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Abstract: In the digital era, video has emerged as a leading 

medium for information sharing. However, the increasing 

ease of manipulating video content poses serious challenges 

to authenticity, especially in law enforcement, journalism, 

and national security. This paper introduces an AI-based 

dual-detection system to identify both deepfakes and frame-

level video tampering.The system utilizes two deep learning 

models: a CNN for detecting deepfakes and a ResNet18 

model for classifying tampered frames, including splicing, 

cloning, and inpainting. Video frames are extracted and 

analyzed in real-time, with results presented 

visually.Developed using Python and Flask, the platform 

includes user authentication via SQLite and a responsive 

HTML interface for seamless interaction. Results are 

shown with frame-wise logs and video previews. 

Experimental results demonstrate high accuracy and 

reliability. This tool offers scalable, real-time video integrity 

verification with future scope for GPU support and audio 

forgery detection. 

Keywords:Deepfake Detection, Video Tampering, CNN, 

ResNet18, PyTorch, Flask, Real-time Detection, Forensics. 

1. INTRODUCTION 

With the exponential rise of digital media consumption, 

videos have become a primary source of communication, 

education, and information dissemination. However, 

alongside the benefits of digital technology comes a pressing 

concern: the increasing prevalence of video manipulation. 

Advanced video editing tools and AI-powered face-swapping 

technologies have made it alarmingly easy to create fake or 

deceptive content. These manipulated videos—ranging from 

deepfakes that swap identities to forged footage that alters 

facts—pose a significant threat to information integrity. 

The implications of such forgeries are far-reaching. In law 

enforcement, a single tampered video can mislead 

investigations or serve as falsified evidence. In digital 

journalism, the spread of manipulated media can damage 

reputations, propagate misinformation, and fuel societal 

unrest. Similarly, in surveillance and national security, any 

undetected video alteration can result in flawed intelligence 

and compromised decisions. 

Conventional manual or rule-based detection techniques fall 

short in identifying subtle and high-quality manipulations. 

Therefore, an automated, intelligent solution is essential to 

address this growing challenge. To tackle this, our project 

proposes a hybrid AI system that performs both deepfake 

detection and tampering analysis at the frame level using 

state-of-the-art deep learning models. 

The system comprises two core components: a Convolutional 

Neural Network (CNN) for deepfake detection, and a 

ResNet18 model implemented via PyTorch for identifying 

various tampering techniques such as splicing, cloning, and 

inpainting. These models work independently to provide 

accurate and efficient analysis of uploaded video content. 

Each frame of the video is processed individually, and 

verdicts are drawn based on aggregated results. 

The backend of the system is implemented using the Flask 

web framework, offering RESTful endpoints and user session 

management. To ensure secure access, user registration and 

authentication are managed through an integrated SQLite 

database. The user interface is designed with HTML, CSS, 

and Jinja2 templating, offering a seamless experience for 

uploading videos, viewing analysis results, and 

understanding tampering timelines. 

In summary, this system aims to provide a reliable, scalable, 

and user-friendly solution to aid journalists, forensic analysts, 

and security agencies in verifying the authenticity of video 

content in real time. 

II. SYSTEM OVERVIEW 

The proposed system adopts a modular and layered 

architecture that ensures scalability, maintainability, and ease 

of deployment. Each component of the system is 
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independently designed yet tightly integrated to work in 

unison, enabling seamless user interaction and accurate video 

analysis. The architecture comprises the following key 

modules: 

Flask-Based  Backend: 
The server-side logic is built using the Flask micro web 

framework, chosen for its simplicity, flexibility, and 

seamless integration with Python-based machine learning 

models. Flask handles HTTP routing, form submissions, 

session control, and interaction between frontend and 

backend components. It provides RESTful endpoints for 

processing video uploads and returning inference results. 

SQLite Database Integration: 
User management is implemented through a lightweight, file-

based SQLite database. It stores essential user credentials 

such as names, emails, and hashed passwords. The database 

ensures persistent session tracking and secure authentication. 

All database operations are managed through Python's built-

in sqlite3 library, with proper connection handling using 

Flask's application context (g) to maintain modularity and 

prevent memory leaks. 

Deep Learning Models for Prediction: 
The core functionality of the system is driven by two pre-

trained deep learning models: 

CNN_model.h5 (Keras/TensorFlow): 
This model is trained to detect deepfake content by analyzing 

each frame of a video. It uses a convolutional neural network 

(CNN) to classify frames as either "real" or "fake." After all 

frames are analyzed, the final verdict is computed by 

averaging the model's predictions across the entire video. 

tampering_detector_final.pth (PyTorch/ResNet18): 
This model is designed for frame-wise tampering detection. 

It uses a fine-tuned ResNet18 architecture that classifies 

frames into one of several classes: real, cloning, splicing, or 

inpainting. Each frame is resized, normalized, and passed 

through the model, with predictions logged and time-stamped 

for detailed visualization. 

HTML/CSS Frontend with Jinja2 Templating: 
The frontend interface is constructed using HTML5 and 

styled with CSS3, ensuring responsiveness and usability. It 

provides pages for user registration, login, video uploading, 

and result visualization. Flask's Jinja2 templating engine 

dynamically injects data into HTML templates, such as user 

session data, prediction logs, and result summaries. Users can 

see frame-level predictions, play the uploaded video, and 

understand tampering timelines through a scrollable and 

color-coded interface. 

 

Fig : 1 System Architecture  

This modular design allows the system to be expanded in the 

future, for instance, by adding GPU support, cloud storage for 

uploaded videos, or even mobile compatibility. Each 

component can be individually improved without affecting 

the overall structure, making it ideal for both academic 

research and real-world deployment scenarios. 

III. FUNCTIONAL REQUIREMENTS 

The system is designed to meet a set of well-defined 

functional requirements that ensure secure user access, 

efficient video processing, and intuitive result visualization. 

These requirements are critical to delivering a reliable, user-

friendly, and technically sound solution for real-time video 

tampering and deepfake detection. 

• User Registration and Login System 

The platform provides secure user authentication using a 

registration and login system built on Flask and SQLite. New 

users can register by providing their name, email, and 

password, which are stored securely in the local database. 

Upon successful login, user sessions are maintained using 

Flask’s session management, allowing personalized access to 

detection features and stored activity. Authentication 

mechanisms prevent unauthorized access and ensure data 

privacy. 

• Video Upload Interface 

A dedicated frontend interface allows users to upload video 

files in .mp4 format. The upload form includes file validation 

to ensure appropriate file type and size. Once a video is 

submitted, it is stored in a designated folder (static/uploads) 

on the server, and a confirmation is provided to the user. This 

module is designed for ease of use, with buttons and visual 

cues that guide the user through the upload process. 

• Backend Prediction Logic using Pre-Trained Models 

The backend is equipped with two AI models that perform 

distinct prediction tasks: 
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1. Deepfake Detection Model (CNN_model.h5) – Processes 

each frame from the uploaded video using a CNN. The 

model assigns a prediction score, and a final decision ("real" 

or "fake") is made by averaging the predictions across all 

frames. 

2. Video Tampering Detection Model 

(tampering_detector_final.pth) – Utilizes a ResNet18 

architecture to analyze frames for tampering types like 

cloning, splicing, or inpainting. Frame extraction occurs at 

approximately 2 FPS, and each extracted frame is 

transformed, classified, and logged with a timestamp. 

The prediction pipeline is optimized for sequential execution 

and minimal resource consumption, allowing smooth 

performance even on machines with limited compute 

capability. 

• Real-Time Prediction Output and Visualization 

After processing the video, the results are displayed in an 

interactive user interface. For tampering detection, a 

scrollable log shows frame-wise predictions with 

corresponding timestamps and labels. Each label is color-

coded for quick visual recognition (e.g., green for real, red 

for tampered). For deepfake detection, the system shows the 

overall prediction alongside a playable preview of the 

uploaded video. The frontend uses Jinja2 templating to 

dynamically inject prediction results, making the experience 

seamless and real-time. 

This functional framework not only facilitates accurate 

analysis but also prioritizes user experience, security, and 

performance. The modular nature allows these features to be 

independently upgraded or replaced as the system evolves. 

IV. MODEL IMPLEMENTATION 

The core intelligence of the proposed system lies in its two 

deep learning models, each responsible for detecting a 

specific type of video manipulation. These models are 

independently trained and deployed using Keras (TensorFlow 

backend) for deepfake detection and PyTorch for frame-wise 

tampering detection. This modular design allows for accurate 

and flexible deployment across different video analysis 

contexts. 

4.1 Deepfake Detection (Keras) 

The deepfake detection component is implemented using a 

custom Convolutional Neural Network (CNN) architecture 

developed in Keras. This model is designed to classify 

individual video frames as either real or fake based on learned 

patterns in pixel-level and facial features. 

1.Model Architecture: 

The CNN architecture includes multiple layers of Conv2D 

operations with ReLU activation functions, followed by 

MaxPooling2D for spatial downsampling. The 

convolutional layers are followed by one or more fully 

connected Dense layers, ending in a sigmoid-activated 

output layer for binary classification. 

2.Input Processing: 

Video files are first decomposed into individual frames using 

OpenCV. Each frame is resized to 128x128 pixels and 

normalized to fall within the [0,1] range. This preprocessing 

ensures consistent input size and format for the CNN model. 

3.Prediction Strategy: 

The CNN processes each frame individually, producing a 

probability score (close to 0 for real and close to 1 for fake). 

These predictions are accumulated across all frames in a 

video. The final verdict is determined using mean aggregation 

– if the average prediction surpasses a defined threshold, the 

video is marked as fake; otherwise, it is classified as real. 

4.Deployment: 

The model is saved as CNN_model.h5 and loaded 

dynamically within the Flask backend during runtime. 

TensorFlow’s load_model() API is used to ensure 

compatibility and efficiency. 

4.2 Video Tampering Detection (PyTorch) 

For detecting frame-level tampering, the system utilizes a 

ResNet18 model implemented in PyTorch. This model is 

fine-tuned on a dataset containing labeled examples of both 

real and tampered video frames. 

1.Model Architecture: 

ResNet18 is a deep residual learning network with 18 layers, 

specifically designed to avoid vanishing gradient problems 

through the use of residual connections. In this 

implementation, the model is initialized with 

pretrained=False to enable training from scratch or 

fine-tuning on custom datasets. 

2.Fine-Tuning Details: 

The final fully connected (FC) layer of ResNet18 is replaced 

with a new Linear layer that outputs logits for four classes: 

real, splicing, cloning, and inpainting. 

The model is trained using a softmax cross-entropy loss 

function and optimized using the Adam optimizer for 

convergence. 

3.Frame Sampling & Processing: 

Uploaded videos are processed at an interval of 

approximately 2 frames per second (FPS) to balance 

inference speed and accuracy. Each frame is resized to 

224x224 pixels, normalized using ImageNet standards 

(mean=[0.485, 0.456, 0.406], std=[0.229, 

0.224, 0.225]), and converted to a PyTorch tensor. 

4.Inference Pipeline: 

During prediction, each frame is passed through the model, 

and the resulting class label is assigned. These labels are 

logged with their corresponding timestamp, providing a 

chronological view of tampering events. 

5.Deployment: 

The trained model is saved as 

tampering_detector_final.pth, which includes 

both the model’s weights and class metadata. It is loaded 

using torch.load() in CPU mode, making it compatible 

even with non-GPU environments. 
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Together, these two models form the analytical backbone of 

the system. By combining high-level semantic understanding 

(deepfake detection) with low-level spatial tampering 

analysis (frame-wise classification), the system offers a 

robust solution for comprehensive video forgery detection. 

V. IMPLEMENTATION DETAILS 

The implementation of the AI-powered video tampering and 

deepfake detection system is based on a combination of 

powerful Python libraries, deep learning frameworks, and 

lightweight backend technologies. The system is engineered 

to ensure efficiency, modularity, and ease of deployment 

across various environments. 

Programming Language: Python 

Python 3.x is chosen as the core programming language due 

to its extensive support for machine learning, image 

processing, and web development libraries. Python provides 

seamless integration with deep learning frameworks and 

simplifies the deployment of AI models in production 

environments. 

 Frameworks and Libraries 

Flask: A lightweight and flexible web framework used to 

build the server-side application logic. Flask handles user 

authentication, routing, session management, and interaction 

between frontend and backend. 

TensorFlow/Keras: Used to train, save, and deploy the CNN 

model responsible for deepfake detection. Keras simplifies 

model construction with its high-level API. 

PyTorch: Utilized to fine-tune and deploy the ResNet18 

model for frame-wise tampering classification. PyTorch 

offers dynamic computational graphs, making it easier to 

debug and modify models during experimentation. 

 Database: SQLite 

SQLite is used for managing user credentials and session 

data. It is a lightweight, file-based relational database that 

requires no separate server, making it ideal for local and 

small-scale deployments. The database (users.db) stores user 

information such as id, name, email, and password. 

 Tools and Utilities 

OpenCV: Handles video reading, frame extraction, and 

resizing operations. It allows the system to access video 

metadata such as frame rate and frame count. 

Torchvision: Used alongside PyTorch for frame 

preprocessing, including resizing, normalization, and tensor 

conversion. 

Pillow (PIL): Facilitates image format conversions and 

manipulation. It is used when converting frames from 

OpenCV’s BGR format to PIL's RGB format for PyTorch 

compatibility. 

PyTorch – Frame Prediction for Tampering Detection 

This snippet is part of the tampering analysis pipeline. It 

converts a video frame into a tensor and feeds it into the 

ResNet18 model for classification. 

with torch.no_grad(): 

    output = model(img_tensor) 

    _, pred = torch.max(output, 1) 

    label = class_names[pred.item()] 

torch.no_grad() disables gradient tracking for inference 

efficiency. 

img_tensor is a preprocessed frame tensor. 

model(img_tensor) performs a forward pass. 

torch.max() extracts the predicted class index. 

class_names maps the index to a human-readable label. 

Keras – Deepfake Detection 

This snippet demonstrates the deepfake detection process 

using a pre-trained CNN model. 

python 

CopyEdit 

frames = extract_frames(video_path) 

processed = preprocess_frames(frames) 

predictions = deepfake_model.predict(processed) 

extract_frames() uses OpenCV to read the video and return 

individual frames. 

preprocess_frames() resizes and normalizes each frame to 

match the model’s input format (128x128). 

deepfake_model.predict() returns a prediction score for each 

frame. 

The mean of these scores is used to classify the video as real 

or fake. 

VI. RESULTS AND DISCUSSION 

The performance and effectiveness of the AI-powered video 

tampering and deepfake detection system were thoroughly 

evaluated through experimental testing using various video 

inputs and classification metrics. This section provides a deep 

analysis of the system’s behavior, accuracy, speed, and 

reliability under real-world and synthetic testing conditions. 

6.1 Model Accuracy 

The two deep learning models were tested on curated and 

labeled datasets to evaluate their precision and recall in real-

world scenarios: 
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The CNN-based deepfake detection model achieved an 

accuracy of approximately 94%, successfully identifying 

subtle manipulations in synthetic facial expressions, deep 

voice overlays, and frame blending. 

The ResNet18 tampering detection model reached an 

accuracy of around 89%, efficiently classifying tampered 

frames into categories such as cloning, splicing, inpainting, 

or real based on spatial inconsistencies and learned features. 

6.2 Performance Evaluation 

Frame-Level Logging and Timestamping: 

For tampering detection, each frame is analyzed individually, 

and the prediction label (real or tampered) is logged along 

with its corresponding timestamp. This enables users to 

pinpoint the exact moments within a video where tampering 

occurs, improving transparency and forensic usability. 

User Interface and Interpretability: 

The frontend interface plays a significant role in aiding non-

technical users. By using color-coded indicators—green for 

real frames and red for tampered frames—the system 

improves interpretability and provides a clear, visual 

understanding of detection results. A detailed scrollable log 

of predictions is also displayed alongside the video. 

Speed and Real-Time Responsiveness: 

The system is optimized for quick video processing. For an 

average 10-second video, the entire detection and prediction 

pipeline completes within 20–30 seconds on a standard CPU 

machine. This real-time analysis capability makes the 

solution suitable for practical deployment without requiring 

GPU acceleration. 

 

Fig 2: Main Page 

 

Fig 3 : Login Page 

 

Fig 4 : Upload and Play Video Page 

 

Fig 5 : Framewise prediction Result 

 

Fig 6 : Deepfake detection Result 

 

Fig 7 : Number Of Images Per Class 

 

6.3 Reliability and Generalization 

The models exhibit robust performance across various 

lighting conditions, facial angles, and compression levels. 

Predictions remain consistent across multiple trials, 

demonstrating model stability. 
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The system is designed to handle both high-resolution and 

compressed videos, maintaining accuracy without being 

sensitive to input quality. 

Overall, the results affirm the system’s practicality and 

reliability in real-world scenarios. The combination of high 

accuracy, interactive interface, and real-time performance 

makes this a compelling tool for digital forensics, journalism, 

surveillance, and legal investigations. 

 

Fig 8 : Image with Height and Width Distribution 

VII. FUTURE SCOPE 

While the current implementation offers a robust and user-

friendly solution for detecting deepfakes and tampered video 

frames, there remains significant potential for enhancing the 

system’s capabilities. The future scope of this project focuses 

on expanding the detection spectrum, improving 

performance, and enhancing explainability for end users and 

forensic experts. 

 

Fig 9 : Training Loss Vs Validation Accuracy 

• Integration of Heatmap Overlays for Tampered Regions 

A critical enhancement involves the incorporation of visual 

heatmaps that highlight tampered regions within each video 

frame. By using techniques such as Grad-CAM (Gradient-

weighted Class Activation Mapping), the system can visually 

localize manipulated areas. This will provide users not only 

with a label but also with spatial evidence of tampering, 

significantly improving interpretability and forensic analysis. 

The addition of heatmaps will make the detection more 

explainable and trustworthy, especially in legal or journalistic 

use cases. 

 

Fig 10: Number Of Prediction Per Class 

• Face Forgery Detection for Identity-Specific Analysis 

While the current deepfake detection model operates on 

frame-wise binary classification, future versions can 

incorporate dedicated facial forgery detection. This includes 

models that not only determine if a video is fake but also 

identify which facial attributes (e.g., mouth movement, eye 

blinking, face swapping) are forged. Leveraging pretrained 

facial recognition embeddings along with forgery localization 

will add a new layer of semantic depth to the detection 

pipeline. 

 

Fig 11: Training and Validation Accuracy 

• Support for Audio Tampering and Metadata Spoofing 

Future iterations of the system will include audio deepfake 

detection modules to identify voice cloning and speech 

manipulation, which are increasingly being used in fraud and 

misinformation campaigns. Additionally, integrating 

metadata validation (e.g., checking EXIF data, encoding 

timestamps, and frame hashes) can help detect tampering at 

the file-level, offering a holistic approach to video 

authenticity analysis. 

• GPU Acceleration for Enhanced Inference Speed 

Currently, the system is optimized for CPU execution to 

maintain lightweight deployment. However, introducing 

GPU acceleration using CUDA and frameworks like 

torch.cuda or TensorFlow-GPU can drastically reduce 

inference time. This will enable the system to process longer 

videos and higher frame rates in real-time, making it suitable 

for integration into surveillance systems, live broadcasting 

platforms, or large-scale forensic applications. 
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Fig12 : Confusion Matrix 

In conclusion, these future enhancements will strengthen the 

system’s effectiveness, extend its application scope, and align 

it with emerging challenges in digital forensics. With 

continued development, this platform can evolve into a 

comprehensive multimedia forgery detection suite, capable of 

supporting law enforcement, media organizations, and 

cybersecurity professionals worldwide. 

 

 

Fig 13: Image Aspect Ratio Distribution 

VIII. CONCLUSION 

In an era where the authenticity of digital content is under 

constant threat, the development of reliable tools for video 

forgery detection is of paramount importance. This paper 

presents a comprehensive AI-powered system designed to 

detect both deepfake and tampered videos using a 

combination of convolutional neural network (CNN) and 

ResNet18-based deep learning models. The system is capable 

of distinguishing between real and manipulated content at 

both the video and frame levels with a high degree of 

accuracy.The dual-model approach enhances the system’s 

flexibility and precision. The CNN model provides an overall 

assessment of whether a video has been synthetically 

generated or altered using deepfake technologies. 

Simultaneously, the ResNet18-based classifier offers frame-

level analysis, identifying specific tampering techniques such 

as cloning, splicing, and inpainting. This combination ensures 

that the system can effectively handle a wide range of video 

manipulation scenarios.The implementation leverages 

Python for model development, Flask as the web framework 

for backend operations, and SQLite for secure and 

lightweight user authentication. Users interact with the 

system through a clean and responsive web interface built 

with HTML, CSS, and Jinja2 templating, which delivers real-

time insights, prediction logs, and video 

previews.Experimental evaluations demonstrate that the 

system achieves promising results, with deepfake detection 

accuracy reaching ~94% and frame-level tampering detection 

achieving ~89%. Additionally, its efficient processing 

pipeline allows real-time analysis of short videos, making it 

suitable for practical deployment in forensics, journalism, 

surveillance, and legal investigations.The platform’s modular 

design and extensible architecture ensure its adaptability for 

future enhancements, including GPU acceleration, support 

for audio tampering, and integration of explainable AI 

features. Overall, this system contributes a valuable tool to 

the growing arsenal of technologies aimed at preserving the 

integrity of digital media and combatting misinformation in 

the age of AI-generated content. 
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