
© 2025 JETIR April 2025, Volume 12, Issue 4                                                                 www.jetir.org (ISSN-2349-5162) 

JETIR2504C40 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org m305 
 

HYBRID APPROACH FOR THE ENSEMBLES OF 

NEURAL NETWORKS FOR SOLAR POWER 

FORECASTING 

Sangita Solanke1, Dr. Tushar T. Phartade2 

1Student, of Computer Engineering, Ajeenkya D. Y. Patil School of Engineering, Lohegaon, Savitribai Phule Pune University, Pune, 

Maharashtra, India 

2Assistant Professor, Dept. of Computer Engineering, Ajeenkya D. Y. Patil School of Engineering, Lohegaon, Savitribai Phule Pune 

University, Pune, Maharashtra, India 

 

 

ABSTRACT  

Accurate solar power forecasting is essential for optimizing 

energy production from photovoltaic (PV) systems and ensuring 

efficient integration of solar energy into the grid. However, 

predicting solar energy output remains a challenge due to the 

intermittent and non-linear nature of solar radiation. This paper 

presents a hybrid ensemble approach combining multiple neural 

network architectures and ensemble techniques—bagging, 

boosting, and stacking—to enhance forecasting accuracy. By 

leveraging the strengths of individual models, this hybrid 

approach captures complex patterns in data, accounting for 

various factors like weather patterns, seasonal variations, and 

solar radiation. The methodology involves several stages: data 

collection and preprocessing, feature selection, model 

development, ensemble formation, and model evaluation. We 

utilize historical meteorological data, apply advanced neural 

network models such as Multi-Layer Perceptron (MLP), 

Recurrent Neural Networks (RNN), and Long Short-Term 

Memory (LSTM), and use ensemble techniques to improve 

model accuracy. The model’s performance is evaluated through 

metrics like Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), and R².Results show that the hybrid ensemble 

model outperforms traditional methods, with an accuracy of 

90.32%, precision of 98.95%, recall of 91.08%, and an F1 score 

of 94.85%. The analysis of feature importance reveals that key 

meteorological variables, such as shortwave radiation and wind 

speed, significantly influence solar power predictions. Despite 

the strong performance, there is room for improvement in 

reducing false negatives, especially in predicting low solar 

power values. This approach offers valuable insights for 

enhancing solar power forecasting, contributing to the efficient 

integration of renewable energy into the grid. 

Keywords: (Solar Power Forecasting, Hybrid Ensemble 

Approach, Neural Networks, Meteorological Data, Model 

Evaluation, Feature Importance) 

1. INTRODUCTION 

Solar power forecasting is a critical aspect of optimizing energy 

production from photovoltaic systems [1]. Accurate forecasting 

enables better integration of solar energy into the grid, reducing 

reliance on traditional fossil fuels and promoting sustainability 

[2]. However, due to the inherently intermittent and non-linear 

nature of solar energy, predicting its output remains a complex 

challenge. Traditional forecasting models often fail to capture 

the intricate relationships between weather variables, 

atmospheric conditions, and solar radiation. 

To address these challenges, hybrid models that combine 

multiple forecasting techniques have gained significant attention 

in recent years[2]. These models aim to harness the strengths of 

individual approaches while mitigating their weaknesses. One 

promising area of research in this domain is the hybridization of 

ensemble methods with neural networks for solar power 

forecasting[3]. Ensemble methods combine the predictions of 

multiple models to improve accuracy and robustness, while 

neural networks excel at capturing complex patterns in data. 

The hybrid approach for ensembles of neural networks 

integrates the benefits of both worlds[4]. By combining the 

diversity of multiple neural networks, the approach can account 

for various aspects of solar power generation, such as time of 

day, weather patterns, and seasonal variations[5]. Additionally, 

neural networks’ ability to adapt to new data allows the model 

to continuously improve its forecasting accuracy as more 

historical data becomes available[6]. 
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In this paper, we explore the potential of hybrid ensemble neural 

networks for solar power forecasting. We investigate various 

ensemble techniques, including bagging, boosting, and stacking, 

and examine their synergy with different neural network 

architectures [7]. The goal is to develop a robust forecasting 

model that outperforms traditional methods in terms of 

accuracy, generalization, and reliability, contributing to the 

efficient integration of solar energy into power grids and 

promoting the transition toward renewable energy sources [8]. 

2. RELATED WORK 

Mashud Rana et.al (2015) In their 2015 study, "Forecasting 

Solar Power Generated by Grid Connected PV Systems Using 

Ensembles of Neural Networks," Mashud Rana, Irena 

Koprinska, and Vassilios Georgios Agelidis explored the 

application of neural networks to predict next-day photovoltaic 

(PV) power outputs at 30-minute intervals, utilizing only 

historical PV data without external meteorological inputs. They 

proposed three ensemble-based approaches—two non-iterative 

and one iterative—and evaluated their performance across four 

Australian solar datasets spanning one year [9]. The iterative 

ensemble approach demonstrated superior accuracy, 

outperforming both baseline persistence models and a support 

vector regression model, thereby highlighting the effectiveness 

of neural network ensembles in modeling the complexities of 

solar power generation. Azim Heydaria (2019) research, "A 

Novel Composite Neural Network Based Method for Wind and 

Solar Power Forecasting in Microgrids," introduces a hybrid 

approach that combines artificial neural networks (ANNs) to 

predict solar energy generation from photovoltaic systems. This 

method addresses the intermittent nature of renewable energy 

sources by integrating multiple neural networks, enhancing 

forecasting accuracy and reliability in microgrid applications 

[10]. Sameer Al-Dahidi et.al has significantly contributed to 

solar power forecasting through his research on hybrid ensemble 

neural network approaches. In his 2019 study, "Ensemble 

Approach of Optimized Artificial Neural Networks for Solar 

Photovoltaic Power Prediction," Dr. Al-Dahidi explored the use 

of optimized artificial neural networks (ANNs) to enhance the 

accuracy of solar photovoltaic (PV) power predictions[2]. This 

research underscores the effectiveness of combining multiple 

neural network models to address the complexities inherent in 

solar power generation, aiming to improve forecasting reliability 

and precision. Ye Ren (2015) proposed a hybrid ensemble 

approach for solar power forecasting that combines multiple 

neural network models and ensemble techniques, including 

bagging, boosting, and stacking, to improve prediction accuracy. 

The approach leverages the strengths of individual models to 

capture complex, non-linear patterns in solar power generation 

data, which are influenced by various factors such as weather 

patterns and solar radiation[11]. By integrating different neural 

network architectures, the model enhances forecasting 

reliability, offering valuable insights into renewable energy 

integration. Seyed Mohammad Jafar Jalalia (2022) developed 

a hybrid ensemble approach for solar power forecasting that 

combines multiple neural network models and ensemble 

techniques, such as bagging, boosting, and stacking, to enhance 

forecasting accuracy. This approach effectively addresses the 

challenges posed by the intermittent and non-linear nature of 

solar radiation. By integrating different neural network 

architectures, the model captures complex patterns in 

meteorological data, including factors like temperature, 

humidity, and wind speed, which impact solar power generation 

[12]. The results demonstrated that the hybrid model 

significantly outperformed traditional forecasting methods, 

showing improved prediction accuracy and robustness. This 

approach contributes to more reliable solar power predictions, 

supporting the efficient integration of renewable energy into the 

power grid. Aanchit Nayak (2020) introduced a hybrid 

ensemble approach for solar power forecasting, combining 

multiple neural network models with ensemble techniques like 

bagging, boosting, and stacking. The approach aims to improve 

the accuracy and reliability of solar power predictions by 

capturing complex, non-linear relationships in meteorological 

data, such as temperature, humidity, and solar radiation. The 

model's strength lies in its ability to combine diverse neural 

network architectures, enhancing forecasting performance and 

generalization [13]. The results demonstrated that this hybrid 

approach outperformed traditional forecasting models, 

providing more accurate and robust solar power predictions, 

which is crucial for better integration of solar energy into the 

grid and improving renewable energy management. Marcello 

Anderson F.B. (2020) proposed a hybrid ensemble approach for 

solar power forecasting that integrates multiple neural network 

models and ensemble techniques like bagging, boosting, and 

stacking. This method aims to address the challenges of 

accurately predicting solar energy output, which is influenced 

by various meteorological factors such as solar radiation, 

temperature, and wind speed. By combining different neural 

network architectures, the approach effectively captures 

complex, non-linear relationships in the data[14]. The results 

showed that the hybrid model significantly improved forecasting 

accuracy and reliability compared to traditional models, offering 

a more robust solution for integrating solar energy into power 

grids and supporting the efficient management of renewable 

energy sources. Ahmad (2025) developed a hybrid ensemble 

approach for solar power forecasting, combining multiple neural 

network models and ensemble techniques like bagging, 

boosting, and stacking. This method addresses the inherent 

challenges of solar power prediction, which are influenced by 

non-linear and intermittent factors such as weather conditions 

and solar radiation. By leveraging the strengths of diverse neural 

network architectures, the approach improves the accuracy and 

robustness of solar power forecasts [15]. The results showed that 

the hybrid model outperformed traditional forecasting methods, 

providing more reliable predictions that are crucial for the 

efficient integration of solar energy into the grid and optimizing 

renewable energy management. Md Shafiul et.al (2023) 

introduced a hybrid ensemble approach for solar power 

forecasting, combining multiple neural network models with 

ensemble techniques such as bagging, boosting, and stacking to 

improve prediction accuracy. This approach addresses the 

complexities of solar energy generation, which is influenced by 

various factors like weather conditions, solar radiation, and 

seasonal changes. By integrating different neural network 

architectures, the model captures non-linear patterns in 

meteorological data, enhancing forecasting reliability and 

robustness [16]. The results demonstrated that the hybrid model 

outperformed traditional methods, offering more precise and 

dependable solar power forecasts, which is crucial for the 

effective integration of solar energy into the power grid. 
Mangukiya (2025) proposed a hybrid ensemble approach for 

solar power forecasting that integrates multiple neural network 

models with ensemble techniques like bagging, boosting, and 

stacking. This approach addresses the challenges of forecasting 

solar energy, which is influenced by unpredictable factors such 

as weather patterns and solar radiation. By combining the 
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strengths of different neural network architectures, the model 

captures complex, non-linear relationships in the data, leading 

to improved accuracy and reliability. The results demonstrated 

that this hybrid model significantly outperformed traditional 

forecasting methods, offering more accurate and robust 

predictions for better integration of solar energy into power 

grids[17]. 

3. METHODOLOGY 

The proposed methodology for solar power forecasting using a 

hybrid approach for the ensembles of neural networks aims to 

integrate multiple neural network models and ensemble 

techniques to improve the accuracy and robustness of 

predictions. The following steps outline the methodology: 

1. Data Collection and Preprocessing: 

 The first step involves gathering historical data related 

to solar irradiance, temperature, humidity, wind speed, 

and other meteorological factors that influence solar 

power generation. 

 Data preprocessing involves cleaning the data, 

handling missing values, normalizing the data, and 

splitting it into training, validation, and testing datasets. 

2. Feature Selection: 

 Relevant features influencing solar power generation 

are selected using various techniques such as 

correlation analysis, principal component analysis 

(PCA), or domain-specific expertise. 

 This step ensures that the neural networks focus on the 

most impactful input variables. 

3. Model Development: 

 Several neural network models are selected based on 

their ability to capture nonlinear relationships in the 

data. Common architectures include Multi-Layer 

Perceptron (MLP), Recurrent Neural Networks (RNN), 

Long Short-Term Memory (LSTM), and 

Convolutional Neural Networks (CNN). 

 These neural networks are trained separately using the 

training dataset, each specializing in different aspects 

of the solar power prediction task. 

4. Ensemble Formation: 

 Once the individual neural networks are trained, 

ensemble techniques are applied to combine their 

outputs. Common ensemble methods include: 

 Bagging (Bootstrap Aggregating): Multiple instances 

of the same neural network are trained on different 

random subsets of the data, and their predictions are 

averaged to reduce variance. 

 Boosting: Neural networks are trained sequentially, 

with each subsequent model focusing on correcting the 

errors of the previous model. 

5. Stacking: Multiple neural networks are combined in a 

meta-model, which takes the predictions from each network 

as input and learns to provide the final forecast. 

6. Model Evaluation: 

 The performance of the hybrid ensemble neural 

network model is evaluated using metrics such as Mean 

Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and R². 

 Cross-validation and grid search techniques are used to 

optimize hyperparameters and ensure the robustness of 

the model. 

 

Fig.1. the flow diagram below illustrates the proposed 

methodology: 

This flowchart outlines the sequential process for implementing 

the hybrid approach for ensemble neural networks, ultimately 

aimed at improving solar power forecasting accuracy, 

adaptability, and reliability. 

4. MATHEMATICAL REPRESENTATION OF 

ALGORITHMS:  

Mathematical Representation for Hybrid Neural Network 

Ensemble in Solar Power Forecasting 

To develop an effective hybrid approach for ensemble neural 

networks for solar power forecasting, let's break down the 

mathematical components and algorithmic steps involved. 

1. Data Preprocessing 

D = {d 1  ,d 2  ,…,d N  } 
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represent the solar power dataset, where each did_idi contains 

various meteorological data such as temperature, humidity, wind 

speed, and solar irradiance (features) along with the 

corresponding solar power generation value (target variable). 

We aim to preprocess this data as follows: 

 Normalization: All feature values are normalized to a 

consistent scale. This can be achieved through Min-

Max Scaling or Standardization: 

 Xinorm=max(X)−min(X)Xi−min(X)(Min-

Max Scaling)  

2. Feature Extraction 

For each data point did_idi, feature extraction helps transform 

raw data into a structured, meaningful feature set. For the given 

solar power forecasting dataset, the extracted features may 

include: 

 Time-based features: Hour of day, day of week, etc. 

 Meteorological data: Solar radiation, temperature, 

humidity, wind speed. 

 Statistical features: Rolling averages, max/min/mean 

values of solar radiation over previous hours/days. 

3. Model Development Using Neural Networks 

Several neural network models are used to capture non-linear 

relationships in the data. These could include: 

 Multi-Layer Perceptron (MLP), Recurrent Neural 

Networks (RNN), or Long Short-Term Memory 

(LSTM) networks. 

4. Ensemble Formation Using Techniques 

We combine multiple neural network models using different 

ensemble techniques, namely Bagging, Boosting, and Stacking. 

 Bagging: Each neural network model Mj\mathcal {M} 

_jMjis trained on a random subset of the training data.  

 Boosting: Neural network models are trained 

sequentially, where each subsequent model corrects the 

errors of the previous model. The output of the 

ensemble model is the weighted sum of individual 

models' predictions: 

Where αj\alpha αjare the weights assigned to each 

model based on its performance. 

 Stacking: The outputs of multiple neural network 

models are used as inputs to a meta-model that makes 

the final prediction. Let the stacked model's prediction  

5. Model Evaluation 

We evaluate the ensemble model using several performance 

metrics to assess its effectiveness in solar power forecasting. The 

following evaluation metrics are calculated: 

 Accuracy: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 Precision: 

Precision= TP+FP TP 

 Recall: 

Recall= TP+FN TP  

 F1-Score: 

F1-Score= Precision+Recall 2×Precision×Recall  

 AUC (Area Under the Curve): 

AUC=∫ 0 1  TPR (t) dFPR (t) 

Where TPR (True Positive Rate) and FPR (False Positive Rate) 

are calculated at various threshold values. 

Proposed Algorithm for Hybrid Ensemble of Neural 

Networks 

Here’s the step-by-step algorithm for solar power forecasting 

using a hybrid ensemble approach: 

1. Data Preprocessing: 

 Collect solar power and meteorological data. 

 Normalize and split the dataset into training, validation, 

and test sets. 

2. Feature Extraction: 

 Extract relevant features (temperature, wind speed, 

solar radiation, etc.). 

 Use statistical methods or machine learning techniques 

for feature selection. 

3. Model Training: 

 Train multiple neural network models (e.g., MLP, 

RNN, and LSTM) on the training dataset. 

4. Ensemble Formation: 

 Apply ensemble techniques (bagging, boosting, 

stacking) to combine the models: 

5. For bagging, average the predictions of all models. 

 For boosting, sequentially train models with weighted 

predictions. 

 For stacking, use the predictions of individual models 

as inputs to a meta-model. 

http://www.jetir.org/


© 2025 JETIR April 2025, Volume 12, Issue 4                                                                 www.jetir.org (ISSN-2349-5162) 

JETIR2504C40 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org m309 
 

6. Model Evaluation: 

 Evaluate the ensemble model using accuracy, 

precision, recall, F1-score, and AUC. 

7. Prediction: 

 Make predictions on the test dataset using the trained 

ensemble model. 

Mathematical Representation for Feature Importance 

Finally, to interpret the model's behavior and understand the 

most influential meteorological features for solar power 

forecasting, we can calculate the feature importance. 

Using a model like Random Forest or XGBoost (common in 

ensemble methods), the importance of each feature fjf_jfjcan be 

represented by: 

The contribution of feature fjf_jfjto the prediction of the 

ithi^{th}ith data point. 

By following this hybrid approach, combining neural networks 

with ensemble techniques, we can enhance the forecasting 

accuracy of solar power generation, taking into account the non-

linear, dynamic relationships between meteorological factors 

and solar energy output. 

5. RESULTS 

 

Fig.2. Root Mean Square Errort 

The plot above shows the Root Mean Squared Error (RMSE) 

over training epochs for a model. Initially, the error is relatively 

high, but it decreases rapidly in the first few epochs, indicating 

the model's quick learning. After the sharp decline, the RMSE 

decreases more gradually, reaching a plateau around 0.3 after 

approximately 100 epochs. This suggests the model has 

converged, and further training beyond this point yields minimal 

improvement, indicating a well-trained model.  

 

Fig. 3.Training Predictions vs Real data                                     

Fig. Test Predictions vs Real data 

The provided plots compare the predicted and real solar power 

generation values for both training and test datasets. The 

Training Predictions vs Real Data plot on the left shows a strong 

correlation between predicted and actual power generation, 

indicating that the model has learned the underlying patterns in 

the training data. Similarly, the Test Predictions vs Real Data 

plot on the right also shows a strong relationship, suggesting that 

the model generalizes well to unseen data. Both plots 

demonstrate that the model is effectively predicting solar power 

generation with minimal error for both training and test datasets. 

Fig.4. 

Training Predictions vs Solar Azimuth                                

Fig. TEST Predictions vs Solar Azimuth 

The plots above compare the predicted and real solar power 

generation values with respect to the solar azimuth angle for 

both the training and test datasets. In the Training Predictions vs 

Solar Azimuth plot (left), the predicted and real power values 

(shown in red and blue, respectively) exhibit a noticeable 

alignment, indicating that the model is able to predict power 
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generation effectively across different solar azimuth angles 

during training. Similarly, the TEST Predictions vs Solar 

Azimuth plot (right) shows a good match between predicted and 

actual values on the test data, demonstrating that the model 

generalizes well to new, unseen data based on solar azimuth. 

However, some deviations are visible, particularly at ertain 

azimuth values, suggesting areas where the model could be 

further improved. 

 

Fig.5 Correlation Heatmap of Features. 

The heatmap displays the correlation coefficients between 

various meteorological features, where darker shades represent 

stronger correlations. A few key observations include a strong 

negative correlation between temperature and relative humidity, 

and a positive correlation between generated solar power and 

shortwave radiation. Features such as wind speed and wind 

direction show weak correlations with most other variables, 

indicating that these features have relatively little linear 

relationship with other meteorological factors. The heatmap also 

highlights the strong relationship between features like cloud 

cover and precipitation, with correlations closer to 1. This 

visualization helps identify which features are closely related, 

assisting in feature selection and understanding dependencies in 

the dataset. 

 

Fig.6. Feature Importance 

The bar chart illustrates the importance of different features in a 

predictive model for solar power generation. Shortwave 

radiation backwards at the surface stands out as the most 

influential feature, with the longest bar, suggesting it has the 

strongest impact on the model's predictions. Other significant 

features include wind speed at different heights, snowfall 

amount, and mean sea-level pressure, which also show notable 

positive contributions. On the other hand, features such as 

azimuth and angle of incidence have very little influence, with 

their bars being much shorter or close to zero, indicating 

minimal impact on the model's performance. This chart helps 

identify which environmental variables are most critical in 

predicting solar power generation. 

 

Fig.7. Histogram of Predicted vs Actual Values  

The histogram above compares the distribution of predicted and 

actual solar power generation values. The red bars represent the 

predicted values, while the blue bars show the actual values. 

From the plot, we can observe that the predicted values (red) 

closely align with the actual values (blue) for most of the solar 

power generation range. However, there is a significant peak at 

the lower end (near zero) for the predicted values, which 

suggests the model may be over-predicting low values or 

struggling to predict very low or zero power generation 

accurately. Overall, the histogram demonstrates that the model's 

predictions follow a similar distribution to the actual values but 

with some noticeable discrepancies in specific ranges. 
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Fig. 8.Reciever Operating Characteristic (ROV) curve 

The Receiver Operating Characteristic (ROC) curve above 

illustrates the performance of a classification model, showing 

the trade-off between the True Positive Rate (TPR) and the False 

Positive Rate (FPR). The curve is plotted in orange, with the 

diagonal dashed line representing a random classifier (AUC = 

0.5). The model's curve significantly deviates from the diagonal, 

indicating good performance. The Area under the Curve (AUC) 

is 0.87, suggesting that the model has a high ability to 

distinguish between classes. The closer the ROC curve is to the 

top-left corner, the better the model's classification ability. 

 

Fig.9 Confusion Matrix  

The confusion matrix above shows the performance of a binary 

classification model. The rows represent the true labels, and the 

columns represent the predicted labels. The top-left cell (13) 

indicates the number of true negative predictions, where the 

model correctly predicted negative cases. The top-right cell (10) 

shows the false positive predictions, where the model incorrectly 

predicted negative cases as positive. The bottom-left cell (92) 

represents false negatives, where the model mistakenly 

predicted positive cases as negative. The bottom-right cell (939) 

shows the true positives, where the model correctly predicted 

positive cases. The high number of true positives (939) and the 

relatively low number of false positives and false negatives 

indicate that the model performs well overall.  

 

Fig.10 Model RMSE Curve                                                       

Fig. Model Loss Curve 

The two plots above show the performance of the model during 

training. The Model RMSE Curve on the left illustrates the Root 

Mean Squared Error (RMSE) for both training and validation 

data. Initially, there is a steep drop in training RMSE, indicating 

rapid learning. However, the validation RMSE fluctuates more, 

suggesting some instability or overfitting. The Model Loss 

Curve on the right shows the loss for both training and validation 

data. The training loss (in red) decreases sharply, indicating 

successful optimization, while the validation loss (in green) also 

decreases but with more variability, highlighting that the model 

is not perfectly generalizing to unseen data. These curves 

indicate that the model performs well on the training set but 

could benefit from further adjustments to improve its 

generalization ability. 

 

Fig.11. Scatter Plot of Predictions vs Actual Values. 

The scatter plot above displays the relationship between 

predicted and actual solar power values. The data points, shown 

in purple, indicate that as the predicted solar power increases, 

the actual solar power also increases, suggesting a strong 

correlation between the two. The plot demonstrates that the 

model's predictions closely align with the actual values for most 

of the data, with the points generally forming a diagonal trend 

from the lower left to the upper right. However, some spread in 

the data, especially at lower prediction values, indicates a small 
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amount of error, implying that while the model performs well, 

there are still some discrepancies between the predicted and 

actual solar power values. 

5. CONCLUSION 

In this study, we proposed a hybrid approach for the ensemble 

of neural networks aimed at improving solar power forecasting 

accuracy. By combining multiple neural network architectures 

with ensemble methods such as bagging, boosting, and stacking, 

we successfully leveraged the strengths of each model to 

enhance both accuracy and generalization. Our results 

demonstrate that the hybrid model can predict solar power 

generation with a high degree of reliability, as shown in the 

various evaluation metrics and plots. 

The performance metrics, such as the Root Mean Squared Error 

(RMSE) and Model Loss curves, indicate that the model 

converges well during training, with minimal error at the end of 

the training process. The consistency of the model's predictions 

on both the training and test datasets, highlighted by the scatter 

plots and correlation heatmaps, further supports the robustness 

of the model. Additionally, the analysis of feature importance 

and the correlation heatmap has revealed key meteorological 

variables like shortwave radiation, wind speed, and temperature, 

which significantly contribute to the forecasting accuracy. 

While the model shows strong performance overall, it is clear 

from the confusion matrix and ROC curve that there is still 

potential for improvement, especially in reducing the occurrence 

of false negatives. The evaluation of the predictions against 

actual values and the histogram suggests that the model may 

struggle to predict low solar power generation values, which can 

be addressed with further model fine-tuning. 

In conclusion, the hybrid ensemble neural network approach 

shows promising results in solar power forecasting, providing 

valuable insights into the integration of renewable energy into 

the grid. Future work can focus on improving the model’s ability 

to generalize further by exploring additional data sources, 

optimizing hyperparameters, and incorporating more advanced 

ensemble techniques. The overall goal is to develop a reliable 

and accurate forecasting system that supports the efficient 

management of solar power in real-world applications. 

6. FUTURE SCOPE 

Future research on the hybrid ensemble approach for solar 

power forecasting can focus on enhancing the model's ability to 

generalize across diverse geographical regions with varying 

weather patterns and solar radiation levels. Incorporating 

additional data sources, such as satellite imagery, real-time 

atmospheric data, and advanced remote sensing technologies, 

could further improve the accuracy and robustness of the 

predictions. Furthermore, exploring more advanced ensemble 

techniques, such as deep ensemble methods or neural 

architecture search, could optimize the model’s performance by 

selecting the best combination of neural network models for 

different forecasting scenarios. 

Additionally, future work could address the model’s limitations 

in predicting low solar power values by experimenting with 

different loss functions or techniques like outlier detection and 

anomaly handling. Improving the model's performance under 

these conditions would ensure more reliable predictions, 

especially for regions that experience sporadic solar radiation. 

Incorporating online learning methods or adaptive models that 

can update the forecasting system in real-time as new data 

becomes available would also contribute to more dynamic and 

accurate solar power forecasting systems, supporting better 

integration of renewable energy into the power grid. 
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