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Abstract: Deep learning optimization has witnessed significant advancements with the introduction of adaptive and nature-

inspired algorithms. However, existing methods, such as SGD, Adam, and RMSprop, struggle with either slow convergence or 

instability in complex loss landscapes. This research presents Adaptive Lion Lookahead Optimization (ALLO)—a novel hybrid 

ensemble technique integrating the Adaptive Lion Swarm Algorithm (ALSA) and Lookahead Optimizer (LAO). ALSA improves 

exploration-exploitation balance by dynamically adjusting Peritoneal Dialysis (PD) Cyclers strategies, while LAO enhances 

gradient-based updates for smoother convergence. The proposed ALLO technique was evaluated on three benchmark datasets: 

CIFAR-10, ImageNet (Subset), and UCI Parkinson's dataset. Results show that ALLO achieves 𝟗𝟔. 𝟕% accuracy on CIFAR-10, 

𝟖𝟑. 𝟖% on ImageNet, and 𝟗𝟐. 𝟓% on UCI Parkinson's dataset, outperforming traditional optimizers by 𝟒. 𝟒%to 𝟕. 𝟒%. 

Furthermore, ALLO reduces training time by 𝟒𝟖% compared to SGD and improves convergence speed by 𝟒𝟒% over Adam. 

With lower gradient variance ( 𝟎. 𝟑𝟏𝐯𝐬. 𝟎. 𝟕𝟖 in SGD), ALLO offers more stable updates, reducing oscillations and improving 

generalization. The hybrid nature of ALLO makes it suitable for high-dimensional, nonconvex deep learning tasks, offering 

superior speed, stability, and accuracy. 
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I. INTRODUCTION 

Deep learning has revolutionized various domains, including computer vision, healthcare, finance, and autonomous 

systems. The performance of deep learning models is heavily influenced by optimization algorithms, which govern how 

efficiently model parameters are updated during training. Traditional optimization methods such as Stochastic Gradient Descent 

(SGD) and Adam have been widely adopted but suffer from certain limitations:SGD converges slowly due to its reliance on a 

constant learning rate. Adam exhibits gradient variance, leading to poor generalization in some tasks. Nature-inspired algorithms 

(e.g., Whale Optimization, Cuckoo Search) excel at global Peritoneal Dialysis (PD) Cyclers but suffer in local convergence. To 

address these challenges, this research proposes Adaptive Lion Lookahead Optimization (ALLO), a hybrid ensemble that 

integrates: Adaptive Lion Swarm Algorithm (ALSA) → Improves exploration-exploitation tradeoff. Lookahead Optimizer (LAO) 

→ Enhances gradient stability and prevents overfitting. By combining ALSA and LAO, ALLO provides a fast, stable, and 

efficient optimization strategy for deep learning. 

Existing studies have attempted to overcome optimization challenges through gradient-based and metaheuristic-based techniques: 

(a) Gradient-Based Optimizers 

 SGD (Kingma& Ba, 2015): A fundamental optimizer that updates weights using small batch gradients. It is 

computationally efficient but slow to converge. 

 Adam (Kingma& Ba, 2015): Introduces adaptive learning rates but struggles with high variance. 

 Lookahead Optimizer (Zhang et al., 2019): Reduces gradient oscillations but requires base optimizers like Adam or 

SGD. 

 (b) Nature-Inspired Optimizers 

 Whale Optimization (Mirjalili et al., 2020): Efficient for global Peritoneal Dialysis (PD) Cyclers but slow in local 

refinement. Cuckoo Search (Yang & Deb, 2009): Powerful in exploration but requires extensive parameter tuning. 

http://www.jetir.org/


© 2025 JETIR March 2025, Volume 12, Issue 3                                                          www.jetir.org (ISSN-2349-5162) 

JETIR2503584 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e474 
 

 Adaptive Lion Swarm Algorithm (Xie et al., 2023): Balances exploration-exploitation, yet lacks gradient-based 

refinement. 

While gradient-based methods ensure efficiency, they often overfit or stagnate in high-dimensional Peritoneal Dialysis 

(PD) Cyclers spaces. Conversely, nature-inspired methods provide better diversity in search, but require fine-tuning. ALLO 

bridges this gap by leveraging ALSA's global Peritoneal Dialysis (PD) Cyclers with LAO's fine-tuned updates, making it robust 

for deep learning optimization. 

II. LITERATURE SURVEY TABLE 

Author et al. Year Proposed Method Merits Demerits Performance 

Metrics 

Numerical 

Results 

Kingma& Ba 2015 Adam Optimizer Fast, Adaptive High Variance Accuracy, Loss 91.2%, 0.23 

He et al. 2016  ResNet + 

 SGD 
 

Deep Model, Stable Slow 

Convergence 

Top-1 Acc 76.3% 

Loshchilov&Hutter 2017 SGDR Faster SGD, 

Annealing 

Requires 

Tuning 

Accuracy 93.4% 

Zhang et al. 2019 Lookahead Stable, Faster 

Converge 

Needs base opt. Accuracy, Loss 94.5%, 0.18 

Mirjalili et al. 2020 WOA Global Peritoneal 

Dialysis (PD) Cyclers 

Slow Local 

Converge 

MSE, 

Converge 
0.012,50 

iters 

Jadon et al. 2021 Hybrid Lion Opt. Adaptive, Robust Complex Accuracy, 

Time 
95.1%, 230
 sec 

 

Zhang et al. 2022 SGDM + Ada Strong Generalize Unstable LR F1, Recall 0.87, 88.2% 

Xie et al. 2023 ALSA Exploration, Fast 

Train 

Needs 

FineTune 

Converge 

Speed 

34 Epochs 

Proposed Work 2024  ALLO (ALSA 

 + LAO) 
 

Fast, Stable, High Acc None Acc, Loss, 

Time 

96.7%, 0.08,
175sec

 

 

SGD-based methods (e.g., ResNet+SGD, SGDR) struggle with slow convergence. Adam and Lookahead optimizers provide 

faster learning but suffer from gradient oscillations. Nature-inspired algorithms (WOA, ALSA) improve global Peritoneal 

Dialysis (PD) Cyclers but need fine-tuning. Hybrid approaches (Lion Opt., SGDM+Ada) improve performance but are complex. 

ALLO (Proposed method) achieves the best trade-off between speed, accuracy, and stability. This table effectively summarizes 

recent advancements in deep learning optimization and highlights how ALLO outperforms existing methods in numerical 

performance. 

III. METHODOLOGY 

This section establishes the mathematical foundations required for the Adaptive Lion Lookahead Optimization (ALLO) 

framework. We define key concepts, symbols, and notations used throughout the methodology. Given an objective function 𝐿(𝜃) 
that maps model parameters 𝜃 to a loss value, the goal is to find an optimal set of parameters 𝜃∗ that minimizes the function: 

𝜃∗ = arg⁡min
𝜃
 𝐿(𝜃) 

Where: 

 𝐿(𝜃)represents the loss function in deep learning models. 

 𝜃is the vector of trainable parameters in a neural network. 

 𝜃∗is the optimal parameter set that minimizes 𝐿(𝜃). 

Traditional gradient-based methods use an iterative update rule: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝐿(𝜃𝑡) 

Where𝜂 is the learning rate and ∇𝐿(𝜃) represents the gradient of the loss function with respect to 𝜃. However, standard optimizers 

often struggle with local minima and slow convergence. 

 

Metaheuristic Optimization 
Metaheuristic algorithms such as Adaptive Lion Swarm Algorithm (ALSA) use population-based exploration and 

exploitation strategies to optimize complex functions. Each individual (lion) in the population represents a candidate solution to 

the problem. 

A lion's position in the solution space is denoted as: 

𝑃𝑖
𝑡 = (𝑃𝑖1

𝑡 , 𝑃𝑖2
𝑡 , … , 𝑃𝑖𝑑

𝑡 ) for 𝑖 = 1,2, … , 𝑁 
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Where: 

 𝑃𝑖
𝑡is the position vector of the 𝑖-th lion at iteration 𝑡. 

 𝑑is the dimension of the Peritoneal Dialysis (PD) Cyclers space. 

 𝑁is the number of lions in the population. 

The fitness function, which evaluates each solution, is defined as: 

𝐹(𝑃𝑖
𝑡) = 𝐿(𝑃𝑖

𝑡) 

Where lower values of 𝐹(𝑃𝑖
𝑡) indicate better solutions. 

Lookahead Optimizer (LAO) Dynamics 
The Lookahead Optimizer (LAO) stabilizes training by using two sets of weight updates: 

1. Fast updates: Standard optimizer steps. 

2. Slow updates: Averages over multiple fast updates. 

Let 𝜃𝑡 be the fast update and 𝜃slow 
𝑡  be the slow-moving average, the update rule is: 

𝜃𝑡+1 = 𝜃𝑡 + 𝑘(𝜃slow 
𝑡 − 𝜃𝑡) 

Where: 

 𝑘is the step size, dynamically adjusted using ALSA. 

 𝜃slow ensures stability by averaging multiple gradient steps. 

Table: Notation used in the Table 

Symbol  

𝜃 Trainable parameters of the deep learning model 

𝐿(𝜃) Objective function (loss function) 

𝜃∗ Optimal set of parameters minimizing 𝐿(𝜃) 
∇𝐿(𝜃) Gradient of the loss function 

𝜂 Learning rate of gradient descent 

𝑃𝑖
𝑡 Position of the 𝑖-th lion at iteration 𝑡 

𝑑 Dimensionality of the Peritoneal Dialysis (PD) Cyclers space 

𝑁 Number of lions in the population 

𝐹(𝑃𝑖
𝑡) Fitness function for evaluating solutions 

𝜃slow 
𝑡  Slow-moving average weight update in LAO 

𝑘 Lookahead step size 

𝐺best  Global best position found by ALSA 

𝐿best  Local best position in ALSA subgroups 

𝛼, 𝛽 Exploration-exploitation balancing coefficients in ALSA 

𝜆, 𝛾 Scaling parameters for adaptive step-size adjustments 

𝜉 ALSA correction factor for gradient updates 

 

These mathematical foundations and notations provide a structured basis for the Adaptive Lion Lookahead Optimization 

(ALLO) methodology, ensuring clarity in the subsequent equations and algorithmic implementations.This Work proposes an 

innovative ensemble technique, ALLO, which integrates the Lookahead Optimizer (LAO)—a state-of-the-art gradient-based deep 

learning optimizer-with the Adaptive Lion Swarm Algorithm (ALSA), an advanced nature-inspired optimization technique. 
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Figure 1: Architecture Diagram Of ALLO Framework 

 Lookahead Optimizer (LAO): A recent improvement over traditional gradient descent methods, Lookahead optimizes 

neural networks by iterating weights in an "explore-and-refine" manner, leading to faster convergence and stability. 

 Adaptive Lion Swarm Algorithm (ALSA): Inspired by the social behaviors of lions in the wild, ALSA dynamically 

balances exploration and exploitation to optimize complex functions. It has demonstrated superior performance over 

classic nature-inspired algorithms like Whale Optimization and Cuckoo Search. 

 Gradient-Free Optimization: ALSA effectively explores the Peritoneal Dialysis (PD) Cyclers space to fine-tune neural 

network hyperparameters, reducing dependence on gradient-based methods. 

 Faster Convergence: The Lookahead optimizer refines ALSA's solutions, improving convergence speed and preventing 

local minima traps. 

 Generalization Boost: By integrating LAO's exploration strategy with ALSA's adaptive Peritoneal Dialysis (PD) 

Cyclers, ALLO enhances the generalization ability of deep learning models. 

This hybrid ensemble optimization technique is particularly useful for training deep learning models in non-convex loss 

landscapes, where traditional optimizers struggle. It finds applications in computer vision, medical diagnosis, and predictive 

analytics.We propose three algorithms that integrate the Adaptive Lion Swarm Algorithm (ALSA) with the Lookahead Optimizer 

(LAO) to enhance deep learning model training efficiency. The following sections outline each algorithm with corresponding 

equations and detailed descriptions. 

Algorithm 1: ALSA-LAO Hybrid Initialization (ALHI) 

1. Randomly initialize lion positions 𝑃𝑖
0 in a predefined solution space. 

2. Evaluate fitness of each lion based on the neural network loss function. 

3. Update lion positions using an adaptive strategy balancing exploration and exploitation. 

4. Select best lion positions and pass them to LAO as initial model weights. 

Lion Position Update: 

𝑃𝑖
𝑡+1 = 𝑃𝑖

𝑡 + 𝛼(𝐿best − 𝑃𝑖
𝑡) + 𝛽(𝐺best − 𝑃𝑖

𝑡) 

Where: 

 𝑃𝑖
𝑡is the position of lion 𝑖 at iteration 𝑡. 

 𝐿best is the best lion position in the local group. 

 𝐺𝑏𝑒𝑠𝑡is the best overall lion position. 

 𝛼, 𝛽are adaptive coefficients for exploration-exploitation balance. 

2. Fitness Evaluation: 
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𝐹𝑖 = ∑  

𝑁

𝑘=1

|𝑦𝑘 − 𝑦̂𝑘|
2 

Where: 

 𝑦𝑘is the actual output, and 𝑦̂𝑘 is the predicted output. 

3. Adaptive Coefficients Update: 

𝛼 =
1

1 + 𝑒−𝜆(𝑡−𝑇/2)

𝛽 = 1 − 𝛼
 

Where𝑇 is the total iterations, and 𝜆 controls the transition rate. Optimal Initial Weights: 

𝑊𝑖𝑛𝑖𝑡 = arg⁡min𝐹𝑖 

Where the weight set minimizing fitness function is chosen. 

This hybrid approach avoids random initialization, ensuring that model parameters begin with an optimized set. It reduces training 

time by selecting an informed starting point rather than letting gradient descent adjust from scratch. ALSA balances exploration 

and exploitation, mitigating poor initial conditions that hinder deep learning performance. 

Algorithm 2: Dynamic Lookahead Exploration (DLE) 
1. Lookahead maintains a fast and slow optimizer. 

2. Compute exploration direction using ALSA's global best. 

3. Update step size dynamically to prevent premature convergence. 

4. Use weighted update rule to blend fast and slow optimizers. 

Lookahead Update Rule: 

𝜃𝑡+1 = 𝜃𝑡 + 𝑘(𝜃slow 
𝑡 − 𝜃𝑡) 

Where: 

 𝜃𝑡is the current model parameter. 

 𝜃slow 
𝑡 is the slow-moving average. 

 𝑘is the step size. 

2. Adaptive Step Size Adjustment: 

𝑘 =
1

1 + 𝑒−𝛾(𝐺𝑏𝑒𝑠𝑡−𝐿𝑏𝑒𝑠𝑡)
 

Where: 

 𝐺𝑏𝑒𝑠𝑡and𝐿best  are global and local best solutions from ALSA. 

 𝛾controls the sensitivity of step adaptation. 

3. Momentum-based Weight Update: 

𝜃slow 
𝑡+1 = (1 − 𝜇)𝜃slow 

𝑡 + 𝜇𝜃𝑡 

Where𝜇 is a smoothing factor. 

 

4. Gradient Correction Using ALSA Guidance: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝐿(𝜃) + 𝜉(𝐺𝑏𝑒𝑠𝑡 − 𝜃𝑡) 

Where: 

 𝜂is the learning rate. 

 𝜉adjusts based on ALSA's best exploration results. 

Traditional Lookahead assumes a fixed step size, leading to overfitting or slow convergence. DLE dynamically adjusts step size, 

preventing premature convergence while refining gradient updates. ALSA's adaptive feedback guides exploration, reducing 

stagnation in deep learning loss landscapes. 
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Algorithm 3: Ensemble Learning with Multi-Agent Coordination (ELMA) 
1. Divide the model into subgroups (e.g., different layers in a deep neural network). 

2. Assign ALSA agents to optimize each group. 

3. Collect agent updates and ensemble them. 

4. Refine ensemble updates using Lookahead. 

1. Agent-Based Parameter Update: 

𝑊𝑖
𝑡+1 = 𝑊𝑖

𝑡 + 𝜌(𝐿best 

(𝑖)
−𝑊𝑖

𝑡) 

where𝑊𝑖 represents the weights in the 𝑖-th layer. 

 

2. Weighted Ensemble Update: 

𝑊𝑡+1 =∑  

𝑀

𝑖=1

𝜔𝑖𝑊𝑖
𝑡+1 

Where: 

 𝑀is the number of ALSA agents. 

 𝜔𝑖is the weight assigned to the 𝑖-th agent based on performance. 

3. Layer-Specific Gradient Refinement: 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂∇𝐿(𝑊) + 𝛿∑  

𝑀

𝑖=1

(𝑊𝑖
𝑡+1 −𝑊𝑡) 

Where𝛿 controls the degree of ensemble correction. 

4. Lookahead-Driven Fine-Tuning: 

𝑊final 
𝑡+1 = 𝑊𝑡+1 + 𝑘(𝑊slow 

𝑡+1 −𝑊𝑡+1) 

Most deep learning optimizers treat the model as a whole, leading to inefficient parameter updates. ELMA divides the model 

into sections, enabling localized optimization using ALSA agents. The ensemble mechanism combines diverse learning paths, 

ensuring a robust and generalizable model. Lookahead refines updates, preventing oscillations in deeper layers of neural 

networks.  

1. ALHI ensures optimal parameter initialization, eliminating inefficient random starting points. 

2. DLE dynamically adjusts exploration-exploitation balance, making learning adaptive. 

3. ELMA introduces a multi-agent ALSA coordination system for model-wide optimization. 

By integrating ALSA's nature-inspired efficiency with Lookahead's structured learning mechanism, ALLO outperforms 

traditional deep learning optimizers in convergence speed, stability, and generalization. This hybrid technique is particularly 

beneficial in high-dimensional, non-convex optimization problems, such as deep neural networks in medical diagnosis, financial 

forecasting, and autonomous systems.Deep learning models require efficient optimization techniques to ensure effective training 

and generalization. Traditional gradient-based optimization techniques, such as Stochastic Gradient Descent (SGD) and Adam, 

often suffer from slow convergence, local minima trapping, and sensitivity hyperparameters. This research presents a hybrid 

ensemble-based optimization methodology: Adaptive Lion Lookahead Optimization (ALLO), which integrates the Adaptive Lion 

Swarm Algorith (ALSA) with the Lookahead Optimizer (LAO) to enhance deep learning model training. The primary 

components of ALLO include: 

1. ALSA-LAO Hybrid Initialization (ALHI): Provides optimal weight initialization using natureinspired Peritoneal Dialysis 

(PD) Cyclers mechanisms. 

2. Dynamic Lookahead Exploration (DLE): Adjusts step sizes dynamically, ensuring stability in gradient updates. 

3. Ensemble Learning with Multi-Agent Coordination (ELMA): Uses ALSA agents to optimize different neural network 

sections before ensembling updates. 

This methodology aims to solve the challenges of deep learning optimization by leveraging adaptive exploration, informed weight 

initialization, and ensemble learning strategies. 

Deep learning models, particularly deep neural networks (DNNs), face optimization challenges such a 

1. Vanishing and Exploding Gradients: Traditional gradient-based techniques may struggle with deep architectures. 

2. Local Minima and Saddle Points: Inefficient exploration causes premature convergence. 
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3. High Computational Cost: Large-scale models demand efficient optimization techniques. 

4. Slow Convergence: Iterative learning may require excessive epochs. 

ALLO addresses these challenges by combining ALSA's nature-inspired heuristic Peritoneal Dialysis (PD) Cyclers with LAO's 

gradient-based learning stability. 

IV. ALSA-LAO HYBRID INITIALIZATION (ALHI) 
To initialize model weights using ALSA's intelligent Peritoneal Dialysis (PD) Cyclers instead of random initialization. 

Methodology 

1. Randomly initialize lion positions 𝑃𝑖
0 within the Peritoneal Dialysis (PD) Cyclers space. 

2. Evaluate fitness of each lion based on the neural network loss function. 

3. Update lion positions using adaptive strategies. 

4. Select the best lion positions as initial model weights for LAO. 

𝑃𝑖
𝑡+1 = 𝑃𝑖

𝑡 + 𝛼(𝐿𝑏𝑒𝑠𝑡 − 𝑃𝑖
𝑡) + 𝛽(𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑖

𝑡) 

Where: 

 𝑃𝑖
𝑡is the position of lion 𝑖 at iteration 𝑡. 

 𝐿best is the best lion position in the local group. 

 𝐺𝑏𝑒𝑠𝑡is the best overall lion position. 

 𝛼, 𝛽are adaptive coefficients for exploration-exploitation balance. 

𝐹𝑖 = ∑  

𝑁

𝑘=1

|𝑦𝑘 − 𝑦̂𝑘|
2 

Where: 

 𝑦𝑘is the actual output. 

 𝑦̂𝑘is the predicted output. 

𝛼 =
1

1 + 𝑒−𝜆(𝑡−𝑇/2)
 

𝛽 = 1 − 𝛼 

Where𝑇 is the total iterations, and 𝜆 controls the transition rate. 

𝑊𝑖𝑛𝑖𝑡 = arg⁡min𝐹𝑖 

Where the weight set minimizing the fitness function is chosen. 

Dynamic Lookahead Exploration (DLE) 
To enhance stability by dynamically adjusting Lookahead's step size based on ALSA's global best solution. 

1. Lookahead maintains a fast and slow optimizer. 

2. Compute exploration direction using ALSA's global best. 

3. Adjust step size dynamically to prevent premature convergence. 

4. Use a weighted update rule blending fast and slow optimizers. 

 

𝜃𝑡+1 = 𝜃𝑡 + 𝑘(𝜃slow 
𝑡 − 𝜃𝑡) 

Where: 

 𝜃𝑡is the current model parameter. 

 𝜃slow 
𝑡 is the slow-moving average. 

 𝑘is the step size. 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝐿(𝜃) + 𝜉(𝐺best − 𝜃𝑡) 
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Where: 

 𝜂is the learning rate. 

 𝜉adjusts based on ALSA's best exploration results. 

V. ENSEMBLE LEARNING WITH MULTI-AGENT COORDINATION (ELMA) 
To optimize different model sections using ALSA agents and ensemble their updates. 

1. Divide the model into subgroups (e.g., different layers in a deep neural network). 

2. Assign ALSA agents to optimize each group. 

3. Collect agent updates and ensemble them. 

4. Refine ensemble updates using Lookahead. 

1. Agent-Based Parameter Update: 

𝑊𝑖
𝑡+1 = 𝑊𝑖

𝑡 + 𝜌(𝐿best 

(𝑖)
−𝑊𝑖

𝑡) 

2. Weighted Ensemble Update: 

𝑊𝑡+1 =∑  

𝑀

𝑖=1

𝜔𝑖𝑊𝑖
𝑡+1 

3. Layer-Specific Gradient Refinement: 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂∇𝐿(𝑊) + 𝛿∑  

𝑀

𝑖=1

(𝑊𝑖
𝑡+1 −𝑊𝑡) 

4. Lookahead-Driven Fine-Tuning: 

𝑊final 
𝑡+1 = 𝑊𝑡+1 + 𝑘(𝑊slow 

𝑡+1 −𝑊𝑡+1) 

ALLO provides an adaptive, stable, and ensemble-driven optimization framework for deep learning The combination of ALSA's 

nature-inspired Peritoneal Dialysis (PD) Cyclers capabilities with Lookahead's gradient-based exploration significantly improves 

convergence speed, generalization, and training efficiency. By implementing ALHI, DLE, and ELMA, deep learning models 

achieve enhanced robustness against loca minima and unstable gradients, leading to state-of-the-art performance. 

VI. EXPERIMENTAL SETUP AND RESULTS ANALYSIS FOR ADAPTIVE LION LOOKAHEAD OPTIMIZATION 

(ALLO) 
To evaluate the effectiveness of the Adaptive Lion Lookahead Optimization (ALLO) technique, we conducted a series of 

experiments on deep learning models using benchmark datasets. The experimental setup includes details of the hardware, 

software, dataset, evaluation metrics, and optimization strategies. We performed all experiments on a high-performance 

computing system with the following configuration: 

Hardware/Software Details 

Processor Intel Core i9-12900K, 16 cores, 24 threads 

GPU NVIDIA RTX 3090 (24GB VRAM) 

RAM 64GB DDR5 4800MHz 

Storage 2TB NVMe SSD 

OS Ubuntu 22.04 LTS 

Deep Learning Framework TensorFlow 2.10, PyTorch 1.13 

Programming Language Python 3.9 

Optimization Libraries SciPy, Optuna, CuDNN, NumPy, Pandas, Matplotlib 

 

Dataset Information 
The performance of ALLO was tested on three standard benchmark datasets used in deep learning optimization: 

Dataset Description Size Classes 

CIFAR-10 Image classification dataset of 60,000 images 

(10 classes) 

50,000 train / 10,000 

test 

10 

ImageNet 

(Subset) 

Large-scale image dataset with high-resolution 

images 

100,000 train / 10,000 

test 

100 

UCI ML 

Parkinson's 

Medical dataset for Parkinson's disease 

prediction 

5,875 records Binary 

(Yes/No) 

 

 Resized all images to 𝟐𝟐𝟒 × 𝟐𝟐𝟒 pixels for ImageNet and 𝟑𝟐 × 𝟑𝟐 pixels for CIFAR-10. 
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 Data augmentation was applied (random flips, rotations, normalization). 

 Converted to tensors and used batch normalization. 

Medical Dataset (UCI Parkinson's) 

 Normalized features using min-max scaling. 

 One-hot encoded categorical variables. 

 Handled missing values with mean imputation. 

All datasets were split into training (80%), validation (10%), and testing (10%) to maintain model robustness. To assess the 

performance of ALLO, we used the following key metrics: 

Metric Description 

Accuracy Fraction of correct predictions over total predictions 

Loss (Cross-Entropy / MSE) Measures model's prediction error 

Precision True Positives / (True Positives + False Positives) 

Recall (Sensitivity) True Positives / (True Positives + False Negatives) 

F1-Score Harmonic mean of precision and recall 

Convergence Speed Number of iterations required to reach 95% accuracy 

Computation Time Time required for model training and optimization 

VII. RESULTS AND DISCUSSION 
To compare ALLO with existing optimization methods, we tested it against: 

The loss convergence curves for different optimizers are plotted in Figure 2. 

Architecture Diagram of ALLO Framework 

 

Figure 2: Training Loss Convergence Over 100 Epochs 

(ALLO demonstrates the fastest convergence with minimal oscillations) 

Optimizer Epochs to 95% Accuracy Final Loss Value 

SGD 85  

Adam 50 0.32 

RMSprop 55 0.15 

ALSA 40 0.17 

LAO 35 0.12 

ALLO (Proposed) 𝟐𝟖 0.11 

 

ALLO achieves convergence 2.5 × faster than SGD and 1.8 × faster than Adam. Loss value is significantly lower, indicating 

better optimization stability. 
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Figure 3: Test Accuracy for Different Optimizers 

Optimizer CIFAR-10 Accuracy (%) ImageNet Accuracy (%) UCI Parkinson's Accuracy (%) 

SGD 88.5 71.2 83.6 

Adam 92.3 76.4 86.9 

RMSprop 91.1 75.8 86.2 

ALSA 94.0 79.1 88.7 

LAO 94.5 80.2 89.3 

ALLO (Proposed) 𝟗𝟔. 𝟕 𝟖𝟑. 𝟖 𝟗𝟐. 𝟓 

ALLO outperforms all optimizers in classification accuracy across all datasets. CIFAR-10: ALLO improves accuracy by 4.4% 

over Adam. 

ImageNet: ALLO achieves 7.4% higher accuracy than RMSprop. UCI Parkinson's: ALLO reaches 𝟗𝟐. 𝟓%, demonstrating 

superior generalization. 

 

Figure 4: Training Time Comparison (in seconds) 

Optimizer CIFAR-10 (sec) Imagenet (sec) UCI Parkinson's (sec) 

SGD 340 1082 32 

Adam 285 970 28 

RMSprop 295 980 29 

ALSA 215 790 23 

LAO 200 740 21 

ALLO (Proposed) 𝟏𝟕𝟓  𝟔𝟒𝟓 𝟏𝟖 

 

ALLO reduces training time by 48% over SGD and 38% over Adam. For large datasets like ImageNet, ALLO speeds up training 

by 33% over RMSprop. 
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Figure 4: Gradient Update Stability Over Training 

Optimizer Gradient Variance (Lower is Better) 

SGD 0.78 

Adam 0.62 

RMSprop 0.59 

ALSA 0.49 

LAO 0.43 

ALLO (Proposed) 𝟎. 𝟑𝟏 

 

ALLO maintains the most stable gradients, avoiding drastic fluctuations. 

Summary of Key Findings 

Metric Best Performer Improvement Over Adam (%) 

Convergence Speed ALLO 44% faster 

Accuracy ALLO +4.4% 

Training Time ALLO 38% reduction 

Loss Reduction ALLO 46% lower 

Gradient Stability ALLO 50% smoother 

ALLO converges faster than traditional optimizers, reducing computational cost. Achieves superior accuracy across 

vision and medical datasets. Better generalization, reducing overfitting risks. Efficient gradient updates enhance model stability. 

ALLO proves to be an optimal choice for deep learning optimization, combining ALSA's exploratory power with LAO's stability. 

It is highly effective in domains requiring fast convergence, high accuracy, and stable training. 

To validate ALLO, experiments were conducted on three datasets using six different optimization techniques. The key results are 

summarized: 

Optimizer CIFAR-10 Accuracy 

(%) 

ImageNet Accuracy 

(%) 

UCI Parkinson's 

Accuracy (%) 

Training Time 

(sec) 

SGD 88.5 71.2 83.6 340 

Adam 92.3 76.4 86.9 285 

RMSprop 91.1 75.8 86.2 295 

ALSA 94.0 79.1 88.7 215 

LAO 80.2 89.3 200  

ALLO 

(Proposed) 

96.7 83.8 92.5 175 

 

ALLO consistently outperforms existing optimizers in accuracy. Computational time is significantly reduced, making ALLO 

ideal for large-scale deep learning tasks. 
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VIII. CONCLUSION 

This research presents Adaptive Lion Lookahead Optimization (ALLO)—a hybrid deep learning optimizer that 

integrates Adaptive Lion Swarm Algorithm (ALSA) with Lookahead Optimizer (LAO). The combination of global Peritoneal 

Dialysis (PD) Cyclers efficiency (ALSA) and fine-tuned gradient updates (LAO) results in faster convergence, improved 

stability, and higher accuracy across various datasets. ALLO sets a new benchmark for deep learning optimization, combining 

nature-inspired exploration with gradient refinement. This hybrid approach delivers unmatched speed, accuracy, and stability, 

making it a promising solution for complex AI applications. 
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