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Abstract 
 The development of adaptive learning mechanisms within ARF-VTAD, such as online learning and continual learning 

techniques, could allow the system to refine its performance over time by learning from newly observed driving patterns 

and traffic behaviors. This would enhance its robustness against changing road conditions, weather variations, and other 

external factors that may influence vehicle performance. Lastly, the security framework of ARF-VTAD could be 

strengthened by integrating blockchain-based data integrity mechanisms. Blockchain technology can ensure secure data 

transmission between vehicles and central servers, protecting sensitive information from cyber threats and unauthorized 
access. This enhancement would be crucial for applications involving autonomous vehicles and large-scale transport 

networks, where data security is a critical concern. In conclusion, the ARF-VTAD system holds the potential to transform 

modern transportation networks through its adaptability, scalability, and proactive monitoring capabilities. As future 

developments unfold, this system is expected to play a key role in the creation of safer, more efficient, and sustainable 

transportation systems globally. 
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1. Introduction 
With the rapid advancement of intelligent transportation 

systems, vehicle tracking has gained significant attention for 

its applications in fleet management, theft prevention, and 

optimized routing. Among the multitude of machine 

learning approaches available, the Random Forest algorithm 

has emerged as a promising candidate due to its robustness, 

scalability, and ability to handle complex data 

environments. In this chapter, we introduce an advanced 

version of a vehicle tracking system employing Random 
Forest classification, enhanced with optimization techniques 

for improved detection accuracy and realtime response 

capabilities. 

Challenges in Existing Systems 
Traditional vehicle tracking systems primarily rely on 

Global Positioning System (GPS) and communication 

networks such as GSM or GPRS. However, several 

challenges persist: 

 Limited accuracy due to environmental 

obstructions. 

 Connectivity issues in remote areas. 

 High latency in large-scale deployments. 

 Limited integration of real-time predictive 

analytics. 

Proposed System: Enhanced Random Forest-Based 

Vehicle Tracking 
This system utilizes the Random Forest algorithm as a core 
classifier to detect and identify vehicles based on features 

derived from real-time GPS signals, speed, and additional 

parameters collected through onboard sensors. The 

enhancements include: 

 Preprocessing: Use of gamma correction for image-

based data preprocessing to improve detection 

clarity. 

 Adaptive Feature Selection: Dynamically selecting 

optimal features, such as speed fluctuations, GPS 

coordinates, and acceleration, to adapt to 

environmental changes. 

 Real-Time Updates: Implementation of edge-

computing devices for local data processing, 
minimizing latency during data transmission. 

  

1. Data Collection: Continuous GPS data collection, 

speed, and sensor information from the vehicle. 

2. Feature Extraction: Extract significant parameters, 

such as timestamped location and velocity changes. 

3. Random Forest Classifier: A set of decision trees 

trained on past data predicts the vehicle's next 

location and flags anomalies like route deviation or 

sudden stops. 

4. Anomaly Detection: Detected anomalies trigger 

alerts for system intervention. 

5. Route Optimization: Integrates historical data to 

suggest alternative routes dynamically. 

Experimental Setup and Results 
Using a dataset collected from real-time vehicle movement, 

we evaluated the system under varying conditions: 

 Scenarios: Urban environments with dense traffic 

and rural settings with sparse connectivity. 
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 Performance Metrics: Accuracy, latency, and 

robustness under data fluctuations. 

The experiments showed a marked improvement in 

detection accuracy by 8% compared to standard GPS-based 

methods, with latency reduced by 15% due to local data 

processing. 

Advantages of the Proposed System 

 Cost Efficiency: Reduced dependency on external 
communication networks. 

 Scalability: Suitable for large-scale deployment 

across fleets. 

 Enhanced Security: Real-time anomaly detection 

ensures swift responses to potential issues. 

 

The rapid growth of transportation systems has brought 

significant challenges in managing vehicle fleets efficiently, 

ensuring security, and optimizing travel routes. Real-time 

vehicle tracking systems have become essential tools in 

addressing these challenges, offering solutions for fleet 

management, stolen vehicle recovery, and traffic 

monitoring. However, despite technological advancements, 

current vehicle tracking systems face limitations that impede 

their overall effectiveness and reliability. Understanding 

these issues, along with identifying gaps in the literature, 

allows for the development of advanced models that address 
the shortcomings of existing solutions while enhancing 

system performance. 

One of the primary problems facing current vehicle tracking 

systems is the lack of consistent accuracy, particularly in 

environments where GPS signals are weak or obstructed. 

Urban areas with tall buildings, tunnels, or dense 

infrastructure often experience GPS signal loss, leading to 

inaccurate location readings and delayed updates. This 

inconsistency results in gaps in tracking, compromising the 

system's effectiveness in real-time applications. 

Additionally, existing systems are prone to high latency, 

particularly when relying on cloud-based data transmission. 

In large-scale applications, transmitting data to a remote 

server for processing and analysis introduces delays, making 

it difficult to deliver timely updates on vehicle locations or 

potential anomalies. Moreover, current systems often 

struggle with data overload due to continuous GPS data 
streams and sensor inputs. Without proper filtering 

mechanisms, the large volume of data can cause processing 

bottlenecks, limiting the system's ability to provide real-time 

decision-making capabilities. 

Security is another major concern in existing vehicle 

tracking solutions. Many systems are vulnerable to cyber-

attacks, where unauthorized individuals can intercept data, 

manipulate vehicle locations, or disable tracking entirely. 

Given the sensitive nature of real-time vehicle data, 

ensuring data integrity and preventing unauthorized access 

is critical for both personal and commercial applications. 

Additionally, many existing solutions do not adequately 

address anomalies such as sudden route deviations, 

unauthorized vehicle usage, or unexpected stops. Without 

robust anomaly detection mechanisms, the system cannot 

respond proactively to potential threats or operational 

disruptions. While traditional GPSbased tracking systems 
provide basic location monitoring, they often lack the 

predictive capabilities needed to anticipate potential issues 

and optimize vehicle performance. 

Several solutions have been developed to address some of 

these challenges, primarily leveraging GPS and 

communication technologies such as GSM and GPRS. Early 

vehicle tracking systems relied on passive methods, where 

location data was stored internally and retrieved later for 

analysis. However, such systems were unsuitable for real-

time applications due to the delay in accessing the data. 

Modern systems have adopted active tracking methods, 

where location data is continuously transmitted to a central 

server for real-time monitoring. These systems often 

incorporate clustering algorithms such as K-means or 

DBSCAN to group driving patterns and detect deviations 

from normal behavior. Furthermore, advancements in 

machine learning have enabled the use of support vector 

machines (SVMs) and deep learning models for vehicle 

classification and tracking. These models analyze features 

such as vehicle color, type, and speed to improve detection 

accuracy and provide more detailed insights into vehicle 

movements. 
Despite these advancements, several critical issues remain 

unresolved. One significant limitation is the dependency on 

centralized data processing, which introduces latency and 

increases the risk of connectivity failures. Many systems 

rely on cloud-based servers to process and analyze data, 

which can be problematic in areas with poor network 

coverage or high data transmission costs. The reliance on 

remote servers also creates a single point of failure, making 

the system vulnerable to outages and cyber-attacks. 

Additionally, existing systems often lack adaptability to 

dynamic environments, where factors such as traffic 

conditions, weather, and road closures can significantly 

impact vehicle routes and performance. Most systems are 

designed to operate under predefined conditions, making 

them less effective in responding to unexpected events or 

rapidly changing scenarios. 

Another persistent issue is the limited scalability of existing 
solutions. As the number of tracked vehicles increases, the 

system's performance often deteriorates due to the higher 

volume of data and the increased complexity of processing 

it in real time. Many systems are unable to scale efficiently, 

leading to delays in data processing and a decrease in 

overall accuracy. Furthermore, existing solutions often fail 

to integrate predictive analytics and anomaly detection, 

which are essential for proactive decisionmaking. While 

some systems incorporate basic anomaly detection 

mechanisms, they are often rulebased and unable to handle 

complex patterns or dynamic changes in vehicle behavior. 

This limitation hinders the system's ability to identify 

potential risks and optimize routes based on real-time 

conditions. 

Given these limitations, there is a clear need for a more 

advanced vehicle tracking model that addresses the gaps in 

existing solutions. The proposed model leverages the 
Random Forest algorithm, a powerful machine learning 

technique known for its robustness, scalability, and high 

accuracy in classification and regression tasks. By 

combining GPS data with additional sensor inputs such as 

speed, acceleration, and environmental factors, the proposed 

model provides a comprehensive view of vehicle behavior 

and improves the system's overall performance. The 

Random Forest algorithm is particularly well-suited for this 

application due to its ability to handle large datasets and 

noisy data, making it ideal for dynamic and unpredictable 

environments. 

The proposed model introduces several key enhancements 

to overcome the limitations of existing systems. First, it 

incorporates edge computing to process data locally on the 

vehicle, reducing latency and minimizing dependency on 

cloud-based servers. By performing real-time data 

processing on edge devices, the system can provide timely 
updates on vehicle locations and detect anomalies without 

the need for continuous data transmission to a central server. 
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This approach also improves the system's scalability, as 

each vehicle can process its data independently, reducing 

the overall load on the central server. 

Additionally, the model integrates adaptive feature 

selection, where the most relevant features for tracking and 

anomaly detection are dynamically selected based on real-

time conditions. This ensures that the system can adapt to 

changing environments and prioritize the most critical 

information for decision-making. For example, in urban 

areas with frequent stops and starts, features related to 

acceleration and deceleration may be more important, while 

in rural areas with long stretches of road, speed and GPS 

coordinates may take precedence. By dynamically adjusting 

the feature set, the system can optimize its performance and 

provide accurate tracking under various conditions. 
The Random Forest algorithm is also used to detect 

anomalies such as route deviations, unauthorized vehicle 

usage, and unexpected stops. By training the algorithm on 

historical data, the system can learn normal driving patterns 

and identify deviations that may indicate potential issues. 

When an anomaly is detected, the system can trigger alerts 

and provide recommended actions, such as rerouting the 

vehicle or notifying the fleet manager. This proactive 

approach enables the system to respond quickly to potential 

threats and minimize disruptions to operations. 

Furthermore, the proposed model incorporates predictive 

analytics to optimize vehicle routes and improve overall 

efficiency. By analyzing historical data and real-time 

conditions, the system can predict potential delays and 

suggest alternative routes to avoid traffic congestion or road 

closures. This not only reduces travel time but also improves 

fuel efficiency and reduces operational costs. The 
integration of predictive maintenance capabilities further 

enhances the system's value, as it can monitor vehicle 

performance and identify potential maintenance issues 

before they lead to breakdowns. By analyzing sensor data 

related to engine performance, fuel consumption, and tire 

pressure, the system can provide early warnings and 

schedule maintenance activities proactively, reducing 

downtime and maintenance costs. 

Security is a key consideration in the proposed model, with 

measures implemented to protect data integrity and prevent 

unauthorized access. Data encryption, secure 

communication protocols, and authentication mechanisms 

are used to safeguard sensitive information and ensure that 

only authorized users can access the system. Additionally, 

the system includes mechanisms for detecting and 

mitigating cyber-attacks, such as intrusion detection systems 

and anomaly-based threat detection. 
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3. Methodology 
 The Adaptive Random Forest Vehicle Tracking and 

Anomaly Detection System (ARF-VTAD) is designed to 
overcome challenges in real-time vehicle tracking, anomaly 

detection, and route optimization by integrating machine 

learning, edge computing, and dynamic feature selection. 

The proposed methodology employs the Random Forest 

algorithm as a robust classifier and anomaly detection 

framework while leveraging real-time sensor data to 

optimize routes and identify anomalies proactively. The 

system is designed for dynamic environments where vehicle 

behavior is unpredictable, and realtime responses are 

critical. 

Mathematical Foundation and Formulation 
The core of ARF-VTAD lies in its ability to predict vehicle 

positions, detect anomalies, and optimize routing in real 

time using a combination of time-series data, classification 

models, and optimization functions. The system receives a 

continuous stream of data 𝑋 = {(𝑥𝑡, 𝑣𝑡, 𝑎𝑡, ℎ𝑡)}𝑡=1
𝑇 , where: 

 𝑥𝑡 is the vehicle's position at time 𝑡, 
 𝑣𝑡 is the speed, 

 𝑎𝑡 is the acceleration, and 

 ℎ𝑡 is the heading direction. 

The goal is to predict future positions 𝑥̂𝑡+𝑘 , detect anomalies 

if deviations 𝑒𝑡 exceed thresholds, and optimize routes 

dynamically based on traffic, fuel efficiency, and safety. 

System Design and Steps 
The system is designed using three main modules: 

1. Prediction Module: Predicts the next vehicle state 

using the Random Forest algorithm. 
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2. Anomaly Detection Module: Detects unexpected 

behavior using residual analysis. 

3. Optimization Module: Suggests optimal routes 

based on real-time data and historical performance. 

Step-by-Step Procedure 

Step 1: Data Collection and Preprocessing 
The system collects real-time GPS data and sensor readings 

related to vehicle speed, acceleration, and heading. The data 

is preprocessed to filter noise using a moving average filter: 

𝑥𝑡
filtered 

=
1

𝑁
∑  

𝑡

𝑖=𝑡−𝑁+1

𝑥𝑖 

where 𝑁 is the window size for smoothing. This ensures that 
sudden fluctuations due to sensor errors are minimized. 

Step 2: Feature Selection and Vector Construction 

For each time step 𝑡, a feature vector 𝐟𝐭 is constructed: 

𝐟𝐭 = [𝑥𝑡, 𝑣𝑡, 𝑎𝑡, ℎ𝑡] 
These features capture the vehicle's current state, which is 

used as input to the Random Forest model for prediction and 

classification. 

Step 3: Random Forest Training 
The Random Forest algorithm constructs an ensemble of 

decision trees using bootstrapped samples. Each tree 𝑇𝑗 

splits the data based on features that minimize the Gini 

impurity or maximize the information gain. 

Gini impurity for a node containing samples from 𝑘 classes 
is defined as: 

𝐺 = 1 −∑ 

𝑘

𝑐=1

𝑝𝑐
2 

where 𝑝𝑐 is the proportion of samples belonging to class 𝑐. 

Alternatively, information gain can be used: 

 Information Gain = 𝐻(𝑆) −∑ 

2

𝑖=1

|𝑆𝑖|

|𝑆|
𝐻(𝑆𝑖) 

where 𝐻(𝑆) is the entropy of the parent node, and 𝑆𝑖 
represents child nodes after splitting. The ensemble 
prediction is obtained by majority voting: 

𝑦̂𝑡 = mode(𝑦̂𝑡,1, 𝑦̂𝑡,2 , … , 𝑦̂𝑡,𝑀) 

where 𝑦̂𝑡,𝑗 is the prediction from the 𝑗-th tree and 𝑀 is the 

total number of trees. 

Step 4: Prediction of Future Position 

The system predicts the vehicle's future position 𝑥̂𝑡+𝑘  using: 

𝑥̂𝑡+𝑘 = 𝑓(𝑥𝑡, 𝑣𝑡, 𝑎𝑡, ℎ𝑡) 
The function 𝑓 is learned through Random Forest regression 
on historical data, capturing temporal dependencies. 

Step 5: Anomaly Detection Using Residual Analysis 

The prediction error or residual 𝑒𝑡 is calculated as: 

𝑒𝑡 = 𝑥𝑡+1 − 𝑥̂𝑡+1 
An anomaly is flagged if: 

|𝑒𝑡| > 𝜖 

The threshold 𝜖 is determined using statistical measures 

such as standard deviation or a dynamically adaptive 

threshold based on the Z-score: 

𝑍𝑡 =
𝑒𝑡 − 𝜇

𝜎
 

where 𝜇 and 𝜎 are the mean and standard deviation of 

residuals, respectively. An anomaly is detected if |𝑍𝑡| > 𝜁, 

where 𝜁 is a pre-defined threshold (e.g., 2 or 3 for 95% or 

99% confidence). 

Step 6: Dynamic Route Optimization 
When an anomaly is detected, or when optimization is 

required due to changing conditions, the system uses a cost 

function 𝐶 to find the optimal route: 

𝐶( Route ) = 𝑤1 ×  Travel Time +𝑤2

×  Fuel Consumption +𝑤3

×  Safety Risk  

where 𝑤1 , 𝑤2, and 𝑤3 are weights assigned based on the 

priority of each factor. 

The optimization problem can be formulated as: 

min
Route 

 𝐶 (Route)  

Solvers such as Dijkstra's algorithm or A* can be used to 

compute the optimal route. 

Step 7: Edge Computing for Real-Time Processing 
To reduce latency, the system processes data locally using 

edge devices. The prediction and anomaly detection models 

are deployed on in-vehicle processors, enabling real-time 

decision-making without relying on cloud infrastructure. 

Algorithms 

Algorithm 1: Random Forest Training 

Input: Dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  

Output: Trained Random Forest model 

1. For 𝑗 = 1 to 𝑀 (number of trees): 

 Sample a bootstrap dataset 𝐵𝑗 from 𝐷. 

 Train decision tree 𝑇𝑗 on 𝐵𝑗. 

 At each split, select the feature 𝑓 that minimizes 
Gini impurity or maximizes information gain. 

2. Aggregate predictions from all trees. 

Algorithm 2: Anomaly Detection 

Input: Time-series data 𝑋, prediction model 𝑓, threshold 𝜖 
Output: Anomaly alerts 

1. For each time step 𝑡 : 

 Predict 𝑥̂𝑡+1 using 𝑓(𝑥𝑡, 𝑣𝑡, 𝑎𝑡, ℎ𝑡). 
 Calculate residual 𝑒𝑡 = 𝑥𝑡+1 − 𝑥̂𝑡+1. 

 If |𝑒𝑡| > 𝜖, flag as anomaly. 

Algorithm 3: Dynamic Route Optimization 
Input: Current vehicle state, traffic conditions 

Output: Optimal route 

1. Initialize cost function 𝐶 (Route). 

2. Evaluate possible routes using real-time traffic and 

safety data. 

3. Select route minimizing 𝐶 (Route) using Dijkstra's 

algorithm or A∗. 
The ARF-VTAD methodology combines machine learning, 

dynamic feature selection, and optimization techniques to 
address challenges in real-time vehicle tracking and 

anomaly detection. By integrating Random Forest 

prediction, residual-based anomaly detection, and dynamic 

route optimization, the system provides a robust and 

scalable solution for intelligent transportation networks. 

 

4. Experiments and Results 
 The ARF-VTAD system successfully identifies anomalies 

related to speed and route deviations. The suggested 

corrective actions help minimize disruption, demonstrating 
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the system's ability to operate effectively in real-time 

scenarios. 

Discussion of Results 
The results demonstrate that the proposed ARF-VTAD 

system significantly outperforms baseline models in terms 

of anomaly detection, prediction accuracy, and processing 

efficiency. The key factors contributing to its superior 

performance include: 

 Dynamic Feature Selection: Enables the system to 

adapt to varying conditions by prioritizing the most 

relevant features. 

 Edge Computing: Reduces latency by processing 

data locally on edge devices. 

 Robust Anomaly Detection: Residual-based 
detection and adaptive thresholding improve 

accuracy in identifying deviations. 

Anomaly Detection Performance 

Now interactive!    

1 SVM Classifier 89.4 85.2 76.5 

2 KNN Classifier 88.1 84.3 74.0 

3 DNN Classifier 91.5 86.7 80.2 

4 Naive Random 

Forest 

92.1 88.4 82.0 

5 ARF-VTAD 95.6 92.3 Precision (%) 

 

Descriptions of the Results 

Anomaly Detection Performance 
The performance of the ARF-VTAD system was evaluated 

against baseline models, including SVM Classifier, KNN 

Classifier, DNN Classifier, and Naive Random Forest. The 

results revealed that ARF-VTAD achieved the highest 

accuracy of 𝟗𝟓.𝟔%, which is significantly better than the 

baseline models. The system also demonstrated superior 

precision (92.3%), recall (88.0%), and F1-score (90.1%) 

compared to the nearest competitor, the Naive Random 

Forest, which achieved an accuracy of 𝟗𝟐.𝟏% and F1-score 
of 1%. 

The enhanced performance of ARF-VTAD is attributed to 

its dynamic feature selection mechanism and adaptive 

thresholding, which allow it to handle diverse and noisy 

environments effectively. The use of multiple features, such 

as speed, position, and acceleration, provided the system 

with a comprehensive view of vehicle behavior, improving 

its ability to detect anomalies like sudden route changes, 

speed spikes, and unexpected stops. 

The comparatively lower performance of models like SVM 

and KNN can be explained by their limitations in high-

dimensional feature spaces and their lack of ensemble 
learning capabilities. The DNN classifier, although 

performing well, exhibited slightly lower precision due to its 

sensitivity to overfitting when training on smaller datasets. 

Prediction Accuracy (Mean Absolute Error - MAE) 
The prediction accuracy of future vehicle positions was 

measured using the mean absolute error (MAE). The ARF-

VTAD system recorded the lowest MAE of 1.85 meters, 

outperforming other models such as SVM Regression ( . 𝟐𝟒 

meters) and KNN Regression ( 𝟑. 𝟏𝟎 meters). The Naive 
Random Forest achieved a respectable performance with an 

MAE of 𝟐. 𝟒𝟓 meters, but it still lagged behind the ARF-

VTAD system. 

The superior prediction accuracy of ARF-VTAD is largely 

due to its enhanced feature selection and robust learning of 

temporal dependencies within the vehicle movement data. 

The ability to dynamically prioritize key features, such as 

speed and heading, allows ARF-VTAD to make accurate 

short-term predictions even under varying traffic and 

environmental conditions. The lower MAE indicates that the 

system can provide highly precise location predictions, 

which are critical for route optimization and anomaly 

detection. 

In contrast, models like SVM and KNN regression suffer 

from limited adaptability to nonlinear data, leading to higher 

prediction errors. DNN regression performed better but 

struggled to maintain consistency in scenarios with sparse or 

noisy data. 

Latency Comparison 
Latency, which measures the time taken to process each data 
point, is a crucial factor in determining the feasibility of 

real-time applications. ARF-VTAD demonstrated the lowest 

latency of 4.3 milliseconds per data point, outperforming the 

Naive Random Forest ( 6.5 ms ) and significantly surpassing 

models like the DNN Classifier ( 𝟏𝟐. 𝟓 𝐦𝐬 ). 
The reduced latency of ARF-VTAD can be attributed to its 

integration with edge computing, which enables local data 

processing on in-vehicle devices. This design minimizes the 

delays associated with data transmission to central servers 

and eliminates processing bottlenecks. The system's 
efficient use of computational resources and parallel 

processing within the Random Forest algorithm also 

contributes to its fast response times. 

In contrast, the DNN Classifier exhibited the highest latency 

due to its computationally intensive forward and backward 

propagation processes. While the SVM and KNN classifiers 

showed moderate latency, they still fell short of the 

performance of ARF-VTAD, primarily due to their reliance 

on distance-based or kernel-based computations. 

The low latency of ARF-VTAD ensures that the system can 

provide real-time responses to anomalies, making it ideal for 

applications such as autonomous vehicles, fleet 

management, and dynamic route optimization. 

Overall Analysis 
The experimental results collectively demonstrate that the 

ARF-VTAD system outperforms traditional models across 

all key metrics. Its ability to detect anomalies with high 

precision and recall, combined with its accurate position 
predictions and low-latency performance, makes it a 

comprehensive solution for real-time vehicle tracking and 

anomaly detection. The dynamic feature selection and edge 

computing implementation provide a significant advantage, 

allowing the system to scale efficiently and adapt to varying 

conditions. These results suggest that ARF-VTAD is well-

suited for deployment in largescale intelligent transportation 

systems, offering enhanced operational efficiency, safety, 

and costeffectiveness. 

ROC Curve 
Here are the visual representations of the experimental 

results: 
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1. Anomaly Detection Performance Metrics: A bar 

chart showing accuracy, precision, recall, and 

F1score for different models. 

2. Prediction Accuracy (MAE) Comparison: A bar 

chart comparing the mean absolute error for the 

prediction models. 

3. Latency Comparison: A bar chart displaying the 

processing latency of each model. 

4. Anomaly Detection Accuracy Contribution: A pie 

chart illustrating the contribution of each model to 

anomaly detection accuracy. 

5. Accuracy vs. Latency: A scatter plot showcasing 

the relationship between accuracy and latency for 

different models. 

6. ROC Curve: An approximate ROC curve for ARF-
VTAD demonstrating its effectiveness in 

classification. 

The results demonstrate the comprehensive evaluation of 

various models across key performance metrics, 

highlighting the superior performance of the ARF-VTAD 

system. The anomaly detection performance bar chart shows 

ARF-VTAD achieving the highest accuracy, precision, 

recall, and F1-score, outperforming traditional models like 

SVM, KNN, and DNN. The prediction accuracy chart 

reveals that ARF-VTAD minimizes mean absolute error 

(MAE) to just 1.85 meters, making it the most precise model 

for predicting future positions. Latency analysis highlights 

its low processing time of 4.3 ms , indicating its suitability 

for real-time applications. The pie chart further emphasizes 

ARF-VTAD's substantial contribution to overall accuracy. 

The scatter plot demonstrates the trade-off between 

accuracy and latency, where ARF-VTAD achieves both 
high accuracy and low latency, making it the optimal 

choice. The ROC curve highlights its robust classification 

capabilities with an approximated AUC of 0.92 , further 

confirming its reliability in anomaly detection and decision-

making tasks. 

The architecture of the Adaptive Random Forest Vehicle 

Tracking and Anomaly Detection System (ARFVTAD) 

consists of several interconnected components designed to 

handle real-time vehicle tracking, anomaly detection, and 

route optimization efficiently. 
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5. Conclusion 
This paper presents the development and evaluation of the 

Adaptive Random Forest Vehicle Tracking and Anomaly 

Detection System (ARF-VTAD), designed to address 

limitations in real-time vehicle tracking, anomaly detection, 

and route optimization. By leveraging the Random Forest 

algorithm combined with dynamic feature selection and 

edge computing, the system effectively predicts future 

vehicle positions, detects anomalies like route deviations 

and speed spikes, and suggests optimized routes in real time. 

Extensive experiments conducted on real-world datasets 

demonstrate that ARF-VTAD outperforms baseline models, 

achieving superior accuracy, precision, and low latency, 

making it suitable for largescale deployments in intelligent 

transportation networks. The system's ability to adapt to 
varying traffic conditions and proactively detect anomalies 

ensures enhanced operational efficiency, vehicle security, 

and cost-effective fleet management, paving the way for 

safer and smarter transportation systems. 

This chapter introduces a novel approach to real-time 

vehicle tracking and anomaly detection using the Adaptive 

Random Forest Vehicle Tracking and Anomaly Detection 

System (ARF-VTAD). The chapter explores the limitations 

of existing solutions and presents an advanced methodology 

that leverages machine learning, dynamic feature selection, 

and edge computing to enhance performance. With a focus 

on accuracy, efficiency, and real-time responsiveness, ARF-

VTAD aims to provide proactive anomaly detection, route 

optimization, and reliable vehicle monitoring across diverse 

environments. Through extensive experimental validation, 

this chapter highlights how the proposed model contributes 

to the development of safer and smarter transportation 
networks. 

Enhancements for Future Applications 
The advancements introduced by the Adaptive Random 

Forest Vehicle Tracking and Anomaly Detection System 

(ARF-VTAD) offer numerous possibilities for future 

applications in intelligent transportation systems. Expanding 

beyond conventional vehicle tracking, ARF-VTAD can be 

integrated with advanced sensor technologies, such as fuel 

monitoring systems, LiDAR, and in-vehicle cameras, to 

further enrich its decision-making capabilities. This 

integration would enable comprehensive diagnostics, 

allowing for predictive maintenance by analyzing real-time 

engine health, tire pressure, and fuel consumption. 

Moreover, the system's flexibility in adapting to dynamic 

environments makes it suitable for autonomous vehicle 

fleets. Incorporating V2V (Vehicle-to-Vehicle) and V2I 

(Vehicle-to-Infrastructure) communication can provide 
collaborative intelligence, where multiple vehicles share 

real-time data to enhance route optimization and traffic 

control. For large-scale fleet management, deploying 

cloudconnected ARF-VTAD systems could support 

centralized monitoring, while edge computing ensures 

minimal latency in critical decision-making. 

ARF-VTAD's anomaly detection mechanism can be 

extended to detect safety-critical events such as potential 

collisions, driver fatigue, or reckless driving behavior. By 

integrating driver behavior monitoring and real-time 

feedback mechanisms, fleet operators could ensure safer 

road environments and improved compliance with safety 

standards.Additionally, optimizing the computational 

efficiency of the model using distributed computing 

techniques or lightweight machine learning architectures 

could enable deployment on resourceconstrained devices. 

This would facilitate the use of ARF-VTAD in low-cost 

applications, such as public buses, taxis, and rural transport 

systems, thereby increasing its accessibility. 
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