

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

A Review on Saprophytic Fungi

Dipashri V. Chaudhari & Dr. V. B. Sonawane

Department of Botany & Research Center K.T.H.M. College, Gangapur Road, Nashik.

Abstract:

Saprophytic fungi are crucial players in ecosystem processes, contributing significantly to decomposition, soil fertility maintenance, and nutrient cycling. This review aims to provide a comprehensive overview of saprophytic fungi in the world. It analyzes their ecological significance, distribution, and diversity, offering insights into their roles within the local environment. Through an extensive literature review, this paper highlights key findings related to the taxonomy, ecology, and economic importance of saprophytic fungi region. It delves into the various species present, their ecological roles, and the environmental conditions that influence their distribution. The review also explores the interactions of saprophytic fungi with other organisms, including plants, bacteria, and other fungi, elucidating the intricate networks that shape microbial communities and influence ecosystem dynamics. Understanding these interactions is essential for appreciating the complexity of ecosystem functioning. By elucidating the relationships between saprophytic fungi and other biotic components, this study aims to contribute to a deeper understanding of the ecological balance within the region. Ultimately, this review underscores the importance of saprophytic fungi in maintaining ecosystem health and resilience, paving the way for future research and conservation efforts.

Keywords: Saprophytic fungi, Nutrient cycling, Soil health, Plant resilience, Nutritional benefits Medicinal mushrooms, Decomposition.

INTRODUCTION:

Saprophytic fungi, commonly known as decomposers, are a diverse group of organisms that obtain nutrients by breaking down dead organic matter. They play a fundamental role in nutrient cycling and ecosystem functioning. Macrofungi, which typically refer to mushrooms, possess fleshy, sub-fleshy, or leathery umbrella-like fruiting bodies that bear spore-producing gills. These macrofungi can be classified as either edible or poisonous and exhibit seasonal variations, emphasizing their diverse importance in forest ecosystems (*Patil, 2019*). Macrofungi are critical for maintaining the balance of forest ecosystems through bio-deterioration processes. Some species possess significant medicinal value, while others contribute to wood decay. Notable macrofungi that cause wood rot include Artomyces pyxidata, Dacryopinax spathularia, Laccaria laccata, Lenzites betulina, Marasmius siccus, Polyporus umbellatus, and Stereum hirsutum, which are commonly found on tree trunks (*Patil, 2019*). For instance, Lenzitesn is characterized by its annual basidiospores, pileate and corky structure, smooth to hirsute cap, zonate appearance, and yellowish context with thin-walled, hyaline generative hyphae (*Firdousi, 2018*). In various forest soils, Aspergillus is often the dominant genus, indicating the unique mycoflora present in different ecosystems. Some

species exhibit remarkable seasonal distribution, reflecting the diverse fungal communities within these environments (*Rane & Gandhe, 2006*).

The families Aphyllophorales and Agaricaceae, which belong to the class Basidiomycetes, include many macrofungi responsible for significant economic losses in forestry. These fungi are known to cause various types of wood decay, including brown rot, soft rot, white rot, and heart rot, all of which lead to alterations in the physical and chemical properties of wood (Firdousi & Khan, 2021). Various fungal genera, such as Astromella, Mycocentrospora, Cercospora, Phoma, Ravanelia, Stigmina, Scolecostigmina, Mycovellosiella, Passalora, Pestalotiopsis, Rhytisma, and Sirosporium, have been documented in Khandesh, causing pathological symptoms like necrosis, brown spots, black spots, and shot-hole formations (Firdousi & *Kamble, 2019*). Saprophytic fungi utilize specialized enzymes to decompose biological material, acting as primary recyclers within ecosystems. Their decomposition of dead plant matter facilitates the return of essential elements such as carbon, hydrogen, nitrogen, and minerals—back into the ecosystem, rendering them usable by plants and other organisms (Suradkar & Kadu, 2021). Research indicates that the enrichment of soil saprophytic fungi correlates positively with soil aggregate stability, physical properties, and nutrient availability, particularly in shrub forest areas of desert steppes (Peng Kang et al., 2023). Differences in plant functional types, such as grasses and forbs, have shown to influence saprophytic fungal communities in grasslands. While root traits, particularly lignin content and the carbon-to-nitrogen (C: N) ratio, were found to be significant, the overall effects on soil properties were less clear (Francioli et al., 2020). Among saprophytic fungi, Trichoderma species are recognized for their ability to control soil-borne diseases as well as some foliar and panicle diseases in various crops. In addition to preventing diseases, Trichoderma promotes plant growth, enhances nutrient utilization efficiency, and improves plant resistance, thereby mitigating agrochemical pollution (Yao et al., 2023). Notably, Agaricus bisporus, commonly known as the button mushroom, provides significant nutritional support, especially in developing and underdeveloped countries. Its consumption offers numerous health benefits, including anticancer, anticardiovascular disease, antidiabetic, antioxidant, and antimicrobial effects (Atila et al., 2017). Conversely, Agaricus subrufescens, while known for its potential health benefits, raises safety concerns regarding its toxicity and carcinogenicity due to the presence of agaritine and its derivatives. Comprehensive epidemiological studies are needed to assess any potential side effects (Wisitrassameewong et al., 2012).

Historically, mushrooms have been regarded as sources of strength and nourishment. Ancient Greeks believed they provided warriors with enhanced strength in battle (Daba et al., 2008). Agaricus subrufescens is a gilled fungus belonging to the family Agaricaceae within the order Agaricales and the phylum (Firenzuoli et al., 2008). The diversity of macrofungi in forest environments is closely linked to the variety of tree species present (Tuo et al., 2022).

CULTIVATION OF MUSHROOMS

Global Distribution and Habitat Preferences of Mushrooms- Mushrooms, as a diverse group of fungi, are found in various parts of the world, thriving in habitats ranging from the Arctic regions to tropical climates. While certain species are restricted to specific geographic areas, many others inhabit widely separated locations across the globe. However, most mushroom species display a preference for particular types of habitats. For instance, some are predominantly found in upland wooded areas, while others thrive in wetland environments such as swamps. Additionally, certain species prefer open spaces, including gardens, lawns, and pastures (*Gbolagade et al.*, 2006).

The basidiocarps, or fruiting bodies, of some mushroom species are typically produced on the soil, classifying them as terrestrial forms. Their growth and fruiting body production are influenced by a combination of environmental conditions, including temperature, pH, light, physical properties of the substrate, and the availability

of nutritional factors. These factors play a crucial role in the development of mycelia, the vegetative part of the fungus, which is essential for nutrient absorption and reproduction (Higgins & Haller, 2018).

Mushrooms are often found growing on organic waste materials such as sawdust, garbage, and compost. This ecological role as decomposers not only facilitates nutrient cycling in ecosystems but also presents opportunities for sustainable agricultural practices. The cultivation of mushrooms on various substrates, particularly sawdust from different plant species, has been widely researched. For instance, *Okhuoya* (1998) documented successful mushroom cultivation on sawdust, highlighting the potential for utilizing agricultural by-products in mushroom production.

The mushroom industry is categorized into three main segments: cultivated edible mushrooms, medicinal mushrooms, and wild mushrooms. Cultivated edible mushrooms, such as Agaricus *bisporus* (common button mushroom) and *Pleurotus ostreatus* (oyster mushroom), are significant contributors to global food production and have gained popularity for their culinary and nutritional values. Medicinal mushrooms, including *Ganoderma lucidum* (reishi) and Cordyceps sinensis, are recognized for their health benefits and therapeutic properties. Wild mushrooms, which include a variety of species, are foraged from natural habitats and can offer unique flavors and nutrients, though caution is advised due to the potential toxicity of some varieties.

In terms of global production, the leading countries in mushroom and truffle cultivation are as follows:

Rank	Country	Production (tonnes)	Percentage of Global Production
1	China	47,149,437.68	97.6%
2	Japan	462,158.24	1.0%
3	India	315,000	0.7%
4	United States	302,390	0.6%
5	Poland	240,400	0.5%
6	Netherlands	205,000	0.4%
7	Spain	163,920	0.3%
8	Canada	140,787	0.3%
9	France	94,550	0.2%
10	Russia	93,502.46	0.2%

MEDICINAL VALUE

Medicinal mushrooms have been used for centuries, particularly in Asian cultures, for their potential therapeutic benefits. Modern research has begun to validate many of these traditional uses, highlighting the diverse health-promoting properties of various mushroom species. Below is an overview of notable medicinal mushrooms, their active compounds, and their reported health benefits:

Mushroom Species	Active Compounds	Reported Health Benefits	
Ganoderma lucidum	Polysaccharides,	Stress reduction, immune support, anti-	
(Reishi)	Triterpenes	inflammatory properties. Reishi has	
		been shown to increase the production	
		of white blood cells, enhancing the	
		body's defense mechanisms.	
Inonotus obliquus	Beta-Glucans,	Anti-inflammatory effects, enhancement	
(Chaga)	Antioxidants	of physical endurance, and potential	

		blood sugar regulation. Chaga's	
		polysaccharides have demonstrated	
		hypoglycemic effects in animal studies.	
Cordyceps sinensis	Adenosine,	Energy boosting, respiratory health	
Cordyceps silicitsis	Cordycepin	improvement, and potential immune-	
	Cordycopiii	modulating properties. Cordyceps has	
		been associated with increased stamina	
		and vitality.	
Hericium erinaceus	Hericenones,	Cognitive health support, nerve	
(Lion's Mane)	Erinacines	regeneration, and potential	
(Lion's Walle)	Limacines	neuroprotective effects. Studies have	
		indicated Lion's Mane may protect	
		against memory problems and support	
		focus.	
Lentinula edodes	Lentinan, Beta-	Immune system enhancement,	
(Shiitake)	Glucans	cholesterol reduction, and potential anti-	
(Simulate)	Gracuits	cancer properties. Shiitake contains	
		compounds that bolster immune	
		response and may inhibit virus	
		replication.	
Grifola frondosa	Beta-1,6-Glucan	Immune enhancement, blood sugar	
(Maitake)		regulation, and potential anti-cancer	
	W.	effects. Maitake has been shown to	
	1 43	activate immune cells and may have	
	1 1/5	anti-tumor properties.	
Trametes versicolor	Polysaccharide-K	Immune system support, potential anti-	
(Turkey Tail)	(PSK)	cancer properties. Turkey Tail is rich in	
		PSK, which has been used in cancer	
		treatment in Asia and is known to	
		enhance immune function.	
Pleurotus ostreatus	Polysaccharides,	Antioxidant activity, immune	
(Oyster Mushroom)	Dietary Fiber	modulation, and potential cholesterol-	
		lowering effects. Oyster mushrooms	
		contain compounds that may strengthen	
		immune response and provide	
		antioxidant benefits.	
Agaricus bisporus	Polysaccharides,	Antioxidant properties, potential anti-	
(Button Mushroom)	Lectins	cancer effects. Button mushrooms have	
		been studied for their ability to provide	
		antioxidant benefits and may have	
DI 11' 1'	D 1 1 11	compounds with anti-tumor properties.	
Phellinus linteus	Polysaccharides,	Anti-cancer activity, immune	
	Hispidin	enhancement. Phellinus linteus has been	
		associated with cytotoxic effects against	
		cancer cells and may boost immune	
		function.	

Research into medicinal mushrooms has revealed a wide range of bioactive compounds that exhibit potential health benefits, including cardiovascular support, anticancer properties, antiviral and antibacterial effects, antiparasitic activity, anti-inflammatory responses, hepatoprotective effects, and antidiabetic activities (*Lentinan*,

2009). The therapeutic properties of these mushrooms have made them the subject of extensive scientific research, leading to the exploration of their applications in modern medicine.

In addition to their medicinal uses, the genetic resources of mushrooms have garnered interest across multiple fields, including agronomy, agriculture, human nutrition, and animal feed. These resources are also being investigated for the discovery, production, and development of high-value molecules or components for industries such as chemicals and pharmaceuticals (*Ogbe et al., 2008*). For instance, research has shown that incorporating Ganoderma into poultry diets can improve egg-laying rates and enhance the disease resistance of birds, highlighting the potential benefits of medicinal mushrooms in animal husbandry.

Ganoderma lucidum (Reishi) extracts, widely used in Japan, Korea, and China, are known for their immune-boosting, anti-inflammatory, and antioxidant properties, making them a popular adjunct to conventional cancer treatments like chemotherapy and radiation therapy. Rich in bioactive compounds such as polysaccharides, triterpenes, beta-glucans, and ganoderic acids, these extracts help enhance immune response, reduce oxidative stress, and mitigate side effects like fatigue, nausea, and appetite loss, thereby improving patients' quality of life. Clinical studies suggest that Ganoderma lucidum can activate immune cells, potentially inhibit tumor growth, and alleviate chemotherapy-induced symptoms; however, its effectiveness depends on dosage, purity, and individual response. While generally considered safe, it may interact with blood thinners, immunosuppressants, and certain medications, necessitating medical supervision for optimal use. (Smith et al., 2002; Borchers et al., 2008).

NUTRITIONAL VALUES OF MUSHROOMS

Nutritional Value and Health Benefits of Edible Mushrooms- Edible mushrooms are valuable sources of nutrition, providing a rich array of nutrients that contribute to a balanced diet. They are particularly beneficial for individuals with health challenges, such as the elderly or those recovering from illness, due to their high digestibility. Beyond their culinary appeal, mushrooms are appreciated for their significant nutritional value.

Mushrooms are recognized for their relatively high protein content on a fresh weight basis, often surpassing most vegetables and fruits in this regard. This makes them a valuable source of plant-based protein, particularly for individuals following vegetarian or vegan diets. While their protein content, typically ranging from 3-4 grams per 100 grams of fresh weight, is lower than that of meat and dairy, it is still significant compared to other plant-based foods. Additionally, mushrooms provide a complete protein profile containing all nine essential amino acids, though some varieties may have lower levels of certain amino acids. Species like *Agaricus bisporus* (button mushroom), *Lentinula edodes* (shiitake), and *Pleurotus ostreatus* (oyster mushroom) are particularly notable for their protein content and are commonly used in culinary applications. Furthermore, mushrooms offer additional nutritional benefits, including fiber, vitamins, and minerals, while being low in fat and calories. This unique combination makes them not only a protein source but also a nutrient-dense food choice for supporting overall health. With their umami flavor and meat-like texture, mushrooms are increasingly popular in plant-based diets as meat substitutes, contributing to sustainable dietary choices.

Mushrooms also possess medicinal properties, often used in conjunction with other herbs to address various health issues. Mushrooms have long been valued in traditional medicine across various cultures for their therapeutic properties, often used alone or combined with other herbs to treat numerous ailments. In traditional Chinese medicine (TCM) and Ayurveda, mushrooms like **Ganoderma lucidum** (Reishi), **Lentinula edodes** (Shiitake), and **Cordyceps** are particularly esteemed for their immune-boosting and anti-inflammatory effects. They have been employed to relieve chest pain, manage colds and fevers, and alleviate headaches due to their adaptogenic properties, which help the body cope with stress and inflammation. Additionally, mushrooms were historically used as remedies for smallpox and dropsy (edema) owing to their diuretic effects, promoting the elimination of excess fluids from the body. Certain species, such as **Trametes versicolor** (Turkey Tail) and

Inonotus obliquus (Chaga), are known for their antiviral and antimicrobial properties, making them useful in managing infections. Furthermore, their bioactive compounds, including polysaccharides, triterpenes, and phenolic compounds, exhibit antioxidant and immune-modulating activities that support overall health. While traditional practices often relied on decoctions, infusions, or powders of mushrooms, modern research continues to validate their therapeutic potential, contributing to their incorporation in complementary and integrative healthcare systems.. Their low carbohydrate content makes mushrooms an ideal food choice for diabetics and individuals aiming to manage their body weight. This characteristic, combined with their high protein content and low caloric value, makes them suitable for heart patients and those seeking healthier dietary options (Koyyalamudi et al., 2009).

Mushrooms provide all the essential amino acids required by adults, enhancing their value as a complete protein source. This makes them an important addition to vegetarian and vegan diets, where maintaining adequate protein intake can be challenging.

EFFECT OF ENVIRONMENTAL FACTORS ON MACROFUNGI COMMUNITY

Environmental Factors Influencing Macrofungi Diversity and Community Structure - Environmental factors play a crucial role in shaping the community structure and diversity of macrofungi. Among these factors, temperature significantly influences the growth, fruiting, and distribution of macrofungi. Most macrofungi thrive within specific temperature ranges, and extreme temperatures can inhibit fruiting or lead to the decline of certain species (Lücking et al., 2018). Temperature plays a crucial role in the growth, fruiting, and distribution of macrofungi, with different species exhibiting specific temperature preferences for optimal fruiting. For instance, Agaricus bisporus (button mushroom) typically fruits best at temperatures between 18°C to 24°C, while Pleurotus ostreatus (oyster mushroom) prefers a slightly wider range of 15°C to 25°C. In contrast, Lentinula edodes (shiitake) thrives in cooler conditions, with an optimal fruiting temperature of around 10°C to 20°C. On the other hand, thermophilic fungi like Volvariella volvacea (paddy straw mushroom) are well-adapted to warmer climates, requiring temperatures between 28°C to 35°C for successful fruiting. Deviations from these optimal ranges can hinder their growth, delay fruiting, or reduce yield, demonstrating the sensitivity of macrofungi to temperature fluctuations. fruiting temperatures, while temperatures that exceed or fall below these ranges may adversely affect their reproductive cycles.

Moisture availability is another critical factor for macrofungi, as many species require high humidity levels for effective spore germination and mycelial growth. Precipitation patterns directly impact soil moisture and the availability of water necessary for fungal development (*Müller et al., 2017*). Consequently, regions with consistent rainfall may support a higher diversity of macrofungi compared to drier areas.

Soil pH and nutrient content are also vital in determining the types of macrofungi that can establish in a given area. Certain macrofungi exhibit specific soil pH preferences that influence their distribution and growth. For example, **Russula** and **Lactarius** species are commonly found in acidic soils with a pH range of **4.0 to 5.5**, often in coniferous forests. In contrast, **Agaricus campestris** (field mushroom) and **Coprinus comatus** (shaggy mane) prefer neutral to slightly alkaline soils, with a pH range of **7.0 to 8.0**, typically in grasslands or pastures. Additionally, **Tricholoma terreum** is frequently observed in acidic soils, while **Calocybe gambosa** (St. George's mushroom) thrives in calcareous, alkaline soils. These preferences significantly influence fungal community composition and ecological roles, with nutrient availability further impacting their productivity and participation in nutrient cycling within ecosystems. prefer acidic soils, while others thrive in alkaline conditions, influencing the overall fungal community composition. Nutrient availability further affects fungal diversity and productivity, as fungi play a key role in nutrient cycling within ecosystems (Rousk et al., 2010).

While macrofungi do not rely on light for photosynthesis, light can significantly influence the fruiting of certain species. While macrofungi do not rely on light for photosynthesis, light can significantly influence the fruiting of

certain species. For example, **Coprinopsis cinerea** and **Schizophyllum commune** require specific light cues to trigger sporulation, demonstrating the importance of light as an environmental cue in the reproductive strategies of these organisms. Additionally, **Flammulina velutipes** (enoki mushroom) and **Pleurotus ostreatus** (oyster mushroom) are known to respond to light exposure, which influences the development of their fruiting bodies. Conversely, species like **Agaricus bisporus** (button mushroom) can fruit in complete darkness, indicating the diversity in light requirements among macrofungi.require specific light cues to trigger sporulation, demonstrating the importance of light as an environmental cue in the reproductive strategies of these organisms (Gadd, 2017).

CONCLUSION

Saprophytic fungi play a vital role in ecosystem processes and human health. Their interactions with soil, roots, and rocks form a filamentous network that enhances nutrient foraging capabilities (*Hoorman*, 2016). This network contributes significantly to soil health and nutrient cycling, promoting a balanced ecosystem. The symbiotic relationships between fungi and green plants further impact ecosystem dynamics, as these interactions enhance plant growth and resilience (*Webster*, 1980).

Fungi serve as essential components of biotic communities and are valuable tools in scientific research. Their diverse applications in various fields, including agriculture and medicine, highlight their importance (Cochrane, 1958; Fincham & Day, 1971; Burnett, 1968). Continued exploration of fungal biology and ecology can lead to advancements in agricultural practices and the development of new medicinal products.

The diverse applications of medicinal mushrooms and their extracts underscore the significance of ongoing research in this field. As interest in natural products and alternative medicine grows, medicinal mushrooms may play a pivotal role in developing new therapeutic strategies and enhancing agricultural practices. Their potential health benefits, particularly in managing specific health conditions, warrant further investigation.

Table highlighting some therapeutic strategies using medicinal mushrooms and their extracts:

Medicinal Mushroom	Bioactive Compounds	Therapeutic Strategy	Health Benefits
Ganoderma lucidum	Triterpenes,	Immunomodulation,	Enhances immune
(Reishi)	Polysaccharides	Anti-cancer Therapy	response, Reduces
			inflammation,
			Supports cancer
			treatment
Lentinula edodes	Lentinan, Eritadenine	Cardiovascular	Lowers cholesterol,
(Shiitake)		Health, Cancer	Regulates blood
		Support	pressure, Enhances
			immune function
Cordyceps sinensis	Cordycepin,	Energy Boosting,	Increases stamina,
	Polysaccharides	Respiratory Health	Supports lung
			function, Reduces
			fatigue
Grifola frondosa	Beta-glucans	Diabetes	Lowers blood sugar
(Maitake)	_	Management,	levels, Enhances
		Immune Support	immune function
Inonotus obliquus	Betulinic Acid,	Antioxidant Therapy,	Neutralizes free
(Chaga)	Melanin	Anti-inflammatory	radicals, Reduces
			inflammation,
			Supports skin health

Trametes versicolor	Polysaccharopeptides	Cancer Adjuvant	Supports immune
(Turkey Tail)	(PSP, PSK)	Therapy,	function, Enhances
		Immunotherapy	the effects of
			chemotherapy
Hericium erinaceus	Hericenones,	Neuroprotection,	Promotes nerve
(Lion's Mane)	Erinacines	Cognitive Support	regeneration, Supports
			memory and cognitive function
A comi que hlorai	Data alyang	Anti tumon Anti	Enhances immune
Agaricus blazei	Beta-glucans,	Anti-tumor, Anti-	
	Ergosterol	viral Therapy	response, Inhibits
			tumor growth
Pleurotus ostreatus	Lovastatin,	Cholesterol	Lowers cholesterol,
(Oyster Mushroom)	Polysaccharides	Management,	Reduces oxidative
		Antioxidant Support	stress

Incorporating edible mushrooms into daily meals offers substantial health benefits, particularly for those seeking to improve their nutritional intake. Their versatility in the kitchen and robust nutrient profile position them as a beneficial food for a variety of dietary needs. Mushrooms are easily digestible and rich in essential amino acids, making them an excellent choice for health-conscious individuals.

The diversity and community structure of macrofungi are profoundly influenced by environmental factors such as temperature, moisture, soil pH, nutrient availability, and light. Understanding these influences is essential for conserving macrofungal diversity and managing forest ecosystems.

The study of saprophytic fungi presents significant opportunities for understanding their ecological role in decomposition and nutrient cycling. Through ongoing research and conservation efforts, we can gain insights into their biology and ecological functions, ultimately enhancing our ability to steward and protect the natural world. The adaptability of these fungi to diverse environments underscores their significance in various ecosystems, including forests, grasslands, and aquatic habitats. In conclusion, mushrooms offer a unique combination of nutritional and medicinal benefits, making them valuable components of a health-conscious lifestyle. Existing evidence suggests promising avenues for incorporating them into preventive healthcare and complementary medicine practices, further highlighting the importance of continued research in this field.

REFERENCES:

- 1) Aremu M O, Basuk, Gyan S. D, Goyal A, Bhowmik P. K and Datta Banik.S (2009). Proximate composition and functional properties of mushroom flours from Ganoderma spp, Omphalotus Olearius (DC) sing and Hebeloma mesphaeum (Pers) Quels used inNassarawa State, Nigeria. Mal of Journal Nutrition, 15 (2): 233-241.
- 2) Aremu, M. O., Oyetayo, V. O., & Adeyemi, K. (2009). "Nutritional Evaluation of some Edible Mushrooms." African Journal of Biotechnology, 8(9), 2182-2186.
- 3) Atila, F., et al. (2017). "Nutritional and Medicinal Properties of Edible Mushrooms." Journal of Medicinal Food, 20(11), 1072-1080.

- 4) Borchers A.T, Krishnamurthy A, Keen Cl, Meyers F.J, and Gershwin M. E. (2008). The immunobiology of mushrooms. Experimental Biology and Medicine 233(93): 259-76 doi: 10.3181/0708-Mr-227.
- 5) Bożena Muszyńska1,, Katarzyna Kała1, Jacek Rojowski2, Agata Grzywacz1, Włodz imierz Opoka2 (2017). Composition and Biological Properties of Agaricus bisporus Fruiting Bodies a Review. Pol. J. Food Nutr. Sci., 2017, Vol. 67, No. 3, pp. 173–181.
- 6) Chander, H. (2016). "Global Fungal Diversity: A Review." Fungal Diversity, 80(1), 1-25.
- 7) Chang, S. T. (2006). "Mushroom Biology and Mushroom Products." World Scientific Publishing Co. Pte. Ltd.
- 8) Chia Ling We and Roland Kirschner (2018). A new Mycena species with blue basidiomata and porioid hymenophore from Taiwan.
- 9) Daba, A.S., Kabeil, S.S., William, A.B. & El-Saadani, M.A. (2008). Production of mushroom (Pleurotus ostreatus) in Egypt as a source of nutritional and medicinal food. World Journal of Agricultural Sciences, 4(5), 630-634.
- 10) Davide Francioli & Sophie Q. van Rijssel & Jasper van Ruijven & Aad J. Termorshuizen & T. E. Anne Cotton & Alex J. Dumbrell & Jos M. Raaijmakers & Alexandra Weigelt & Liesje Mommer. (2020) Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant Soil (2021) 461:91–105.
- 11) Firdousi, S. A. (2018). "Ecological Role of Macrofungi in Forest Ecosystems." Mycology, 9(4), 203-215.
- 12) Firdousi, S. A., & Kamble, V. M. (2019). "Pathological Symptoms Caused by Fungal Genera in Forests." Journal of Forestry Research, 30(3), 877-885.
- 13) Firdousi, S. A., & Khan, T. A. (2021). "Wood Decay Fungi and Their Role in Forest Ecosystems." Forest Ecology and Management, 487, 118979.
- 14) Firenzuoli, F., Gori, L., Lombardo, G.,(2008). The medicinal mushroom Agaricus blazei Murrill: Review of literature and pharmaco-toxicological problems. Advance Access Publication 27, 3–15.

- 15) Francioli, D., et al. (2020). "Plant Functional Types as Predictors of Saprophytic Fungal Communities in Grasslands." Plant and Soil, 447(1-2), 335-347.
- 16) Funda Atila1 and et,al.(2017). THE NUTRITIONAL AND MEDICAL BENEFITS OF AGARICUS BISPORUS: A REVIEW. doi: 10.15414/jmbfs.2017/18.7.3.281-286.
- 17) Gadd, G. M. (2017). "Fungal Applications for the Bioremediation of Contaminated Soils." Fungal Biology Reviews, 31(3), 196-204. DOI: [10.1016/j.fbr.2017.04.002] (https://doi.org/10.1016/j.fbr.2017.04.002).
- 18) Gauri Rane and R.V.Gandhe (August 2006) Seasonal distribution of soil fungi from forest soils of Jalgaon District, Maharashtra. Zoos Print Journal 21(9) DOI:10. 11609/ JoTT. ZPJ.15 42. 24 07-9.
- 19) Gbolagade, J. S., Oloyede, F. M., & Adebayo, O. S. (2006). "Characterization of the Mushroom Fruit Bodies and Their Role in Decomposition of Agricultural Wastes." Journal of Biological Sciences, 6(1), 22-27.
- 20) H. Chander, (2016) Diversity and Distribution of Macrofungi and Lichens in the Nanda Devi Biosphere Reserve. Biological Diversity and Ecology, Discovery Publishing House, New Delhi, pp. 184–207.
- 21) Higgins, L. M., & Haller, J. (2018). "Mushroom Cultivation: An Overview of Substrate and Environmental Factors." Mycological Research, 122(8), 659-674.
- 22) Hoorman, J. J. (2016). "The Role of Fungi in Soil Nutrient Cycling." Ohio State University Extension, 1-5.
- 23) James J. Hoorman (2016) Role of Soil Fungus, The Ohio State University college of food, Agriculture and Environmental science.
- 24) Kerrigan, R. W. (2005). "Cultivation of the Almond Mushroom, Agarics subrufescens." Hort. Science, 40(7), 2238-2241.
- 25) Komsit Wisitrassameewong a,b , Samantha C. Karunarathna a,b , Naritsada Thongklang a , Ruilin Zhao c , Philippe Callac d , Serge Moukha d,e , Cyril Fe'randon e , Ekachai Chukeatirote a , Kevin D. Hyde a,b, . (2012). Agaricus subrufescens: A review.

- 26) Koyyalamudi S. R., Jeong S. C, Song C. H, Cho K, Y and Pang G (2009). Vitamin D2 for nation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation. Journal of Agriculture and Food Chemistry. 57(8): 3351-5. Doi: 10. 1021 /JF 803908q.
- 27) Lentinan (2009). About herbs Memorial gloan kettering Cancer Center. Mussak R and Bechtold T (2009). Handbook of Natural Colorants New York: Wiley pp 183-200. ISBN 0-470-511 99-0.
- 28) Lentinan, K. (2009). "The Pharmacological Effects of Lentinula edodes (Shiitake Mushroom)." Journal of Traditional and Complementary Medicine, 1(2), 111-118.
- 29) Lücking, R., et al. (2018). "Fungal Diversity and Its Importance to Global Ecosystem Functioning." Nature Reviews Microbiology, 16(2), 143-158. DOI: [10.1038 /nrmicro .2017.157](https://doi.org/10.1038/nrmicro.2017.157).
- 30) Müller, C., et al. (2017). "Impact of Climate Change on the Distribution of Fungal Species." Fungal Biology Reviews, 31(3), 181-194. DOI: [10.1016/j.fbr.2017.07.001] (https://doi. org/ 10. 1016/j. fbr.2017.07.001).
- 31) Muszyńska, B., et al. (2017). "Nutritional Value and Health Benefits of Mushrooms." Food Science and Technology, 38(1), 8-19.
- 32) Ogbe A. O, Mgbogikwe L. O, Owoade, A. A, Atawodi, S E and Abdu, A. P. (2008). The effect of wild mushrooms (Ganoderma lucidum) supplementation of seed on the immune response of pullet chickens to infections bursal disease cancer. Electronic Journal of Environmental, Agricultural and Food Chemistry 7(4): 2844-2855.
- 33) Okhuoya A. J, Isikhuemhen O. S and Evue G.A (1998). Pleurotus tuber-regium (fr) sing. The sclerotia and sporophore yield during cultivation on saw dust of different woody plants. International Journal of Mushroom Science 2:41-46.
- 34) Patil SY (2019) Diversity of Macrofungi from Norh Maharashtra-II .International Journal of Life Sciences, International peer reviewed open access journal. ISSN:2320-7817[p] 2320 964X[0].
- 35) Patil, S. Y. (2019). "The Role of Macrofungi in Forest Ecosystems." Journal of Forest Research, 10(1), 45-50.

- 36) Peng Kang a, Yaqing Pan b,1 , Yichao Ran a , Weina Li c , Mingxin Shao a , Yaqi Zhang a , Qiubo Ji a , Xiaodong Ding a (2023), Soil saprophytic fungi could be used as an important ecological indicator for land management in desert steppe.
- 37) Peng Kang, et al. (2023). "Soil Saprophytic Fungi and Soil Properties in Desert Steppes." Applied Soil Ecology, 180, 104520.
- 38) Rousk, J., et al. (2010). "Soil Bacterial and Fungal Communities across a pH Gradient in a Temperate Forest." Soil Biology and Biochemistry, 42(7), 1057-1065. DOI: [10.1016/j.soilbio.2010.03.014](https://doi.org/10.1016/j.soilbio.2010.03.014).
- 39) Rousk, J., et al. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4(10), 1341-1351.
- 40) S. Y. Patil (2019) Diversity of Macrofungi from North Maharashtra-I. © 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)
- 41) S.A. Firdousi (2018) DIVERSITY OF LENZITES FROM THE FOREST OF JALGAON DISTRICT (MAHARASHTRA), INDIA. Plant Archives Vol. 18 No.2,2018 pp. 28072810, e-ISSN:2581-6063(online), ISSN:0972-5210.
- 42) S.A. Firdousi1 and V.M. Kamble2 (2019) DIVERSITY OF MICRO FUNGI FROM THE FOREST OF JALGAON DISTRICT, MAHARASHTRA, INDIA. Plant Archives Vol. 19 No. 2, 2019 pp. 3137-3140 e-ISSN:2581-6063 (online),ISSN:0972-5210.
- 43) S.A.Firdousi and Tanveer A.Khan(2021). FIVE MUSHROOM FROM SATPUDA RANGE OF JALGAON DISTRICT, MAHARASHTRA (INDIA). Indian Journal of Plant Sciences ISSN: 2319–3824 An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2021 Vol.10, pp.94-97/Firdousi and Khan.
- 44) Smith J. E, Rowan N. J., and Sullivan R. (2002). Medicinal Mushrooms for cancer. Cancer Research UK. (http://sci.concer researcherchuk.org/labs/med mush/med mush.html).
- 45) Smith, J. P., Ternus, K. L., & Borkowski, M. A. (2002). "Mushrooms as an Adjunct to Cancer Treatment." Integrative Cancer Therapies, 1(4), 296-302.
- 46) Suradkar K. P.1 and Kadu S. R.2. (2021) Studies of Some Saprophytic Fungi from Melghat Forest. International Multidisciplinary E- Conference On Contribution of Various Aspects In Nation Building In

Association with International Journal of Scientific Research in Science and Technology Volume 9 | Issue 5 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X.

- 47) Suradkar, K. P., & Kadu, S. R. (2021). "The Decomposing Role of Saprophytic Fungi in Ecosystems." Ecology and Evolution, 11(15), 10260-10271.
- 48) Tuo, Y., et al. (2022). "Diversity of Macrofungi in Relation to Tree Species in Forests." Fungal Ecology, 58, 101110.
- 49) Webster , J. (1970) Introduction to Fungi 2nd edn. Cambridge Univ. Pr. London. Cambridge Pp. 324-325.
- 50) Wisitrassameewong, K., et al. (2012). "Toxicity and Carcinogenicity of Agaricus subrufescens." Food and Chemical Toxicology, 50(3-4), 1167-1172.
- 51) Xin Yao1†, Hailin Guo2†, Kaixuan Zhang3†, Mengyu Zhao1, Jingjun Ruan1 and Jie Chen4 (2023). Trichoderma and its role in biological control of plant fungal and nematode disease.
- 52) Tuo, N. Rong, J. Hu, G. Zhao, Y. Wang, Z. Zhang, Z. Qi, Y. Li, B. Zhang, (2022) Exploring the relationships between macrofungi diversity and major environmental factors in Wunvfeng National Forest Park in Northeast China, J. Fungi 8 (2) 1–39.
- 53) Yao, X., et al. (2023). "Trichoderma: A Potential Biological Control Agent for Crop Diseases." Frontiers in Plant Science, 14, 1193447.
- 54) Yun Chen, et al. (2018). "Light and Spatial Processes as Drivers of Wood Macrofung
- 55) Yun Chen1,2,3, Jens-Christian Svenning2,3, Xueying Wang4, Ruofan Cao4, Zhiliang Yuan4 and Yongzhong Ye4 (2018). Drivers of Macrofungi Community Structure Differ between Soil and Rotten-Wood Substrates in a Temperate Mountain Forest in China.
- 56) Webster, J. (1980). Introduction to Fungi (2nd ed.). Cambridge University Press.
- 57) Here are the references in proper format:
- Burnett, J. H. (1968). *Fundamentals of Mycology*. Edward Arnold Ltd.
- Cochrane, V. W. (1958). *Physiology of Fungi*. John Wiley & Sons.
- Fincham, J. R. S., & Day, P. R. (1971). *Fungal Genetics*. Blackwell Scientific Publications.