)-based approach for dynamically balancing workloads between CPUs and GPUs in heterogeneous 

computing environments is presented in [1]. The study proposes an RL agent that learns optimal scheduling policies based on 

real-time performance feedback. The experimental results demonstrate significant improvements in execution efficiency and 

energy savings compared to traditional static scheduling methods. This research highlights the potential of RL in adaptive 

workload distribution. 

B. Energy-Efficient CPU-GPU Task Scheduling Using Machine Learning 
In [2], the authors investigate the use of supervised learning techniques, such as decision trees and neural networks, for energy-

efficient task scheduling. The proposed ML model predicts the optimal execution unit (CPU or GPU) for a given workload, 

leading to reduced power consumption while maintaining performance. The study demonstrates the effectiveness of ML-driven 

approaches in reducing computational overhead and optimizing energy efficiency. 

 

C. Performance Prediction for Parallel Applications Using XGBoost 
The study in [3] explores the application of XGBoost for performance prediction in multi-core and GPU-accelerated systems. 

The authors collect a dataset comprising execution times, CPU/GPU utilization, and memory bandwidth to train the model. Their 

results indicate that XGBoost can accurately predict computational performance, making it a valuable tool for real-time 

scheduling and resource allocation. This research underscores the role of predictive modeling in enhancing computational 

efficiency. 

 

D. Reinforcement Learning for Adaptive Resource Management in Cloud Computing 
An extension of RL-based optimization to cloud computing environments is presented in [4]. The study focuses on dynamic 

allocation of CPU and GPU resources based on fluctuating workloads. Experimental findings suggest that RL models can 

effectively learn optimal resource allocation policies, leading to enhanced performance and cost efficiency in cloud 
environments. This research reinforces the applicability of RL beyond traditional on-premise computing systems. 

 

E. Hybrid Machine Learning Models for Task Offloading in Edge Computing 
A hybrid ML model combining reinforcement learning and gradient boosting techniques for task offloading in edge computing 

environments is proposed in [5]. The study demonstrates that integrating multiple ML techniques improves predictive accuracy 

and system adaptability. These insights are particularly relevant for CPU-GPU workload distribution, where real-time decision-

making is critical for performance optimization. 

 

These studies provide the foundation for our approach, motivating the integration of RL for workload distribution and XGBoost 

for predictive modeling in CPU-GPU performance optimization. Our work builds upon these advancements by implementing an 

ML-based scheduling mechanism that dynamically adjusts CPU-GPU resource allocation based on real-time performance 

metrics. By leveraging reinforcement learning for adaptive decision-making and predictive modeling techniques for performance 

estimation, our approach aims to enhance computational efficiency, minimize energy consumption, and ensure optimal resource 

utilization. Additionally, we explore the scalability of our framework across diverse workloads, ensuring its applicability to 

various high-performance computing and cloud-based environments. 

 

Furthermore, our approach emphasizes the importance of continuous learning and adaptability in heterogeneous computing 
environments. By incorporating real-time feedback loops, our ML-based scheduling mechanism can refine its decision-making 

over time, responding to dynamic workload variations and system constraints. This adaptability ensures sustained performance 

gains, making our framework suitable for a wide range of applications, from high-performance scientific computing to energy-

efficient cloud services. Future work may explore the integration of additional machine learning models, such as deep 

reinforcement learning, to further enhance the precision and robustness of workload distribution strategies. 
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III. METHODOLOGY 

 

 

This section outlines the methodology adopted for optimizing CPU-GPU workload distribution using machine learning (ML) 
techniques. The proposed approach consists of four key phases: data collection and preprocessing, reinforcement learning (RL) 

model training, XGBoost-based predictive modeling, and performance evaluation. 

A. Data Collection and Preprocessing 

To ensure a robust evaluation of workload scheduling strategies, real-world workload traces were collected from SPEC CPU 2017, 

PARSEC, and Google TPU workloads. These benchmarks represent a diverse set of computational tasks, including general-

purpose CPU-intensive applications, parallel workloads, and deep learning inference tasks executed on TPUs and GPUs. 
The raw dataset contained several key performance metrics, including: 

 CPU and GPU utilization (%): Measures the proportion of processing power utilized during execution. 

 Execution time (ms): The time required to complete a given workload. 

 Power consumption (W): The energy consumed by CPU and GPU resources during workload execution. 

To facilitate effective learning and prediction, the data underwent a preprocessing pipeline that included feature extraction, 

normalization, and transformation. All feature values were normalized using Min-Max scaling to ensure that different metrics 

were on a comparable scale. This preprocessing step was crucial in improving the convergence speed of the ML models and 

preventing bias due to varying data ranges. 

B. Reinforcement Learning Model 
A Deep Q-Network (DQN)-based RL agent was implemented to learn optimal CPU-GPU workload distribution policies. The RL 

model was designed to dynamically adjust scheduling decisions based on real-time performance feedback, maximizing 

computational efficiency and minimizing power consumption. 

1) RL Environment Setup 
The RL agent was trained in a simulated heterogeneous computing environment, where workloads were assigned to either the CPU 

or GPU based on system state observations. The environment consisted of: 

 State Space: A set of real-time system parameters, including CPU/GPU utilization, power consumption, and workload 

characteristics. 

 Action Space: Possible scheduling actions, such as executing a workload on the CPU, GPU, or splitting the execution 

dynamically. 

 Reward Function: Designed to optimize execution efficiency by minimizing execution time and energy consumption. 

The reward was formulated as:  

Rt = - α x (Execution_time) + β x (Energy_saving) 

where α\alpha and β\beta are hyperparameters controlling the trade-off between performance and energy efficiency. 
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2) Training Process 
The RL agent interacted with the environment using an ε-greedy exploration strategy, balancing exploration and exploitation to 

learn an optimal scheduling policy. The DQN model was trained using experience replay and target network updates to stabilize 

learning. The training process was executed over multiple episodes until convergence, where the agent consistently selected optimal 

scheduling actions. 

The final output of the RL model was a dataset containing: 

 CPU/GPU utilization 

 Execution time 

 Reward values for different scheduling decisions 

This dataset was subsequently used for training an XGBoost model for real-time workload scheduling predictions. 

C. XGBoost Model for Predictive Scheduling 
While the RL model learned optimal scheduling policies, real-time decision-making still required a fast and efficient predictive 

mechanism. To enable low-latency predictions, the RL-generated dataset was used to train an XGBoost model, a gradient-boosting 

algorithm known for its efficiency in structured data learning. 

1) Training Procedure 
The XGBoost model was trained on the RL-generated dataset to predict optimal workload allocation decisions based on system 
state parameters. The training process involved: 

 Feature Selection: Using CPU/GPU utilization, execution time, and reward values as input features. 

 Hyperparameter Tuning: Optimizing learning rate, max depth, and number of estimators to improve model accuracy. 

 Cross-Validation: Evaluating the model’s generalizability using k-fold cross-validation. 

2) Inference and Real-Time Scheduling 
Once trained, the XGBoost model enabled real-time workload allocation by predicting the best CPU-GPU scheduling decision 

based on current system conditions. Given its low computational overhead, XGBoost facilitated rapid decision-making, 

significantly reducing the need for complex real-time RL inference. 

D. Performance Evaluation 
The proposed ML-based scheduling approach was rigorously evaluated against traditional static scheduling techniques, including 

round-robin scheduling, first-come-first-serve (FCFS), and heuristic-based policies. 

1) Evaluation Metrics 
To assess scheduling efficiency, the following metrics were used: 

 Mean Absolute Error (MAE): Evaluates the difference between predicted and actual execution performance.  

MAE =  
𝟏

𝒏
∑ |𝒚𝒊
𝒏
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 Root Mean Square Error (RMSE): Measures the variance of prediction errors, providing insight into model stability.  
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𝟏
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 Reduction (%): Measures the percentage improvement in execution time compared to static scheduling policies. 

 Energy Efficiency Improvement (%): Compares power consumption reductions achieved using ML-based scheduling. 

2) Experimental Results 
The experimental results demonstrated that the proposed RL-XGBoost hybrid scheduling method outperformed conventional static 

scheduling techniques in terms of: 

 Lower MAE and RMSE values, indicating more accurate workload allocation decisions. 

 Reduced execution time, enhancing overall computational throughput. 

 Improved energy efficiency, leading to lower power consumption without performance degradation. 

The findings validate that an ML-driven approach enables dynamic workload scheduling, adapting to real-time system variations 

and improving both performance and energy efficiency. 

 

IV. XGBOOST 

Extreme Gradient Boosting (XGBoost) is a high-performance machine learning algorithm designed for structured data tasks, 

offering superior predictive accuracy and computational efficiency. It is based on gradient-boosted decision trees and is well-

suited for workload scheduling in heterogeneous computing environments due to its ability to handle large datasets with low 

latency. XGBoost incorporates advanced optimization techniques such as regularization, parallel processing, and sparsity-aware 

algorithms, making it effective for real-time scheduling decisions. 

In this research, XGBoost is employed to predict optimal workload allocation based on system performance metrics such as 

CPU/GPU utilization, execution time, and power consumption. Unlike deep learning models, which require significant 
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computational resources for inference, XGBoost provides fast and reliable predictions with minimal computational overhead, 

making it ideal for real-time workload distribution. The model learns from an RL-generated dataset containing system state 

parameters and their corresponding optimal scheduling decisions. By leveraging decision tree-based learning, XGBoost 

effectively captures complex non-linear relationships between workload characteristics and execution efficiency. 

The training process involved optimizing hyperparameters such as learning rate, maximum tree depth, and the number of 

estimators to improve accuracy. Cross-validation techniques ensured model generalization, while feature importance analysis 

provided insights into key factors influencing CPU-GPU task scheduling. The final model demonstrated high predictive accuracy, 

enabling dynamic workload allocation with improved execution efficiency and energy conservation. Experimental results 

validated that the XGBoost-based scheduling mechanism outperformed traditional heuristic-based approaches, reducing 

execution time and enhancing system performance. 

 

V. RL ALGORITHM 

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns optimal decision-making strategies through 

interactions with an environment. In this research, RL is employed to optimize CPU-GPU workload distribution by dynamically 

adjusting scheduling decisions based on real-time system performance metrics. Unlike traditional static scheduling methods, which 

rely on predefined heuristics, RL enables adaptive decision-making by continuously refining policies to maximize computational 

efficiency and energy conservation. 

A Deep Q-Network (DQN)-based RL agent was implemented to learn optimal scheduling policies. The RL model operates in a 

simulated environment where system parameters such as CPU and GPU utilization, execution time, and power consumption serve 

as state variables. The agent selects scheduling actions—allocating tasks to the CPU, GPU, or both—based on the current state. The 

decision is guided by a reward function designed to minimize execution time while optimizing energy efficiency.  

The RL training process follows an ε-greedy exploration strategy, balancing exploration and exploitation to optimize scheduling 

decisions. To enhance learning stability, experience replay is employed, storing past experiences and randomly sampling them for 
training. Additionally, target network updates are used to improve convergence. The model is trained over multiple episodes until 

the agent consistently selects workload allocations that maximize computational efficiency. 

Experimental evaluations demonstrate that the RL-based scheduling approach outperforms traditional methods by dynamically 

adapting to varying workloads. The trained RL agent provides an optimized scheduling policy that reduces execution time, improves 

system utilization, and lowers energy consumption, making it a robust solution for heterogeneous computing environments. 

 

VI. CPU UTILIZATION 
CPU utilization is a critical performance metric in workload scheduling, representing the percentage of processing capacity actively 

used at a given time. Efficient CPU utilization is essential for maximizing computational efficiency while minimizing power 

consumption and thermal constraints. In heterogeneous computing environments, balancing CPU and GPU workloads ensures 

optimal resource allocation, preventing bottlenecks and underutilization of processing units. 

 

Figure 1: CPU utilization and GPU utilization 

In this research, CPU utilization is a key parameter in the reinforcement learning (RL) model and XGBoost-based predictive 

framework. The system monitors real-time CPU usage along with execution time and energy consumption to determine optimal 

workload distribution. High CPU utilization indicates increased computational demand, whereas low utilization suggests the 

potential for workload reallocation to the GPU for improved efficiency. The RL agent dynamically adjusts task scheduling decisions 

based on CPU utilization trends, ensuring an adaptive balance between CPU and GPU execution. 

The dataset used for training the models includes CPU utilization values recorded across various workload traces from SPEC CPU 

2017, PARSEC, and Google TPU workloads. These values, along with other system parameters, are processed and normalized 

before being used as inputs for the ML models. The reinforcement learning model learns an optimal policy to allocate workloads 

based on CPU utilization patterns, while the XGBoost model leverages historical data to predict CPU-GPU distribution strategies. 

Experimental results validate that an intelligent workload distribution mechanism considering CPU utilization leads to improved 

execution efficiency and reduced power consumption. Compared to traditional static scheduling approaches, the proposed ML-
driven optimization technique effectively balances workloads, preventing CPU overload and enhancing system performance in 

heterogeneous computing environments. 
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VII. GPU UTILIZATION 
 

GPU utilization is a crucial metric in heterogeneous computing, representing the percentage of available GPU processing power 

actively engaged in executing tasks. Unlike CPUs, which handle sequential computations efficiently, GPUs are optimized for 

parallel processing, making them well-suited for high-performance tasks such as deep learning, graphics rendering, and large-scale 

numerical simulations. Efficient workload allocation between the CPU and GPU is essential to prevent resource underutilization 

and maximize computational efficiency. 

 

Figure 2: Resource usage comparison 

In this research, GPU utilization is a key parameter in both the reinforcement learning (RL) and XGBoost-based predictive models. 

The system monitors real-time GPU usage along with execution time and power consumption to dynamically adjust workload 

distribution. High GPU utilization indicates intensive parallel processing, while low utilization suggests potential idle cycles that 

can be leveraged by reallocating workloads from the CPU. The RL model learns an optimal scheduling policy based on GPU 

utilization patterns, ensuring adaptive resource management to balance performance and energy efficiency. 

The dataset used for training includes GPU utilization metrics recorded from workload traces such as SPEC CPU 2017, PARSEC, 

and Google TPU workloads. These utilization values are normalized and used as input features for both the RL and XGBoost 

models. The RL agent interacts with the system environment, optimizing task distribution through a reward-based mechanism that 

considers GPU efficiency, execution latency, and power consumption. Additionally, the XGBoost model leverages historical GPU 

utilization data to predict optimal CPU-GPU workload allocation, ensuring real-time adaptability to varying computational 

demands. 

Experimental results demonstrate that the proposed ML-driven optimization significantly improves GPU utilization compared to 

traditional static scheduling methods. By intelligently balancing workloads, the system prevents GPU resource wastage, enhances 

execution efficiency, and reduces power consumption. This approach ensures that GPU resources are effectively utilized, leading 

to higher performance in heterogeneous computing environments. 

 

VIII. RESULTS AND CONCLUSION 
 

The research demonstrate that the proposed RL-XGBoost model significantly improves CPU-GPU resource allocation compared 
to traditional static scheduling methods. The evaluation was conducted using real-world workload traces from SPEC CPU 2017, 

PARSEC, and Google TPU workloads. Performance metrics such as execution time, power consumption, and workload distribution 

efficiency were analyzed to validate the effectiveness of the proposed approach. 

The results indicate that the RL-XGBoost model achieves a substantial reduction in execution time by dynamically optimizing task 

allocation between the CPU and GPU. Unlike static scheduling techniques that rely on predefined heuristics, the reinforcement  

learning agent adapts workload distribution based on real-time system states, leading to faster task execution and reduced latency. 

 

Figure 3: Total rewards range 

Figure 3 displays the successful completion of a machine learning model training process. The model was trained on data with a 

Total Reward range of 1833.40 to 2638.94 and CPU Utilization between 0.0001 and 0.3200. The system confirms successful 

training and saving of the model, specifying the valid Total Reward input range for subsequent use or testing. The prompt requests 

the user to input a Total Reward value within the valid range or to enter '-1' to exit. 
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Additionally, the proposed approach demonstrates lower power consumption by efficiently balancing workloads and preventing 

resource overutilization. Traditional static scheduling often results in inefficient CPU or GPU usage, leading to unnecessary energy 

expenditure. By leveraging ML-based optimization, our model minimizes energy wastage while maintaining high computational 

throughput, making it a more sustainable and energy-efficient solution. 

Furthermore, workload distribution efficiency is significantly enhanced, as evidenced by improved CPU and GPU utilization 

patterns. The RL model effectively learns optimal scheduling policies that prevent bottlenecks and underutilization, ensuring that 

computational resources are utilized to their full potential. The XGBoost model further refines this allocation by providing fast, 

real-time predictions, enhancing overall system performance. 

 

Figure 4: Prediction results 

Figure 4 illustrates the model's prediction capabilities. Following the successful training (Figure 3) the user input a Total Reward 
of 1900. The model predicted a CPU Utilization of 0.0707 and a GPU Utilization of 0.0848 for this input. 

 

Graphs depicting CPU and GPU utilization trends validate the effectiveness of our approach. These visualizations illustrate how 

the ML-driven optimization dynamically adapts to varying workloads, leading to more balanced resource usage compared to static 

methods. The experimental findings confirm that ML-based scheduling not only enhances computational performance but also 

contributes to energy-efficient computing, making it a viable solution for modern heterogeneous architectures. 
 

 
Figure 5: Output Graphs 

 

Figure 5 presents a comprehensive view of resource utilization in relation to the 'Total Reward' metric, offering insights into the 

system's performance and efficiency. The figure is composed of four subplots. 

 

 

IX. CONCLUSION AND FUTURE WORK 
 

This research demonstrates that machine learning techniques, particularly Reinforcement Learning (RL) and XGBoost, can 

significantly enhance CPU-GPU performance optimization. By dynamically distributing workloads based on learned patterns, the 

proposed approach improves computational efficiency while reducing power consumption. Unlike traditional static scheduling 

methods, which lack adaptability to real-time system variations, the ML-driven optimization strategy continuously refines workload 

allocation, leading to superior performance in heterogeneous computing environments. The experimental results validate the 

effectiveness of the RL-XGBoost model, highlighting its potential for practical deployment in high-performance computing 

scenarios. 

Future research can focus on extending this approach by exploring additional ML models and hybrid reinforcement learning 

techniques to further refine workload scheduling policies. Investigating advanced deep reinforcement learning methods such as 

Proximal Policy Optimization (PPO) or Advantage Actor-Critic (A2C) could improve learning efficiency and scheduling accuracy. 

Additionally, incorporating more complex workload scenarios, including varying computational intensities and multi-task 

environments, can enhance the robustness of the model. 

Moreover, integrating real-time performance monitoring and adaptive learning mechanisms can further improve the system’s ability 

to respond to evolving computational needs. A self-adaptive workload distribution model that continuously updates its decision-

making process based on real-time feedback can enhance scalability and responsiveness in dynamic computing environments. 

Additionally, applying federated learning techniques to optimize resource allocation across distributed computing systems can 

further enhance efficiency while maintaining data privacy. 
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The findings of this study pave the way for intelligent, data-driven CPU-GPU resource allocation strategies that have the potential 

to transform modern computing architectures. By optimizing workload distribution through ML-based decision-making, future 

computing systems can achieve improved efficiency, reduced power consumption, and greater sustainability, making this approach 

highly relevant for next-generation high-performance computing applications. 
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