Revolutionising Database Management Using MongoDB and Its Comparative Analysis

Tushar Singh Shekhawat1 *, Subhasmita Pradhan2, Prafull Meena3 and Rishabh Pareek4, Akshay Arya5 1,2,3,4 B. Tech Student, Department of AIDS, Arya College of Engineering, Jaipur 5 Asst. Professor, Department of AIDS, Arya College of Engineering, Jaipur

Abstract—The exponential growth of data in modern applications has necessitated a shift from traditional Relational Database Management Systems (RDBMS) to more flexible and scalable solutions. MongoDB, a leading NoSQL documentoriented database, has emerged as a revolutionary tool in database management due to its dynamic schema, high scalability, and efficient handling of unstructured data. This paper reviews MongoDB's transformative impact on database management, focusing on its key features such as sharding and load balancing. A comparative analysis with MySQL, a prominent RDBMS, and other NoSQL databases is conducted, evaluating performance, scalability, and flexibility. Experimental results from prior studies, including insertion and retrieval operations, demonstrate MongoDB's superior performance for large-scale, dynamic datasets. The paper concludes by discussing MongoDB's advantages for modern applications and future research directions in database technologies.

Keywords—RDBMS, NoSQL, MySQL, MongoDB

I. Introduction

The rapid increase in data volume, velocity, and variety has challenged traditional database management systems. MongoDB's key features include: According to IBM, 90% of the world's data was generated in the two years prior to 2013, a trend that has fields, supporting polymorphic data. only accelerated [1]. Relational Database Management • Systems (RDBMS), such as MySQL, excel in handling balance load and enhance scalability. structured data but struggle with the scalability and • flexibility required for unstructured and rapidly evolving redundancy. datasets. This has led to the rise of NoSQL databases, with • MongoDB being a prominent document-oriented solution ument fields. MongoDB's ability to manage large-scale, dynamic data through features like sharding and a flexible schema has III. revolutionized database management. This review paper Several studies have compared MongoDB with MySQL and explores MongoDB's transformative impact, compares its other NoSQL databases. Kumar et al. [3] analyzed MongoDB performance with MySQL and other NoSQL databases, and and MySQL, highlighting MongoDB's superior handling of highlights its advantages in modern applications.

II. Background

Relational Databases

RDBMS, such as MySQL, store data in structured tables with predefined schemas. They support SQL for querying and ensure atomicity, consistency, isolation, and durability (ACID) properties, making them ideal for trans- actional applications. However, their rigid schema and limited horizontal scalability pose challenges for handling large, unstructured datasets [2].

NoSQL Databases

NoSQL databases, meaning "Not Only SQL," address the limitations of RDBMS by offering flexible data models and high scalability. They are categorized into four types:

- Key-Value: Simple hash table-based databases (e.g., Amazon SimpleDB).
- Column-Oriented: Designed for large-scale data across multiple servers (e.g., Cassandra, HBase).
- Graph-Stored: Represent data as nodes and edges (e.g., Neo4j).
- Document-Oriented: Store data as JSON-like documents (e.g., MongoDB, CouchDB).

MongoDB, a document-oriented NoSQL database, pro- vides dynamic schemas and robust querying capabilities, making it suitable for agile development and big data applications [2].

MongoDB Features

Dynamic Schema: Allows documents to have varying

Sharding: Distributes data across multiple servers to

Replication: Ensures high availability through data

Robust Querying: Supports complex queries on doc-

Literature Review

unstructured data due to its flexible schema and autosharding. Their comparison included query syn- tax, execution speed, and integration methods, concluding that MongoDB outperforms MySQL for large datasets.

Györödi et al. [4] conducted a performance comparison using a dynamic application forum. They evaluated in-sertion, selection, deletion, and update operations, finding that MongoDB was faster at higher data loads due to its document-oriented model and customization capabilities.

Aghi et al. [5] compared SQL and MongoDB across various datasets, noting that MySQL is efficient for simple

queries on small datasets, while MongoDB excels in com-D. plex queries on large datasets. Their analysis emphasized MySQL ensures ACID compliance at the transaction level, MongoDB's scalability for big data applications.

(Cassandra, HBase, MongoDB, OrientDB, Redis) using the lacking full transaction atomicity across multiple documents. Yahoo! Cloud Serving Benchmark. They found that This trade-off enhances MongoDB's performance for non-MongoDB and Redis are optimized for read operations, while transactional applications [2]. Cassandra and HBase excel in updates. MongoDB's performance was notable for its balance of read and write efficiency.

goDB and MySQL in a web application with one million addressing the limitations of RDBMS. Its ability to scale records. Their results showed that MongoDB's insertion and horizontally and handle unstructured data makes it ideal retrieval times were significantly lower than MySQL's, for big data and real-time applications. The comparative attributed to sharding and document-level atomicity.

Comparative Analysis

IV.

A. Performance

Patil et al. [2] measured the performance of MongoDB and read and write performance, unlike Redis (optimized for MySQL in a web application with registration and login reads) or Cassandra (optimized for updates) [6]. Its ease pages. For a single record insertion, MongoDB took 0.283 seconds compared to MySQL's higher time (exact value adoption in diverse applications, from e- commerce to IoT. not specified). For login validation, MongoDB re- quired Limitations of MongoDB include its lack of full ACID 1.051 seconds, again outperforming MySQL. When inserting compliance and higher memory usage compared to some multiple records (10 to 50), MongoDB's times ranged from NoSQL databases. Future research could explore hybrid 0.005 to 0.01 seconds, while MySQL's ranged from 0.0511 to models combining MongoDB's scalability with RDBMS 0.0698 seconds (Table I). transactional features.

TABLE I Time Taken for Insertion (MySQL vs. MongoDB) [2]

Test #	No. of Records	MySQL (s)	MongoDB (s)
1	10	0.0511	0.005
2	20	0.0520	0.007
3	30	0.0565	0.01
4	40	0.0598	0.01
5	50	0.0698	0.01

В. Scalability

MongoDB's sharding distributes data across multiple servers. reducing the load on individual servers and enabling horizontal scalability. MySQL, reliant on ver- tical scaling [1] (upgrading server resources), is less efficient for large and datasets. Sharding allows MongoDB to handle increasing data [2] M. M. Patil, A. Hannifi, C. loads by partitioning data into smaller, manageable chunks qualitative analysis of the performance of MongoDB vs MySQL [2].

C. Flexibility

MongoDB's dynamic schema supports evolving data of MosQL(MongoDB) with MySQL database, "IJATER, 2016.

Structures without requiring schema migrations, unlike ative study. MongoDB vs MySQL," Research Gate Conf. Paper, Jun. MySQL's rigid schema. This flexibility is critical for 2015, doi: 10.13140/RG.2.1.1226.7685. applications with rapidly changing requirements, such as agile development environments [4].

Atomicity

suitable for mission-critical applications. MongoDB provides Abramova et al. [6] evaluated five NoSQL databases atomicity at the document level, allowing faster updates but

Discussion

MongoDB's features, particularly sharding and dynamic Patil et al. [2] conducted an experiment comparing Mon-schemas, have revolutionized database management by analysis shows that MongoDB outperforms MySQL in insertion and retrieval operations, especially for large datasets, due to its document-oriented model and load balancing capabilities. However, MySQL remains preferable for applications requiring strict transactional integrity.

Compared to other NoSQL databases, MongoDB bal- ances of use and robust querying capabilities further enhance its

Conclusion

MongoDB has transformed database management by offering a scalable, flexible, and high-performance solution for modern applications. Its sharding, dynamic schema, and document-oriented model enable efficient handling of large, unstructured datasets, outperforming MySQL in insertion and retrieval operations. While MySQL excels in transactional applications, MongoDB's advantages make it a preferred choice for big data and agile development. Future research should focus on enhancing MongoDB's transactional capabilities and optimizing its performance for emerging technologies like IoT and cloud computing.

References

A short history of databases: From RDBMS to NoSQL beyond, https://www.3pillarglobal.com/insights/

M. M. Patil, A. Hannifi, C. Tejeshwar, and P. Patil, "A database based on insertion and retrieval operations using a web/android application to explore load balancing - sharding in MongoDB and its advantages," in Proc. Int. Conf. I-SMAC, 2017, pp. 325-328.

L. Kumar, D. S. Rajawat, and K. Joshi, "Comparative analysis [3]

- [5] R. Aghi, S. Mehta, R. Chauhan, S. Chaudhary, and N. Bohra, "A comprehensive comparison of SQL and MongoDB databases," Int. J. Sci. Res., vol. 5, no. 2, Feb. 2015.
- Int. J. Sci. Res., vol. 5, no. 2, Feb. 2015.

 [6] V. Abramova, J. Bernardino, and P. Furtado, "Which NoSQL database? A performance overview," Open J. Databases, vol. 1, no.2,2014.

