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Abstract 

This study proposed a novel Generalized K-means Clustering Algorithm that discussed limitations in existing 

methods by integrating a hybrid initialization strategy, Mahalanobis distance and iterative weighted centroid 

updates. The objectives of the study were to: Analyze the limitations of existing k-means clustering methods 

and identify areas for improvement; Propose a hybrid initialization strategy combining Forgy and Lloyd 

methods for robust cluster formation; Employ Mahalanobis distance in assignment steps to enhance clustering 

accuracy; and design and implement iterative weighted centroid updates for dynamic cluster adjustments. 

Utilizing secondary data from the World Bank Commodity Price Publication 2022 and the R Console 

Repository, including datasets such as Edgar Anderson's Iris Dataset, Mortality Outcomes Dataset and 

Nicotine Replacement Therapy Dataset, the study evaluated the robustness and accuracy of the proposed 

method. Results demonstrated that the proposed algorithm consistently achieves higher standard deviation 

values across datasets and cluster numbers, indicating superior cluster differentiation and robustness compared 

to conventional methods like Forgy, Lloyd, Macqueen, Hartigan and Wong. This indication equally shown in 

the Iris dataset with k=3 and the proposed method achieved a standard deviation of 44.0522, significantly 

outperforming the alternatives. Similar trends were observed in other datasets, with the proposed algorithm 

maintaining higher variability within clusters, emphasizing its effectiveness in dynamic and multidimensional 

clustering scenarios. These findings underscore the proposed method's potential to enhance clustering 

accuracy and applicability across diverse datasets. 

Keywords: Hybrid Initialization Strategy, Mahalanobis Distance, Iris Dataset, Standard Deviation Analysis, 

Clustering Accuracy 

1. INTRODUCTION  

Using similarity metrics to group big datasets into meaningful subgroups is a fundamental task in data 

analysis known as clustering. Among numerous clustering algorithms, the K-means algorithm stands out as 

one of the most extensively used partitioning-based methods due to its simplicity and success in practical 

applications (Estivill-Castro, 2002). The algorithm iteratively partitions a dataset of objects into disjoint 

clusters, optimizing the within-cluster squared error criterion to measure clustering quality (Yuan & Yang, 

2019). Despite its popularity, K-means has inherent limitations, such as sensitivity to initial centroid selection, 

susceptibility to local optima, and challenges in handling high-dimensional and large-scale datasets. The 
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classic K-means algorithm, first introduced by Forgy (1965), minimizes the average squared Euclidean 

distance between data points and their respective cluster centroids. Forgy's approach initializes centroids 

randomly, leading to variable clustering outcomes. Lloyd (1982) refined this by treating data distribution 

discretely while MacQueen (1967) introduced an online version of the algorithm that updates centroids 

dynamically during iterations. Further modifications by Hartigan and Wong (1979) sought to optimize the 

within-cluster sum of squares (SSE) by reassigning data points across clusters iteratively. These foundational 

algorithms underscore the iterative two-phase process of centroid updates and data point assignment, which 

continues until convergence (Oti et al., 2021). 

Over the years, numerous K-means variants have been developed to address its limitations. For instance, 

Jancey (1966) proposed a modification to accelerate convergence while Bagirov and Mardaneh (2006) 

introduced the Modified Global K-means (MGKM) algorithm to enhance performance on gene expression 

datasets. Weighted K-means, proposed by Huang et al. (2005), incorporated variable weights to prioritize 

relevant features in high-dimensional data. Similarly, Amorim (2012) and Amorim and Mirkin (2012) 

developed the Restricted Minkowski Weighted K-means to compute cluster-specific feature weights, 

demonstrating its adaptability to complex datasets. The development of advanced K-means algorithms also 

includes innovations like the filtering algorithm by Kanungo et al. (2002), which leverages kd-trees to 

efficiently partition data, and the Continuous K-means by Faber (1994), which employs random sampling for 

faster convergence on large datasets. Additionally, global optimization techniques such as the Global K-means 

algorithm by Likas et al (2003) use K-means as a local search method to overcome initialization dependency. 

Despite all the contributions by the authors, there are still some challenges need to be addressed, hence this 

study. 

2. REVIEW OF RELATED  LITERATURE 

Obaid (2023) explored the interplay between H-index, study citations, and scholarly appraisal in computer 

science using K-means clustering, augmented by visual analytics tools like Orange Data Mining and Power 

BI. This study highlighted the role of machine learning in data exploration, providing valuable insights into 

academic influence.  

 Hao et al. (2023) tackled association rule mining challenges by integrating matter-element theory with an 

improved K-means algorithm, demonstrating enhanced efficiency and accuracy in rule extraction and 

addressing inherent flaws in K-means. Liu et al. (2023) improved robustness and clustering accuracy through 

Turkey rules and advanced centre point selection. 

 Kim et al. (2023) applied K-means to analyze student engagement in online learning, revealing actionable 

insights to foster inclusive educational environments. Wang et al. (2023) utilized K-means in smart city 

initiatives, segmenting power consumers to enhance electricity demand forecasting by 85.25%, showcasing 

its transformative potential in urban planning.  

Kotun et al. (2023) emphasized the challenges of K-means, including reliance on user-defined parameters 

and Euclidean distance  while El-Sharkawy et al. (2024) employed K-means for precise breast cancer diagnosis 

using hyperspectral imaging.  

Fox et al. (2024) addressed faulty centre scenarios in clustering, presenting fixed-parameter tractable 

algorithms with scalable and resilient solutions. Rungruang et al. (2024) proposed a hybrid approach 

combining formal concept analysis (FCA) with the Recency, Frequency, and Monetary (RFM) model for 

customer segmentation, bridging the gap between data insights and actionable marketing strategies. 

Vishwakarma et al. (2024) highlighted K-means' superiority in analyzing genetic datasets, leveraging the 

Calinski-Harabaz Index to demonstrate its efficacy.  
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 Mahmud et al. (2024) introduced a distributed clustering framework using innovative methods like density 

peak-based clustering and firefly-inspired algorithms, achieving improved scalability and stability in big data 

clustering. 

Sujatha and Sona (2013) emphasized the importance of robust clustering methods, particularly for large 

and high-dimensional datasets. They identified limitations in existing algorithms, such as high time complexity 

and inadequate performance in diverse scenarios.   The results of the researchers have explored hybrid 

approaches, combining the strengths of multiple algorithms to enhance clustering accuracy and efficiency.  

3.  RESEARCH METHODOLOGY 

3.1 Method of Data Collection   

The study utilized secondary data sourced from the World Bank Commodity Price Publication 2022 and the 

R Console Repository. The World Bank dataset served as the core data source, providing comprehensive and 

reliable information on commodity prices. Known for its rigorous data collection and high-quality standards, 

the World Bank's datasets ensured the credibility and dependability of the study's findings. Complementing 

this, secondary data from the R Console Repository was incorporated to broaden the analytical scope and 

validate the proposed methodology against alternative approaches. The repository's extensive and diverse 

datasets across disciplines enabled the study to achieve greater analytical depth and versatility. 

The integration of data from both sources enhanced the study’s validity and comprehensiveness. Leveraging 

the R Console Repository enriched the research by providing diverse datasets, ensuring the findings were 

robust and applicable across various contexts. This combination facilitated a meticulous and in-depth 

examination of the research questions, leading to more credible conclusions and reliable outputs. 

3.1.1 Description of Datasets from the R Console Repository 

i. Edgar Anderson’s Iris Dataset : The Iris dataset, named after Edgar Anderson, is a cornerstone in statistical 

and machine learning research. It comprises measurements (in centimeters) of four attributes of iris flowers: 

sepal length, sepal width, petal length, and petal width, across three species—Iris setosa, Iris versicolor, and 

Iris virginica. The dataset contains 150 rows, each representing a unique flower measurement, and five 

variables: Sepal. Length, Sepal.Width, Petal.Length, Petal.Width, and Species. Additionally, the iris3 format 

presents the data as a three-dimensional array, facilitating advanced analyses. Its versatility makes it 

indispensable for statistical modelling and machine learning tasks. 

ii. Mortality Outcomes Dataset (dat.axfors2021) 

This dataset documents the outcomes of 33 international clinical trials assessing hydroxychloroquine and 

chloroquine's effectiveness in COVID-19 treatment. Key variables include trial identifiers, treatment settings, 

blinding protocols, dosage information, and mortality data for treatment and control groups. By comparing 

mortality outcomes, the dataset provides critical insights into the potential risks and benefits of these 

medications during the pandemic. 

iii. Nicotine Replacement Therapy Dataset (dat.hartmannboyce2018) 

Derived from 133 studies, this dataset evaluates the long-term effectiveness of nicotine replacement therapy 

(NRT) for smoking cessation. Variables include abstinence outcomes in treatment and control groups, 

participant counts, and NRT types (e.g., gum, patches). The dataset is pivotal for understanding NRT's real-

world efficacy, informing evidence-based strategies for smoking cessation programs. 

The synergy of these datasets enabled a robust and multidimensional analysis, enriching the study's insights 

and reinforcing its methodological rigor. 

3.2.1 The proposed Generalized K-means Clustering Algorithm 

Given a matrix or data frame of n observations and m variables and interest is in clustering the data into k 

number of clusters. This k-means clustering method looks at improving the initialization method, the 

assignment method and the updating method by employing the combination of existing k-means clustering 

techniques, including the Forgy, Lloyd, Macqueen, Hartigan and Wong, Likas, and Faber's clustering method, 

in an effort to improve the initialization, assignment, and updating processes.  
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The proposed algorithm starts by:  

Computing the number of observations (n) and the number of variables (m) in the input data. 

Perform initialization based on the selected initialization method: 

If the initialization method is "forgy", randomly select k observations from the data as the initial centroids. 

Choose k observations at random from the data if the initialization technique is "forgy" to serve as the initial 

centroids. 

If the initialization method is "lloyd", use the first k observations as the initial centroids. 

If the initialization method is neither "forgy" nor "lloyd", throw an error. 

Start the iteration loop (iteration) from 1 to maximum iterations: 

Perform the assignment step based on the selected assignment method: 

If the assignment method is "macqueen": 

Compute the pairwise distances between the centroids and the data points using the Mahalanobis distance. 

The Mahalanobis distance, which accounts for the correlations and variances of the variables, is a measurement 

of the separation between a point and a distribution. The formula for the Mahalanobis distance between a point 

X and a distribution with mean μ and covariance matrix Σ is: 

𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √
(𝑋 − 𝜇)𝜏(𝑋 − 𝜇)

∑
                                                                    (1) 

In equation (1), (X - μ) represents the difference between the point X and the mean μ, Σ-1 is the inverse of the 

covariance matrix Σ, and "τ" denotes the transpose operation. 

When compared to a standard Euclidean distance, the Mahalanobis distance takes the variables' scales and 

correlations into account, providing a more precise distance measurement, particularly when working with 

datasets where the variables are correlated or have different variances (Torra and Narukawa, 2012). 

The next step is to assign each data point to the nearest centroid based on the minimum distance. 

If the assignment method is "Hartigan & Wong": 

For each data point, find the centroid with the minimum sum of squared differences between the data point 

and the centroid. 

Assign the data point to the nearest centroid. 

If the assignment method is "Likas": 

Compute the pairwise distances between the centroids and the data points using equation (1). 

Assign each data point to the nearest centroid based on the minimum distance. 

Check if the number of unique clusters is less than k. 

If the number of unique clusters is less than k, repeat the initialization step and assignment step until k unique 

clusters are obtained. 

If the assignment method is "Faber": 

Compute the pairwise distances between the centroids and the data points using equation (1). 

Assign each data point to the nearest centroid based on the minimum distance. 

Check if the number of unique clusters is less than k. 

http://www.jetir.org/


© 2025 JETIR March 2025, Volume 12, Issue 3                                                         www.jetir.org (ISSN-2349-5162) 

JETIR2503312 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d94 
 

If the number of unique clusters is less than k, repeat the initialization step and assignment step until k unique 

clusters are obtained. 

For each cluster (i), iteratively update the centroid: 

Initialize weights (w) for each cluster as equal (1/k). 

While the weight for cluster i (w[i]) is greater than the tolerance (tol): 

the current centroid for cluster i will be stored as old centroid. 

Update the centroid for cluster i by computing the weighted mean of the data points assigned to cluster i. 

Compute the distances between each data point in cluster i and the updated centroid. The weights (w) based 

on the inverse of the distances normalized by their sum will be updated. 

If the squared difference between the updated centroid and the old centroid is less than the squared tolerance 

(tol^2), there will be a break in the iteration. 

The Update Methods (Centroid Update) was done for each of the methods considered in the study by: 

a) MacQueen method ("macqueen"): 

This method does not involve explicit centroid updates. It only assigns data points to the nearest centroids 

based on the pairwise distances. 

b) Hartigan-Wong method ("hartigan_wong"): 

Since the Hartigan-Wong method does not perform centroid updates, we move on to the next assignment 

method. 

c) Likas method ("likas"): 

Repeat the steps of the MacQueen method as described above. 

If the number of unique clusters is less than k, repeat the initialization and assignment steps until k unique 

clusters are obtained. 

Note that the Likas method does not involve explicit centroid updates. 

d) Faber method ("faber"): 

Repeat the steps of the Likas method as described above. 

For each cluster (i), iteratively update the centroid using the weighted mean of the data points assigned to that 

cluster: 

Initialize the weight vector (w) for each cluster with equal weights (1/k). 

While the weight for cluster i (w[i]) is greater than the tolerance (tol): 

the current centroid for cluster i will be stored as the old centroid. 

Update the centroid for cluster i by computing the weighted mean of the data points assigned to cluster i: 

Update the weights (w) based on the inverse of the distances normalized by their sum: 

𝑤 =
1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠⁄

∑(1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠⁄ )
                                                                          (2) 

If the squared difference between the updated centroid and the old centroid is less than the squared tolerance 

(𝑡𝑜𝑙2), break the iteration. 
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Repeat the assignment and update steps for the specified maximum number of iterations. At the end of the 

iteration loop, return the final cluster assignments (clusters). Hence, this proposed generalized k-means 

clustering algorithm provides a complete explanation of the proposed clustering algorithm, including the 

initialization, assignment, and centroid update steps for each method.  

. 

4. Results of Data Analysis and Discussion 

 This section evaluated the performance of the proposed clustering method against conventional techniques, 

focusing on standard deviation values across datasets and cluster numbers, highlighting its superior robustness 

and differentiation capabilities. 

 

The standard deviation values presented in Table 1 revealed that the proposed clustering method consistently 

outperforms the conventional methods (Forgy, Lloyd, Macqueen, and Hartigan and Wong) across all datasets 

and cluster numbers (k) in terms of stability, as evidenced by significantly higher standard deviation values 

for the proposed method. For instance, in the Iris dataset with k=3, the proposed method achieves a standard 

deviation of 44.0522, compared to 0.6006, 0.8144, 0.7643, and 0.8632 for Forgy, Lloyd, Macqueen, and 

Hartigan and Wong, respectively. Similar trends are observed in the "dat.axfors2021" dataset with k=6, where 

the proposed method records a value of 11.8334, contrasting with 2.0155, 1.3526, 1.4777, and 2.0000 for the 

other methods. This pattern persists across datasets like "dat.hartmannboyce2018" and the "World Bank 

Commodity Price Data," where the proposed method maintains its higher standard deviation values, such as 

42.8831 with k=10 for "dat.hartmannboyce2018," compared to values ranging between 2.5855 and 3.2214 for 

other methods. These results suggest that the proposed method demonstrates greater robustness and 

differentiation in cluster formation across varying datasets and dimensions.  

 

Table 1. Result of the Standard Deviation values of clusters for the various dataset considered in the 

study  

Data  Dimension k Proposed Forgy Lloyd Macqueen Hartigan  

and 

Wong 

Iris  150 x 5 2 43.3766 0.4796 0.4796 0.4796 0.4796 

3 44.0522 0.6006 0.8144 0.7643 0.8632 

4 44.2066 0.9605 0.9780 1.1734 1.0597 

5 43.845 1.6762 1.4309 1.5655 1.4615 

6 44.9494 1.6413 1.5360 1.4477 1.6694 

7 45.5292 2.0122 1.7788 2.0499 1.8892 

8 44.6929 2.3642 2.2551 2.2487 2.2207 

9 45.5848 2.8329 2.7506 2.7050 2.5055 

10 46.4353 2.47713 3.1654 2.5975 2.8321 

dat.axfors2021 33 x 12 k Proposed Forgy Lloyd Macqueen Hartigan 

and 

Wong 

2 10.34143 0.17407 0.17407 0.174 0.174 

3 10.88 0.73598 0.4151 0.4846 0.4846 

4 10.3106 1.0588 1.0588 1.0588 0.6839 

5 11.5392 1.3228 1.0289 1.325 1.0827 

6 11.8334 2.0155 1.3526 1.4777 2 

7 11.3961 1.9261 1.732 1.442 1.6537 

8 12.3767 2.1373 2.3983 2.7627 2.3588 

9 12.329 2.263 2.7441 2.7575 2.5871 

10 12.7108 2.7654 2.8035 2.9841 2.9943 

dat.hartmannboyce2018 133 x 6 k Proposed Forgy Lloyd Macqueen Hartigan 

and 

Wong 

2 39.7027 0.3144 0.31441 0.2846 0.2495 
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3 40.11906 0.4548 0.4251 0.4548 0.4251 

4 40.3123 0.7972 0.6907 1.1107 0.5643 

5 40.6583 1.7143 1.0938 1.2103 1.2103 

6 41.7637 1.6184 1.7027 1.1256 1.7307 

7 41.6615 1.7277 1.786 1.8892 2.2252 

8 41.7459 1.7561 2.6499 2.1956 2.1221 

9 42.2134 2.2845 2.0729 2.6013 2.6746 

10 42.8831 2.9806 2.5855 3.2214 2.9415 

World Bank 

Commodity Price  

Data 

62 x 7 k Proposed Forgy Lloyd Macqueen Hartigan 

and 

Wong 

2 18.6032 0.4317 0.4317 0.4317 0.4317 

3 18.8845 0.7365 0.7784 0.7845 0.8901 

4 19.40206 1.04739 1.1332 1.1748 0.9516 

5 19.5453 1.3024 1.4832 1.4213 1.37525 

6 19.5449 1.9867 1.4569 1.7257 1.7376 

7 19.2469 2.1751 2.03804 1.6867 2.1572 

8 21.11461 2.3689 2.3106 1.7881 2.0719 

9 21.3444 2.3949 2.6574 2.4854 2.4367 

10 20.636 3.1808 2.9813 2.6269 2.6837 

. 

Result presented in Table 2 and Figure 1 highlights the performance of the proposed clustering method 

compared to traditional methods (Forgy, Lloyd, Macqueen, Hartigan and Wong) regarding standard deviation 

values across varying numbers of clusters (k). The proposed method consistently demonstrates higher standard 

deviation values, indicating a greater spread and differentiation among clusters. For example, with k=2, the 

proposed method achieves a standard deviation of 16.0574, significantly exceeding values for Forgy (0.3692), 

Lloyd (0.3269), Macqueen (0.1468), and Hartigan and Wong (0.1454). Similar patterns are observed for higher 

cluster counts, such as k=10, where the proposed method records 16.5420, while the other techniques range 

between 0.1372 and 1.0669. These results underscore the robustness and consistency of the proposed method 

in maintaining higher variability within clusters, which may indicate better-defined cluster boundaries 

compared to the alternative methods.  

 

Table 2. Result of the Standard Deviation values of the clusters across the number of clusters 

K Proposed Forgy Lloyd Macqueen Hartigan and 

Wong 

2 16.0574 0.3692 0.3269 0.1468 0.1454 

3 16.1224 0.3613 0.2275 0.3485 0.2449 

4 16.3283 0.1320 0.2696 0.4836 0.2299 

5 15.8168 0.4938 0.7278 0.3124 0.1690 

6 16.3329 0.4051 0.1742 0.2537 0.1469 

7 16.7103 0.5091 0.4968 0.2221 0.2621 

8 15.7414 0.7990 0.4559 0.4544 0.1264 

9 16.1110 0.3457 0.7624 0.4195 0.1028 

10 16.5420 1.0669 0.6595 0.2709 0.1372 
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Figure 1. Standard Deviation values of the clusters across the number of clusters 

 

5. Conclusion 

This study introduced amalgamated approach to K-means clustering, focusing on improving initialization, 

assignment, and update strategies. Building on the strengths of traditional K-means and its variants, the method 

introduced novel centroid initialization techniques to mitigate sensitivity to initial conditions, robust 

assignment mechanisms to enhance clustering accuracy and iterative update strategies that optimize 

computational efficiency. The study's findings highlighted the effectiveness of the proposed amalgamated k-

means clustering algorithm, which integrated advanced initialization, assignment, and centroid update 

processes. By employing a hybrid initialization strategy combining Forgy and Lloyd methods, the algorithm 

demonstrated enhanced robustness in cluster formation. The use of Mahalanobis distance in the assignment 

step significantly improves clustering accuracy by accounting for variable correlations and variances. 

Furthermore, the iterative weighted centroid updates allow dynamic adjustments, ensuring optimal cluster 

configurations. Across diverse datasets, including the Iris dataset and others sourced from the R Console 

Repository, the proposed method consistently outperformed conventional techniques, as evidenced by higher 

standard deviation values, indicating superior robustness and differentiation in cluster formation. 

Based on these findings, policymakers and practitioners in data analytics and machine learning should 

consider adopting the proposed amalgamated k-means algorithm for tasks requiring precise and robust data 

segmentation. Its ability to handle complex datasets with varying dimensions and correlations makes it suitable 

for applications in healthcare, economics, and other fields where clustering plays a critical role in decision-

making. Additionally, organizations should invest in computational resources to fully leverage the algorithm's 

iterative processes and weighted updates, ensuring the scalability of clustering tasks across large datasets. 

The study's limitations stem primarily from the datasets used for analysis, which, while diverse, may not 

fully capture the breadth of real-world clustering scenarios. The reliance on secondary data sources, such as 

the World Bank Commodity Price Publication and the R Console Repository, may limit the generalizability 

of the findings to other contexts. Future studies should explore the algorithm's performance on larger, more 

heterogeneous datasets and in real-time clustering applications. Moreover, extending the proposed 

methodology to incorporate alternative distance metrics and adaptive weighting schemes could further 

enhance its applicability and robustness in dynamic environments. 
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