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Abstract :  In this article, a new four parameter lifetime model called Generalized Inverse Rayleigh (GIR) distribution is defined 

and studied. This distribution derived from Kumaraswamy inverse Marshall-Olkin-G family of distribution. Inverse Rayleigh 

distribution has many applications in lifetime studies. Various properties of the new model are discussed including closed forms 

expressions for moments and quantiles. The maximum likelihood method the model parameters. The proposed distribution is fitted 

to a real data set and it is shown that the distribution is more appropriate for modeling in comparison with some other competitive 

models. 

Index Terms - Inverse Rayleigh distribution, Kumaraswamy distribution, Marshall-Olkin family of distributions, Maximum 

likelihood, Moments. 

I. INTRODUCTION 

Modelling and analysis of lifetime phenomena are important aspects of statistical work in a wide variety of scientific 

and technological field. The field of lifetime data analysis has grown and expanded rapidly with respect to 

methodology, theory, and  fields of applications. In the context of modelling the real-life phenomena, continuous 

probability distributions and many generalizations or transformation methods have been proposed. These 

generalizations, obtained either by adding one or more shape parameters or by changing the functional form of the 

distribution, make the models more sufficient for many applications. 

 In the last two decades researchers have greater intention toward the inversion of univariate probability models and 

their applicability under inverse transformation. The inverse distribution is the distribution of the reciprocal of a 

random variable. Dubey (1970) proposed inverted beta distribution, Voda (1972) studied inverse Rayleigh 

distribution, Folks and Chhikara (1978) proposed inverse Gaussian distribution, Prakash (2012) studied the inverted 

exponential model, Sharma et al. (2015) introduced inverse Lindley distribution, Gharib et al. (2017) studied 

Marshall-Olkin extended inverse Pareto distribution, Al-Fattah et al. (2017) introduced inverted Kumaraswamy 

distribution and Rana and Muhammad (2018) introduced Marshall-Olin extended inverted Kumaraswamy 

distribution. 

The inverse Rayleigh (IR) distribution is commonly used in statistical analysis of lifetime or response time data from 

reliability experiments. For the situations in which empirical studies indicate that the hazard function might be 

unimodal, the IR distribution would be an appropriate model. Initially, Treyer (1964) introduced the inverse Rayleigh 

distribution as a model for analyzing reliability and survival data. The model later underwent further examination by 

Voda (1972), who observed that the lifetime distributions of various experimental units could be closely 

approximated with the inverse Rayleigh distribution. Additionally, Voda (1972) explored its properties and provided 

a maximum likelihood (ML) estimator for the scale parameter. Gharraph(1993) conducted an in-depth analysis of the 

inverse Rayleigh distribution, deriving five key measures of location: the mean, harmonic mean, geometric mean, 

mode, and median. Furthermore, Gharraph explored various estimation methods to determine the unknown parameter 

of this distribution. A numerical comparison of these estimation techniques was conducted, focusing on their bias 

and root-mean-squared error (RMSE), providing valuable insights into their performance and applicability. 

Almarashi et al. (2020) propose a two-parameter extension of the inverse Rayleigh distribution, employing the half-

logistic transformation to address limitations in modeling moderately right-skewed or near-symmetrical lifetime data. 

Their theoretical contributions encompass mathematical properties and empirical evidence, demonstrating the 

model's effectiveness in handling diverse right-skewed datasets. Babokan and Al-Shehri (2021) introduced a new 

generalized inverse Rayleigh distribution with applications in five data set in different field. Furthermore, Chiodo et 

al. (2022) introduced the compound inverse Rayleigh distribution as a model tailored for extreme wind speeds, 

essential in wind power generation and turbine safety evaluation. They provide a practical framework for real-world 

data analysis, accompanied by a novel Bayesian estimation approach, supported by extensive numerical simulations 

and robustness assessments. Also Shala and Merovci (2024) developed a new three-parameter inverse Rayleigh 

distribution using generalized transmuted family of distributions. 
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The generation of new distributions by adding one or more parameters to standard distributions enhances their 

applicability to complex data across various fields. Motivated by this approach, several authors have proposed 

different methods for generating new distributions. These include the Marshall-Olkin-G distribution (1997), the Beta-

G distribution introduced by Eugene et al. (2002), the Kumaraswamy-G distribution by Cordeiro and Castro (2011), 

and the McDonald-G distribution by Alexander et al. (2012). Shaw and Buckley (2009) introduced the transmuted-

G class of distributions, which was further expanded by the development of the exponentiated transmuted-G 

distribution (2017) and the generalized transmuted G distribution (2017). Marshall and Olkin(1997) introduced a new 

family of distributions by adding a parameter to a family of distributions. They started with a parent survival function 

𝐹̅(𝑥) and considered a family of survival functions given by 

 

 
They described the motivation for the family of distributions (1) as follows: 

Let X1, X2, . . .  be a sequence of independent and identically distributed (i.i.d.) random variables with survival 

function 𝐹̅(𝑥)  . Let 

 
where N is the geometric random variable with probability mass function (pmf) P(N = n) = p(1-p)n-1, for n = 1,2,. .  

and 0 < p < 1 and independent of X0 s Then the random variable UN has the survival function given by (1). If p > 1 

and N is a geometric random variable with pmf of the form P(N = n) = 
1

𝑝
(1- 

1

𝑝
 ) n-1,  then the random variable VN = 

max(X1, X2, . . . ,XN) also has the survival function as (1). 

 

If X1, X2, . . .  is a sequence of i.i.d. random variables with distribution in the family (1), and if N has a geometric 

distribution on {1,2, . . . } then min(X1, . . . ,XN) and max(X1, . . XN) have distributions in the family. The extreme 

value distributions are limiting distribution for extreme, and as such they are sometimes useful approximations. In 

practice, a random variable of interest may be the extreme of only finite, possibly random, number N of random 

variables. When N has a geometric distribution, the random variable has a particular nice stability property, not 

unlike that of extreme value distributions. The geometric-extreme stability property of G(x; p) is rather remarkable, 

and it depends upon the fact that a geometric sum of i.i.d. geometric random variables has a geometric distribution. 

This partially explains why random minimum stability cannot be expected if the geometric distribution is replaced 

by some other distribution on {1,2, . .  }. For more discussion on geometric-extreme stability, see Arnold(1986) and 

Marshall and Olkin (1997). 

 

Heavy-tailed models have been used in a variety of fields, such as mathematical finance, financial economics and 

statistical physics. In the framework of integer valued distributions, the discrete stable is a well known heavy-tailed 

law originally suggested by Steutel(1979). Jayakumar(2003) generalized the concept of Poisson mixtures to discrete 

stable mixtures and showed that, the distributions on Z+ that can be approximated by mixtures of discrete Linnik 

distributions are discrete stable mixtures. Christoph (1998) emphasized that the discrete stable law may be seen as a 

special case of discrete Linnik law studied in Devroye(1993). Hence owing to the extra parameter, the discrete Linnik 

is a heavy-tailed distribution family which is more exible than the discrete stable. Discrete Linnik distribution is a 

rich family of distributions which includes many important distributions. It belongs to the class of discrete self 

decomposable distributions. 

 

 

The pgf of discrete Linnik distribution with parameters α, c and υ is 

 
Jayakumar and Sankaran (2019) introduced a new family of distributions with parameters  α, c  and υ having survival 

function 
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Note that the survival function in (3) is the survival function of UN in (2), where Xi's are i.i.d. random variables with 

cdf F(x) and N is truncated discrete Linnik distribution with parameters  α, c and υ and N is independent of Xi's. It 

can be seen that the family of distributions generated through truncated negative binomial and truncated discrete 

Linnik are not extreme stable. 

 

Kumaraswamy(1980) introduced a probability distribution for handling double bounded random processes with 

varied hydrological applications. The cumulative distribution function (cdf) of Kumaraswamy distribution is given 

by 

 
The beta distribution also provides the premier family of continuous distribution on bounded support which has been 

utilized extensively in statistical theory and practice (see Nadarajah (2007)). Gupta(2004) provides a comprehensive 

account of the theory and applications of beta family of distributions. Like beta distribution, Kumaraswamy 

distribution also originally de_ned on the unit interval [0, 1] but easily extended to any finite interval and can take an 

amazingly great variety of forms. Thus it can be fitted practically to any data representing a phenomenon in almost 

any field of applications. One interpretation for integer-valued a and b through maxima and minima of i.i.d. random 

components is by Jones(2009). If we assuming that a = m and b = n are positive integers, we can find, xm
 is the cdf 

of the maximum of i.i.d. standard uniform variables, with the corresponding survival function 1 - xm . Thus, the 

quantity (1- xm }n in (4) is the minimum of n such random variables, with G being the corresponding cdf. This property 

discussed in Jones(2009), motivated the name minimax for this distribution. Kozubowski(2018) extended this 

interpretation to the general Kumaraswamy distribution using the result of min/max of i.i.d. components with random 

number to the relevant pgf. 

 

This paper is organized as follows. We introduce Kumaraswamy inverse discrete Linnik G (Kw-IDL-G) family of 

distributions in Section 2 and discuss its various sub models. In Section 3, a sub model of Kw-IDL-G, namely, 

Kumaraswamy inverse Marshall-Olkin family is obtained. As a special case, Kumaraswamy inverse Marshall-Olkin 

Rayleigh distribution, a new generalization of inverse Rayleigh (GIR) distribution is studied in detail. It can be seen 

that GIR distribution contains Kumaraswamy inverse Marshall-Olkin exponential distribution, Kumaraswamy 

inverse generalized exponential distribution, Kumaraswamy inverse exponential distribution, Marshall- Olkin 

generalized exponential distribution, Marshall-Olkin exponential distribution, generalized exponential distribution 

and exponential distribution. In Section 4, some structural properties of GIR distribution such as moments, quantiles 

and mean residual function are studied. Estimation of the modal parameters by maximum likelihood is performed in 

Section 5. An application to a real data set to illustrate the potentiality of the new family is presented in Section 6. It 

can be seen that GIR distribution performs well compared to several well known distributions. The paper is concluded 

in Section 7. 

II. KUMARASWAMY  INVERSE DISCRETE LINNIK G FAMILY OF DISTRIBUTIONS 

Let X follows   truncated discrete Linnik family of distributions with survival function S(.) and baseline distribution 

function F(.). Then Y = 
1

𝑋
   is an inverse truncated discrete Linnik random variable with cumulative distribution 

function (cdf) G(x) given by  

 

 
 

Hence, we obtain a new family of distributions, which we named as inverse family of distributions generated 

through discrete Linnik G distribution.  

 

The probability density function (pdf) and the hazard rate function (hrf) of a random variable from the introduced 

family are respectively, 
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We define the cdf of Kumaraswamy inverse truncated discrete Linnik family of distributions as 

 
For each baseline G, the Kumaraswamy inverse truncated discrete Linnik G cdf is given by (8). It can be seen that 

(8) provides a class of wider family of continuous distributions. It includes the Kumaraswamy inverse discrete Mittag-

Leffler G family of distributions, Kumaraswmay inverse truncated negative binomial G family of  distributions, 

Kumaraswamy inverse Marshall-Olkin G family of distributions, Kumaraswamy inverse G family of distributions 

etc. 

III. KUMARASWAMY  INVERSE MARSHALL-OLKIN RAYLEIGH  DISTRIBUTION 

 

For analytical tractability, let β = 1 and θ= 1, then the cdf of (5) reduces to inverse Marshall- Olkin G family of 

distributions as 

 
Now, as a special case, let X follows Rayleigh distribution with parameter λ > 0 having cdf F(x) = 1- 𝑒−(λx)

2
 and pdf f(x) = 2 

λ2x𝑒−(λx)
2
. Hence, the cdf of the random variable Y is given by  

 
We refer to this new distribution having cdf (9) as Kumaraswamy inverse Marshall-Olkin Rayleigh distribution and 

write it as GIR (y; a, b, p, λ). 

The pdf of GIR is given by 

 

 
The GIR models very flexible distribution that approaches when its parameters are changed. The new distribution 

includes as special cases of well-known models namely Kumaraswamy inverse Rayleigh (KwIR), Kumaraswamy 

inverse exponential (KwIE), Kumaraswamy inverse Marshall- Olkin exponential(KwMOIE), Inverse Marshall-Olkin 

Rayleigh(IMOR), exponentiated inverse Rayleigh (EIR), exponentiated inverse exponential (EIE), generalized 

inverse Rayleigh (GIR), generalized inverse exponential (GIE),inverse Rayleigh (IR) and inverse exponential (IE) 

models. 
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The survival function S(y), hazard rate function h(y) and cumulative hazard rate function H(y) of Y are 

respectively, given by 

 

 
 

 
 

IV. SOME STATISTICAL PROPERTIES 

IV.1 Linear representation 

Consider a power series given by 

 
Applying expansion (11) to equation (10) gives 

 
Applying (11) again to (12), we obtain 

 
The last equation can be expressed as 

 

 
 
Where hαj+a+i(y) is the inverse Rayleigh density with scale parameter λ(αj+a+i)1/2 and  υj,i is a constant term given by 
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Therefore, the GIR density is given by a linear combination of the inverse Rayleigh densities. So, several structural 

properties can be derived from those of the inverse Rayleigh distribution. 

Similarly, the cdf of Y in (9) admits a linear representation given by 

 

 
Where Hαj+a+i(y) is the cdf of the inverse Weibull with scale parameter λ(αj+a+i)1/β  

 and shape parameter 2. 

 
IV.2 Moments 

 

Let X be a random variable having inverse Rayleigh distribution with parameter λ. The first moment of X is given 

by  µ1’ = λ ℾ(1/2) and the 

The rth ordinary moment, say µr’ of Y is given by 

 
 

Thus we have, 

 

 
 

Hence in equation (14), we obtain the mean of Y. 

 

 

 

IV.3 Quantile function 

 

The quantile function of Y is determined by inverting (9) as 

 

 
 

Simulating the GIR random variables is straightforward. If U is a uniform variate in the unit interval (0,1), the 

random variable Y = Q(U) follows GIR density. 

 

The effects of the additional shape parameters a and b on the skewness and kurtosis of the new distribution can be 

based on quantile measures. The well-known Bowley's skewness and Moors' kurtosis are respectively, defined by 

 

 
 

These measures are even-though less sensitive to outliers, but they exist even for distributions without moments. 

 
 

IV.4 Moments of the Residual and Reversed Residual life 

 

The nth moment of the residual life, mn(t) = E[(Y - t)n | Y>t],  n = 1, 2, . . .  uniquely determines F(y).  

Using equation (13), we can write 
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By using the binomial R expansion and the upper incomplete gamma function, we obtain 

 
Another function is the mean residual life (MRL) function at age t defined by m1(y) = E[(Y-y)|Y > y], which represents 

the expected additional life length for a unit which is alive at age y. 

The MRL of Y follows by setting n = 1 in the last equation. 

The nth moment of the reversed residual life Mn(t) = E[(t -Y )n |Y≤t] for t > 0; n = 1, 2, . . .uniquely determines F(y). 
     Using equation (13), we can write 

 

 
 

By using the binomial expansion and the lower incomplete gamma function, we obtain 

 

 
 

The mean inactivity time (MIT), also called mean reversed residual life (MMRL) function, is defined by M1(t) = 

E[(t -Y ) |Y≤t]  It represents the waiting time elapsed since the failure of an item on condition that this failure had 

occurred in (0; y). The MIT of the GIR distribution can be determined by setting n = 1 in the last equation. 

V. ESTIMATION OF THE PARAMETERS 

 

Several approaches for parameter estimation were proposed in the statistical literature, but maximum likelihood 

method is the most commonly employed. The MLEs method enjoy desirable properties for constructing confidence 

intervals. The estimation of the parameters of the GIR distribution by maximum likelihood for complete data sets. 

Let y = (y1,y2, . . . , yn) be a random sample of this distribution with unknown parameter vector θ= (a, b, p, λ)’. Then, 

the log-likelihood function for θ, is given by 

 
 

The MLE of θ can be determined by maximizing log L (for a given y) either directly by using the Mathcad, R (nlm 

or optim function), SAS (PROC, NLMIXED) or by solving the nonlinear system obtained by differentiating this 

equation and equating its four components to zero. 

 
 

The derivative of the log-likelihood function with respect to the parameters a, b, p, λ are given respectively by 

 

http://www.jetir.org/


© 2025 JETIR March 2025, Volume 12, Issue 3                                                          www.jetir.org (ISSN-2349-5162) 

 

JETIR2503783 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h687 
 

 
It is usually more convenient to use nonlinear optimization algorithms such as the quasi-Newton algorithm to 

numerically maximize the log-likelihood function. For interval estimation of the model parameters, we require 4 x 4 

observed information matrix J(θ) = {Jrs} (for r; s = a, b, p, λ ). Under standard regularity conditions, the multivariate 

normal N4(0; J(θ )-1) distribution can be used to construct approximate confidence intervals for the model parameters. 

Here, J(θ) is the total observed information matrix evaluated at θ. Therefore, approximate 100(1-φ)% confidence 

intervals for a, b, p and  λ can be determined as: 

 
 

VI. APPLICATION TO REAL DATA 

 

In this section, we analyze one data set to demonstrate how the GIR distribution can be a good life time model in 

comparison with many known distributions. We consider the data set originally reported by Bjerkedal(1960). This 

data set consists of 72 observations of survival times guinea pigs injected with different doses of tubercle bacilli. The 

data set has been considered by several authors in the literature, see, Kundu and Howlader (2010) and Cordeiro et al. 

(2012). The data set follows: 
12, 15, 22, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 67, 

70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 

258, 263, 297, 341, 341, 376. 

  

 The descriptive statistics of the data is presented in Table 1. 

 

Minimum Median Mean Maximum SD Skewness Kurtosis 

12.00 70.00 99.82 376 81.118 1.796 5.614 

Table 1: Descriptive statistics of pig data 

The distribution of the data is positively skewed and leptokurtic. We compare the GIR distribution with the  

following life time distributions: 
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The parameters is estimated numerically using maximum likelihood estimate method. The values of log-likelihood 

(-log L), Akaike information criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information 

criterion (BIC) and Hannan-Quinn information criterion (HQCI) statistics for GIW and their sub-models are  

calculated. The better distribution corresponds to smaller -log L, AIC, CAIC, BIC and HQIC. 

We apply the Crammer-von Mises(W*) and Anderson-Darling (A*) statistic for formal goodness-of-fit to verify 

which distribution fits better to this data. In general, the smaller the values of the statistics W* and A*, shows better 

the fit to the data. 

The values of estimates, -log L, AIC, CAIC, BIC, HQIC are listed in Table 2 and W*; A*, K-S and  p-values for all 

models are listed in Table 3. 

Model Parameters -log L AIC CAIC BIC HQIC 

IE λ =60.0975 402.6718 807.3436 807.4007 809.6203 808.2499 

IR λ =46.7748 406.7361 815.4722 815.5293 817.7489 816.3785 

W λ =0.0090, β= 1.3932 397.1477 798.2954 798.4693 802.8487 800.1081 

IW λ =54.1888, β= 1.4148 395.6491 795.2982 795.4721 799.8515 797.1109 

EIR α=3936.64, λ = 0.745 407.7350 817.4700 817.6400 822.0300 819.7300 

GR B=0.616, λ = 0.025 400.9100 807.8200 808.0100 810.3800 808.4590 

Kw-IR α=8.18, b=0.616  λ = 13.65 400.9150 807.8200 808.1800 814.6500 813.1370 

Kw-MOIE a=68.1393, b=2.6258 

α=8.8727  λ = 0.1758 

391.3500 790.7000 791.3000 799.8000 794.3000 

Kw-Fr a=45.7326, b=8.2723 

 λ = 0.7111, β= 0.6207 

390.2500 788.5000 789.1000 797.6000 792.1000 

GIR a=54.368, b=308.470 

p=0.068, λ = 69.693 

385.4300 778.8612 780.5421 792.9345 789.1472 

Table 2: MLE’s of the parameters and some measures for the fitted models. 
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Model W* A* K-S p-value 

IE 0.8322 4.5927 0.1847 0.0148 

IR 1.2574 6.4936 0.2361 0.0943 

W 0.4325 2.3763 0.1468 0.0989 

IW 0.2521 1.5017 1.1520 0.0718 

EIR 0.1362 0.7546 0.2370 0.0004 

GR 0.1958 1.1447 0.1964 0.3516 

Kw-IR 0.1030 0.6260 0.0900 0.3634 

Kw-MOIE 0.1219 0.7404 0.1181 0.4167 

Kw-Fr 0.1160. 0.7044 0.1004 0.5623 

GIR 0.0929 0.6964 0.0986 0.6034 

Table 3: Goodness-of-fit statistic for various models fitted to pig data. 

From the Table 2 and Table 3, we can see that, GIR distribution has smallest -log L, AIC, CAIC, BIC, HQIC, W*, A* 

and K -S values. Also the GIR distribution has highest p-value. Hence the new model, that is GIR distribution, yields 

a better fit than the other models for this data set. 

 

The fitted density and the empirical cdf plot of the GIR distribution are presented in Figure 3. The figure indicates a 

satisfactory fit for the GIR distribution. 

 

 
Figure 3: Plots of the estimated pdf and cdf of the GIR model for pig data 

To test the null hypothesis H0: Kw-IR versus H1: GIR or equivalently H0: p = 1 versus H1: p ≠ 1, we use 

likelihood ratio test statistic whose value is 5.7406 (p-value 0.0254). As a result, the null model Kw-IR is rejected 

in favour of alternative model GIR at any significant level greater than 0.0254. 
 

VII. CONCLUSION 

Using minimax geometric extreme stable concept, introduced a new family of distributions namely Kumaraswamy 

Inverse discrete Linnik G family of distributions. By suitable the values of the parameters, we will obtain 

Kumaraswamy inverse truncated discrete Mittag-Leffler G family of distributions, Kumaraswamy inverse truncated 

negative binomial G distribution, Kumaraswamy inverse Marshall-Olkin G family of distributions etc. In this paper, 

We consider one member of the family and the base line distribution as Rayleigh distribution. The density function 

can be given mixture of inverse Rayleigh distribution. The explicit expression for the ordinary moments, quantiles 

and moments of residual life. Most commonly used best method of estimation, that is maximum likelihood method 

is adopted to find the parameters. For real life application, we consider one data set which is compatible with nine 

other models and to convince the adaptability of our proposed model. We have to study the model identifiability, 

general properties of the proposed distribution such as mean deviation, entropy, Stochastic ordering, order statistics, 

characterization etc. We believe that the proposed model will widespread applicability in addressing real-world 

problems across various disciplines including medicine, engineering and the social sciences. Also the researchers 

extend the study various lifetime distributions as base line distribution. 
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