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Abstract: In the digital era, video has emerged as a leading
medium for information sharing. However, the increasing
ease of manipulating video content poses serious challenges
to authenticity, especially in law enforcement, journalism,
and national security. This paper introduces an Al-based
dual-detection system to identify both deepfakes and frame-
level video tampering.The system utilizes two deep learning
models: a CNN for detecting deepfakes and a ResNet18
model for classifying tampered frames, including splicing,
cloning, and inpainting. Video frames are extracted and
analyzed in  real-time, with results presented
visually.Developed using Python and Flask, the platform
includes user authentication via SQLite and a responsive
HTML interface for seamless interaction. Results are
shown with frame-wise logs and video previews.
Experimental results demonstrate high accuracy and
reliability. This tool offers scalable, real-time video integrity
verification with future scope for GPU support and audio
forgery detection.
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1. INTRODUCTION

With the exponential rise of digital media consumption,
videos have become a primary source of communication,
education, and information dissemination. However,
alongside the benefits of digital technology comes a pressing
concern: the increasing prevalence of video manipulation.
Advanced video editing tools and Al-powered face-swapping
technologies have made it alarmingly easy to create fake or
deceptive content. These manipulated videos—ranging from
deepfakes that swap identities to forged footage that alters
facts—pose a significant threat to information integrity.

The implications of such forgeries are far-reaching. In law
enforcement, a single tampered video can mislead
investigations or serve as falsified evidence. In digital
journalism, the spread of manipulated media can damage
reputations, propagate misinformation, and fuel societal

unrest. Similarly, in surveillance and national security, any
undetected video alteration can result in flawed intelligence
and compromised decisions.

Conventional manual or rule-based detection techniques fall
short in identifying subtle and high-quality manipulations.
Therefore, an automated, intelligent solution is essential to
address this growing challenge. To tackle this, our project
proposes a hybrid Al system that performs both deepfake
detection and tampering analysis at the frame level using
state-of-the-art deep learning models.

The system comprises two core components: a Convolutional
Neural Network (CNN) for deepfake detection, and a
ResNet18 model implemented via PyTorch for identifying
various tampering techniques such as splicing, cloning, and
inpainting. These models work independently to provide
accurate and efficient analysis of uploaded video content.
Each frame of the video is processed individually, and
verdicts are drawn based on aggregated results.

The backend of the system is implemented using the Flask
web framework, offering RESTful endpoints and user session
management. To ensure secure access, user registration and
authentication are managed through an integrated SQLite
database. The user interface is designed with HTML, CSS,
and Jinja2 templating, offering a seamless experience for
uploading videos, viewing analysis results, and
understanding tampering timelines.

In summary, this system aims to provide a reliable, scalable,
and user-friendly solution to aid journalists, forensic analysts,
and security agencies in verifying the authenticity of video
content in real time.

I[l. SYSTEM OVERVIEW

The proposed system adopts a modular and layered
architecture that ensures scalability, maintainability, and ease
of deployment. Each component of the system is
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independently designed yet tightly integrated to work in
unison, enabling seamless user interaction and accurate video
analysis. The architecture comprises the following key
modules:

Flask-Based Backend:

The server-side logic is built using the Flask micro web
framework, chosen for its simplicity, flexibility, and
seamless integration with Python-based machine learning
models. Flask handles HTTP routing, form submissions,
session control, and interaction between frontend and
backend components. It provides RESTful endpoints for
processing video uploads and returning inference results.

SQLite Database Integration:
User management is implemented through a lightweight, file-
based SQLite database. It stores essential user credentials
such as names, emails, and hashed passwords. The database
ensures persistent session tracking and secure authentication.
All database operations are managed through Python's built-
in sqlite3 library, with proper connection handling using
Flask's application context (g) to maintain modularity and
prevent memory leaks.

Deep Learning Models for Prediction:
The core functionality of the system is driven by two pre-
trained deep learning models:

CNN_model.h5 (Keras/TensorFlow):
This model is trained to detect deepfake content by analyzing
each frame of a video. It uses a convolutional neural network
(CNN) to classify frames as either "real” or "fake." After all
frames are analyzed, the final verdict is computed by
averaging the model's predictions across the entire video.

tampering_detector_final.pth (PyTorch/ResNet18):
This model is designed for frame-wise tampering detection.
It uses a fine-tuned ResNet18 architecture that classifies
frames into one of several classes: real, cloning, splicing, or
inpainting. Each frame is resized, normalized, and passed
through the model, with predictions logged and time-stamped
for detailed visualization.

HTML/CSS Frontend with Jinja2 Templating:
The frontend interface is constructed using HTML5 and
styled with CSS3, ensuring responsiveness and usability. It
provides pages for user registration, login, video uploading,
and result visualization. Flask's Jinja2 templating engine
dynamically injects data into HTML templates, such as user
session data, prediction logs, and result summaries. Users can
see frame-level predictions, play the uploaded video, and
understand tampering timelines through a scrollable and
color-coded interface.
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Fig : 1 System Architecture

This modular design allows the system to be expanded in the
future, for instance, by adding GPU support, cloud storage for
uploaded videos, or even mobile compatibility. Each
component can be individually improved without affecting
the overall structure, making it ideal for both academic
research and real-world deployment scenarios.

I, FUNCTIONAL REQUIREMENTS

The system is designed to meet a set of well-defined
functional requirements that ensure secure user access,
efficient video processing, and intuitive result visualization.
These requirements are critical to delivering a reliable, user-
friendly, and technically sound solution for real-time video
tampering and deepfake detection.

* User Registration and Login System

The platform provides secure user authentication using a
registration and login system built on Flask and SQL.ite. New
users can register by providing their name, email, and
password, which are stored securely in the local database.
Upon successful login, user sessions are maintained using
Flask’s session management, allowing personalized access to
detection features and stored activity. Authentication
mechanisms prevent unauthorized access and ensure data
privacy.

* Video Upload Interface

A dedicated frontend interface allows users to upload video
files in .mp4 format. The upload form includes file validation
to ensure appropriate file type and size. Once a video is
submitted, it is stored in a designated folder (static/uploads)
on the server, and a confirmation is provided to the user. This
module is designed for ease of use, with buttons and visual
cues that guide the user through the upload process.

* Backend Prediction Logic using Pre-Trained Models

The backend is equipped with two Al models that perform
distinct prediction tasks:
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Deepfake Detection Model (CNN_model.h5) — Processes
each frame from the uploaded video using a CNN. The
model assigns a prediction score, and a final decision ("real"
or "fake") is made by averaging the predictions across all
frames.

Video Tampering Detection Model
(tampering_detector_final.pth) — Utilizes a ResNet18
architecture to analyze frames for tampering types like
cloning, splicing, or inpainting. Frame extraction occurs at
approximately 2 FPS, and each extracted frame is
transformed, classified, and logged with a timestamp.

The prediction pipeline is optimized for sequential execution
and minimal resource consumption, allowing smooth
performance even on machines with limited compute
capability.

* Real-Time Prediction Output and Visualization

After processing the video, the results are displayed in an
interactive user interface. For tampering detection, a
scrollable log shows frame-wise predictions with
corresponding timestamps and labels. Each label is color-
coded for quick visual recognition (e.g., green for real, red
for tampered). For deepfake detection, the system shows the
overall prediction alongside a playable preview of the
uploaded video. The frontend uses Jinja2 templating to
dynamically inject prediction results, making the experience
seamless and real-time.

This functional framework not only facilitates accurate
analysis but also prioritizes user experience, security, and
performance. The modular nature allows these features to be
independently upgraded or replaced as the system evolves.

IV. MODEL IMPLEMENTATION

The core intelligence of the proposed system lies in its two
deep learning models, each responsible for detecting a
specific type of video manipulation. These models are
independently trained and deployed using Keras (TensorFlow
backend) for deepfake detection and PyTorch for frame-wise
tampering detection. This modular design allows for accurate
and flexible deployment across different video analysis
contexts.

4.1 Deepfake Detection (Keras)

The deepfake detection component is implemented using a
custom Convolutional Neural Network (CNN) architecture
developed in Keras. This model is designed to classify
individual video frames as either real or fake based on learned
patterns in pixel-level and facial features.

1.Model Architecture:
The CNN architecture includes multiple layers of Conv2D
operations with ReLU activation functions, followed by
MaxPooling2D for spatial downsampling. The
convolutional layers are followed by one or more fully
connected Dense layers, ending in a sigmoid-activated
output layer for binary classification.

2.Input Processing:
Video files are first decomposed into individual frames using
OpenCV. Each frame is resized to 128x128 pixels and
normalized to fall within the [0,1] range. This preprocessing
ensures consistent input size and format for the CNN model.

3.Prediction Strategy:
The CNN processes each frame individually, producing a
probability score (close to 0 for real and close to 1 for fake).
These predictions are accumulated across all frames in a
video. The final verdict is determined using mean aggregation
— if the average prediction surpasses a defined threshold, the
video is marked as fake; otherwise, it is classified as real.

4.Deployment:

The model is saved as CNN model.h5 and loaded
dynamically within the Flask backend during runtime.
TensorFlow’s load model () APl is used to ensure
compatibility and efficiency.

4.2 Video Tampering Detection (PyTorch)

For detecting frame-level tampering, the system utilizes a
ResNet18 model implemented in PyTorch. This model is
fine-tuned on a dataset containing labeled examples of both
real and tampered video frames.

1.Model Architecture:
ResNet18 is a deep residual learning network with 18 layers,
specifically designed to avoid vanishing gradient problems
through the wuse of residual connections. In this
implementation, the model is initialized  with
pretrained=False to enable training from scratch or
fine-tuning on custom datasets.

2.Fine-Tuning Details:
The final fully connected (FC) layer of ResNet18 is replaced
with a new Linear layer that outputs logits for four classes:
real, splicing, cloning, and inpainting.
The model is trained using a softmax cross-entropy loss
function and optimized using the Adam optimizer for
convergence.

3.Frame Sampling & Processing:
Uploaded videos are processed at an interval of
approximately 2 frames per second (FPS) to balance
inference speed and accuracy. Each frame is resized to
224x224 pixels, normalized using ImageNet standards
(mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225]), and converted to a PyTorch tensor.

4.Inference Pipeline:
During prediction, each frame is passed through the model,
and the resulting class label is assigned. These labels are
logged with their corresponding timestamp, providing a
chronological view of tampering events.

5.Deployment:

The trained model is saved as
tampering detector final.pth, which includes
both the model’s weights and class metadata. It is loaded
using torch.load () in CPU mode, making it compatible
even with non-GPU environments.
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Together, these two models form the analytical backbone of
the system. By combining high-level semantic understanding
(deepfake detection) with low-level spatial tampering
analysis (frame-wise classification), the system offers a
robust solution for comprehensive video forgery detection.

V. IMPLEMENTATION DETAILS

The implementation of the Al-powered video tampering and
deepfake detection system is based on a combination of
powerful Python libraries, deep learning frameworks, and
lightweight backend technologies. The system is engineered
to ensure efficiency, modularity, and ease of deployment
across various environments.

Programming Language: Python

Python 3.x is chosen as the core programming language due
to its extensive support for machine learning, image
processing, and web development libraries. Python provides
seamless integration with deep learning frameworks and
simplifies the deployment of Al models in production
environments.

Frameworks and Libraries

Flask: A lightweight and flexible web framework used to
build the server-side application logic. Flask handles user
authentication, routing, session management, and interaction
between frontend and backend.

TensorFlow/Keras: Used to train, save, and deploy the CNN
model responsible for deepfake detection. Keras simplifies
model construction with its high-level API.

PyTorch: Utilized to fine-tune and deploy the ResNet18
model for frame-wise tampering classification. PyTorch
offers dynamic computational graphs, making it easier to
debug and modify models during experimentation.

Database: SQL.ite

SQLite is used for managing user credentials and session
data. It is a lightweight, file-based relational database that
requires no separate server, making it ideal for local and
small-scale deployments. The database (users.db) stores user
information such as id, name, email, and password.

Tools and Utilities

OpenCV: Handles video reading, frame extraction, and
resizing operations. It allows the system to access video
metadata such as frame rate and frame count.

Torchvision: Used alongside PyTorch for frame
preprocessing, including resizing, normalization, and tensor
conversion.

Pillow (PIL): Facilitates image format conversions and
manipulation. It is used when converting frames from
OpenCV’s BGR format to PIL's RGB format for PyTorch
compatibility.

PyTorch — Frame Prediction for Tampering Detection

This snippet is part of the tampering analysis pipeline. It
converts a video frame into a tensor and feeds it into the
ResNet18 model for classification.

with torch.no_grad():
output = model(img_tensor)
_, pred = torch.max(output, 1)

label = class_names[pred.item()]

torch.no_grad() disables gradient tracking for inference
efficiency.

img_tensor is a preprocessed frame tensor.
model(img_tensor) performs a forward pass.
torch.max() extracts the predicted class index.
class_names maps the index to a human-readable label.
Keras — Deepfake Detection

This snippet demonstrates the deepfake detection process
using a pre-trained CNN model.

python

CopyEdit

frames = extract_frames(video_path)
processed = preprocess_frames(frames)

predictions = deepfake_model.predict(processed)

extract_frames() uses OpenCV to read the video and return
individual frames.

preprocess_frames() resizes and normalizes each frame to
match the model’s input format (128x128).

deepfake_model.predict() returns a prediction score for each
frame.

The mean of these scores is used to classify the video as real
or fake.

VI.  RESULTS AND DISCUSSION

The performance and effectiveness of the Al-powered video
tampering and deepfake detection system were thoroughly
evaluated through experimental testing using various video
inputs and classification metrics. This section provides a deep
analysis of the system’s behavior, accuracy, speed, and
reliability under real-world and synthetic testing conditions.

6.1 Model Accuracy

The two deep learning models were tested on curated and
labeled datasets to evaluate their precision and recall in real-
world scenarios:
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The CNN-based deepfake detection model achieved an
accuracy of approximately 94%, successfully identifying
subtle manipulations in synthetic facial expressions, deep
voice overlays, and frame blending.

The ResNetl8 tampering detection model reached an
accuracy of around 89%, efficiently classifying tampered
frames into categories such as cloning, splicing, inpainting,
or real based on spatial inconsistencies and learned features.

6.2 Performance Evaluation

Frame-Level Logging and Timestamping:
For tampering detection, each frame is analyzed individually,
and the prediction label (real or tampered) is logged along
with its corresponding timestamp. This enables users to
pinpoint the exact moments within a video where tampering
occurs, improving transparency and forensic usability.

User Interface and Interpretability:
The frontend interface plays a significant role in aiding non-
technical users. By using color-coded indicators—qgreen for
real frames and red for tampered frames—the system
improves interpretability and provides a clear, visual
understanding of detection results. A detailed scrollable log
of predictions is also displayed alongside the video.

Speed and Real-Time Responsiveness:
The system is optimized for quick video processing. For an
average 10-second video, the entire detection and prediction
pipeline completes within 20—-30 seconds on a standard CPU —
machine. This real-time analysis capability makes the
solution suitable for practical deployment without requiring
GPU acceleration.
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6.3 Reliability and Generalization

The models exhibit robust performance across various
lighting conditions, facial angles, and compression levels.

Predictions remain consistent across multiple trials,
demonstrating model stability.
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The system is designed to handle both high-resolution and
compressed videos, maintaining accuracy without being
sensitive to input quality.

Overall, the results affirm the system’s practicality and
reliability in real-world scenarios. The combination of high
accuracy, interactive interface, and real-time performance
makes this a compelling tool for digital forensics, journalism,
surveillance, and legal investigations.
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Fig 8 : Image with Height and Width Distribution

VIl.  FUTURE SCOPE

While the current implementation offers a robust and user-
friendly solution for detecting deepfakes and tampered video
frames, there remains significant potential for enhancing the
system’s capabilities. The future scope of this project focuses
on expanding the detection spectrum, improving
performance, and enhancing explainability for end users and
forensic experts.
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Fig 9 : Training Loss Vs Validation Accuracy
¢ Integration of Heatmap Overlays for Tampered Regions

A critical enhancement involves the incorporation of visual
heatmaps that highlight tampered regions within each video
frame. By using techniques such as Grad-CAM (Gradient-
weighted Class Activation Mapping), the system can visually
localize manipulated areas. This will provide users not only
with a label but also with spatial evidence of tampering,
significantly improving interpretability and forensic analysis.
The addition of heatmaps will make the detection more
explainable and trustworthy, especially in legal or journalistic
use cases.
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Fig 10: Number Of Prediction Per Class
* Face Forgery Detection for Identity-Specific Analysis

While the current deepfake detection model operates on
frame-wise binary classification, future versions can
incorporate dedicated facial forgery detection. This includes
models that not only determine if a video is fake but also
identify which facial attributes (e.g., mouth movement, eye
blinking, face swapping) are forged. Leveraging pretrained
facial recognition embeddings along with forgery localization
will add a new layer of semantic depth to the detection
pipeline.

Fig 11: Training and Validation Accuracy
« Support for Audio Tampering and Metadata Spoofing

Future iterations of the system will include audio deepfake
detection modules to identify voice cloning and speech
manipulation, which are increasingly being used in fraud and
misinformation  campaigns.  Additionally, integrating
metadata validation (e.g., checking EXIF data, encoding
timestamps, and frame hashes) can help detect tampering at
the file-level, offering a holistic approach to video
authenticity analysis.

* GPU Acceleration for Enhanced Inference Speed

Currently, the system is optimized for CPU execution to
maintain lightweight deployment. However, introducing
GPU acceleration using CUDA and frameworks like
torch.cuda or TensorFlow-GPU can drastically reduce
inference time. This will enable the system to process longer
videos and higher frame rates in real-time, making it suitable
for integration into surveillance systems, live broadcasting
platforms, or large-scale forensic applications.
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In conclusion, these future enhancements will strengthen the
system’s effectiveness, extend its application scope, and align
it with emerging challenges in digital forensics. With
continued development, this platform can evolve into a
comprehensive multimedia forgery detection suite, capable of
supporting law enforcement, media organizations, and
cybersecurity professionals worldwide.
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VIIl.  CONCLUSION

In an era where the authenticity of digital content is under
constant threat, the development of reliable tools for video
forgery detection is of paramount importance. This paper
presents a comprehensive Al-powered system designed to
detect both deepfake and tampered videos using a
combination of convolutional neural network (CNN) and
ResNet18-based deep learning models. The system is capable
of distinguishing between real and manipulated content at
both the video and frame levels with a high degree of
accuracy.The dual-model approach enhances the system’s
flexibility and precision. The CNN model provides an overall
assessment of whether a video has been synthetically
generated or altered using deepfake technologies.
Simultaneously, the ResNet18-based classifier offers frame-
level analysis, identifying specific tampering techniques such
as cloning, splicing, and inpainting. This combination ensures
that the system can effectively handle a wide range of video

manipulation scenarios.The implementation leverages
Python for model development, Flask as the web framework
for backend operations, and SQLite for secure and
lightweight user authentication. Users interact with the
system through a clean and responsive web interface built
with HTML, CSS, and Jinja2 templating, which delivers real-
time insights, prediction logs, and video
previews.Experimental evaluations demonstrate that the
system achieves promising results, with deepfake detection
accuracy reaching ~94% and frame-level tampering detection
achieving ~89%. Additionally, its efficient processing
pipeline allows real-time analysis of short videos, making it
suitable for practical deployment in forensics, journalism,
surveillance, and legal investigations.The platform’s modular
design and extensible architecture ensure its adaptability for
future enhancements, including GPU acceleration, support
for audio tampering, and integration of explainable Al
features. Overall, this system contributes a valuable tool to
the growing arsenal of technologies aimed at preserving the
integrity of digital media and combatting misinformation in
the age of Al-generated content.
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