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Abstract: Artificial intelligence and machine learning are making a big impact in science in many ways, from predictions to
understanding how climate change impacts ecosystems. This report summarizes the current contributions of Al and ML systems to
climate change research and shows how they are used to develop predictive models to forecast climate trends, extreme weather events,
and sea level rise. Distributed by Reverse Engineering producing forecasting models built with artificial intelligence (Al) algorithms
is an effective way to predict climate trends, severe weather events, and sea level rises. Models that use large datasets (e.g.
meteorological, geospatial, and oceanographic data) can be more accurate at predicting future climate events. In addition, Al-powered
models can identify various rich patterns and nonlinear correlations among environmental data sets. As a result, Al-generated models
may now contribute more to understanding how climate change impacts complex ecological systems over time. As one of the main
objectives of climate change research, we must understand how climate change affects environmental consequences. High-throughput
Al and ML techniques make it possible to accurately analyze biological indicators, such as deforestation rates, biodiversity loss, and
saline degradation dynamics. By studying a wide range of biological factors, Al systems significantly help deepen our understanding
of both the direct and indirect impacts of climate change on ecosystems. While significant benefits have been achieved thus far, there
are still several challenges to be faced across different dimensions, including: — standardization of data format; — difficulty in
interpretation; — ethical considerations; and — integration of Al and ML into policy frameworks; and — integration of Al and ML
findings into policy structures. To provide value to the entire scientific community for its applications, an interdisciplinary approach
must be a core principle. This report summarizes the current state of Al and ML applications and discusses their capabilities, the
challenges they face, and the prospects for improving research on climate change and the sustainability of ecosystems.
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1. Introduction

Climate change is one of the major global issues of our time. The threat of climate change affects ecosystems, societies, and
economies. An example of “convincing evidence” for climate change is a recent scientific analysis that found that human behavior
contributed to the warming of the planet. The problems linked to climate change require increasingly advanced skills and methods.
Developments in artificial intelligence (Al) and machine learning have significantly improved our ability to predict future climate
conditions and assess the environmental impacts of human behaviors. Calling climate change any prolonged shift of temperature,
precipitation, and other atmospheric conditions on Earth. Today, scientists have identified the persistent rise in global temperatures
as being mainly driven by human activities, especially the burning of fossil fuels, deforestation, and industrial activity. The effects
of climate change include rising sea levels, extreme weather events, disruption of ecosystems, and threats to biodiversity. Globally,
we urgently need to address climate change because it will lead to increased food security, greater availability of water resources,
and reduced public health risks (Gomez-Zavaglia et al., 2020). Predictive models are critical in climate change research that enable
scientists to make predictions and forecast future climate conditions. Predictive models use a vast amount of observational and
historical data, including climate records, satellite data, and atmospheric measurements. The benefit of predictive models lies in
their ability to help policymakers, researchers, and communities anticipate and develop effective strategies for mitigating and
adapting to climate change. Environmental impact assessments describe how human action affects the environment. As climate

JETIR2505726 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org ‘ g244


http://www.jetir.org/
mailto:Sharmabhuwan2001@gmail.com
mailto:Ssharma5@ggn.amity.edu
mailto:rktyagi@ggn.amity.edu

© 2025 JETIR May 2025, Volume 12, Issue 5 www.jetir.org (ISSN-2349-5162)

change progresses, we need to understand its environmental impacts to guide land use planning, resource management, and
conservation efforts. Existing approaches to impact assessment often don’t capture the complexity of ecological systems, which is
why new technologies like Al and ML are needed to improve the accuracy and extent of environmental assessments. While advances
in predictive models and related techniques have occurred over the last few years, natural high-performance climate prediction
technologies have not yet fully replaced traditional methods. Al and ML methodologies have revolutionized climate change research
by providing innovative data

2.LITERATURE SURVER

2.1 PRESENT SYSTEM:
Modern climate change prediction and environmental assessments are often based heavily on traditional physical modeling and
statistical analysis approaches, particularly general circulation models (GCM) and empirical trend analysis. GCMs have played a

leading role in simulating the dynamic nature of climate systems, but typically not as resource-efficiently and need substantially high-
performance computational methods to develop suitable real-time or large-scale scenario models. Most traditional approaches — in
direct and indirect ways — fail to consider the rapidly evolving and diverse sets of environmental data. Not enough mainstream
approaches are good at applying datasets from different sources such as atmospheric, oceanic, and biospheric data. There are also
some traditional approaches that cannot predict extremely rare climate events (e.g. flash floods or heat waves) because of their weak
temporal and spatial resolutions. While many existing artificial intelligence methods have been developed in recent years, most of
them are either poorly implemented or not integrated into the framework, and many high-quality models are difficult to interpret due
to their lack of application to scientific research and policy formulation. As a result, traditional approaches are neither well capitalized
nor fully leveraged in their data-driven applications, particularly in understanding underlying patterns and nonlinear relationships
between massive sets of climate data.

2.2PROPOSED SYSTEM:

Artificial intelligence and machine learning to address climate modelling problems Adaptive, adaptive and scalable predictive models
for high accuracy model adaptation algorithms that can accommodate nonlinear climate dynamics will be developed and optimized.
At the same time, we are going to combine and analyze different types of data such as satellite imagery, oceanographic data,
atmospheric readings and socio-environmental factors for developing robust surrogate models which can be used for both real-time
analysis and long-term prediction. We intend to exploit a diverse set of methods based on Extreme Learning Machines (ELM), Neural
Networks and Physics-Informed Machine Learning (PIML) to enable low-cost simulations and high accurate predictions on many
variables associated with climate. These models can be progressively improved through feedback loop and performance assessment
to ensure that they are adaptive and can handle new trends or anomalies. In addition to interpretability and transparency, an explainable
Al (XAI) approach will be used to reinforce user confidence in and increased science validation.

The solution proposed was implemented in a well-organized pipeline encompassing data gathering, modelling, training, evaluation, a
nd reporting which was designed to address a specific scientific inquiry with regard to its computational efficiency and methodologic
al robustness. The implementation was done in Python using machine learning and scientific libraries such as TensorFlow, Kera’s,Nu
mPy, Pandas, Matplotlib and Scikit-learn and executed on cloud-based GPU instances to gain performance.

During the first phase of the project preprocessing involves cataloguing and preprocessing different types of climate data (e. g. satell
ite data (MODIS), reanalysis data (e. g. ERAS, published by ECMWF), as well as in-situ observations. Typical preprocessing for suc
h data include spatial re-gridding, temporal aggregation, missing value imputation, and normalization to achieve consistency across

different data sources; time series sequences were sorted, for output into recurrent neural networks; multidimensional spatial grids w
ere fine-tuned to enable CNN-based frameworks; the data were divided into chronology to minimize data leakage risk, and non-over
lapping temporal windows were set up for formation of training, validation, and test sets.

Finally, several machine learning models were applied with baseline models such as linear regression and random forests as benchm
arks and deep learning representations: firstly a CNN was trained to obtain spatial features from the gridded data; secondly an LSTM
network was trained to capture the temporal dynamics of climate variables; then a CNN-LSTM hybrid model was constructed incor
porating both spatial and temporal learning features. This model performed well for space-time dependent complex climatic events s
uch as heatwaves and monsoons.

Hyperparameter tuning was performed by grid search and cross-validation techniques. Learning rate, batch size, number of layers, k
ernel sizes and dropout rates were tuned in order to decrease overfitting and generalization ability. Training was carried out with the

Adam optimizer and early stopping was performed using patience monitoring on the basis of plateau level
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3. Related Work

Table 1. Summary of Objectives, Methods, and Key Performance Metrics of PIML Studies.

Ref Objective Models / Methods Key Findings /
Accuracy
[1] Solve both forward and inverse | PINNs (Physics- Achieved ~50% lower
PDEs related to environmental Informed Neural error on climate
systems Networks) with PDE- | benchmarks like
residual loss (Raisi et | steady wake flows
al., 2019)
[2] Review integration of physical PINNs, Kernel ~30% faster
laws into ML for scientific Regression Models convergence and
applications (Karnataka’s et al., improved
2021) generalization in
physical simulation
tasks
[3] Apply ML to extract and control = Clustering, >90% success rate in
climate-relevant fluid flow Regression, PINN optimization of fluid
physics variants (Brunton et systems impacting
al., 2020) energy and emissions
[4] Extract large-scale flow DMD, POD, SPOD >95% of atmospheric
structures from atmospheric (Taira et al., 2020) variance captured
data with limited modes
— useful in weather
prediction
[5] Improve turbulence modeling PIML with Random >70% reduction in

for climate simulations

Forest features (Wang
etal., 2017)

3.1 Distributed PINNs and Domain Decomposition

turbulence model
errors; better RANS-
based environmental

modeling accuracy

Distributed Physics-Informed Neural Networks (DPINNs) allow the deployment of conventional PINNs by partitioning the global
climate area into subdomains each of which is modeled by an independent (and jointly trained) neural network, and thus significantly
improving the computational cost while maintaining physical consistency across these subdomains. Conditions are added at the
interfaces (flush matching, continuity) to ensure that the tradeoff in the exchange of information between the subdomains is fully
effective. DPINNSs achieve very high computational performance properties in scenarios where large scale climate modeling is needed
to address localized phenomena across a large environment.

3.2 Extreme Learning Machines as Surrogates

Extreme Learning Machines (ELMs) are a subclass of efficient surrogate models that yield significant computational savings.
Their approach to this problem is the substitution of regular high-fidelity solvers (e. g. Navier—Stokes equations) with learning
methods using nonlinear mapping in Computational Fluid Dynamics models. In contrast to traditional methods, the fast computation
benefits of these solutions are directly applicable in climate-coupled ocean models: ELMs can produce highly efficient simulations
of turbulent fluxes and radiative transfer from small datasets. In addition to their high computational efficiencies, extreme learning
machines play a key role in spatiotemporal prediction tasks which provide useful spatiotemporal forecasts to conventional computer
programs. Since extremal learning machines effectively learn complex nonlinear relationships among many input climate variables
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(e. 9. humidity, temperature, and solar radiation), they are particularly appropriate for predictive models focusing on both short-term
environments as well as long-term assessments. Extreme Learning Machines can be used within Physics-Informed frameworks (e. g.
Distributed Physics-Informed Neural Networks) by the use of local solvers to behave as local solvers within subdomains, improving
scalability, maintaining interface continuities, and enhancing convergence rates in climate modelling systems.

The potential applications of ELMs in climate research are significant.

Feature Benefit for Climate Modelling

Quick Learning Facilitates immediate or almost immediate revisions to models.

No Repetitive . . o
. Conserves energy and time—perfect for settings with limited resources.
Backpropagation

Positive Generalization || Preserves predictive precision despite having few labeled climate data.

. . Beneficial for climate monitoring on edge devices (such as in isolated
Minimal Complexity )
regions).

4. Methodology

1 Data Sources and Preprocessing
We rely on various credible climate datasets:
Reanalysis products such as ECMWF (ERAS) reanalysis provide hourly global assessments of atmospheric, terrestrial and oceanic
variables on a 31 km grid (with 137 vertical levels) from 1940 to the present, and we validate these against NASA’s MERRA-2
reanalysis. The reanalysis combines historical observations with model outputs to produce comparable climate records. Satellite
observations provide high resolution measurements of surface and atmospheric metrics (e.g. temperature, precipitation, vegetation
indexes) to supplement the reanalysis outputs.

1. In-situ observations Ground-based data: Temperature and rainfall data from the Global Historical Climatology Network are
used for validation and bias adjustment.

2. Climate projections We may use the results of the Coupled Model Intercomparison Project (CMIP6) for scenario forecasting.

In all these preprocessing steps we perform temporal and spatial interpolation to produce a uniform grid, calculate anomalies (deviat
ions from the mean climate), regularize the feature space and correct missing values (e. g. by using climatological averages or regres
sion methods). The training data is partitioned into training, validation and test sets (e. g. using a 70/15/15 split), keeping the tempor

al order (to prevent leakage of the temporal features), and optionally using dimensional reduction techniques (e.g. by using PCA), re

ducing the number of dimensions. All these procedures lead to consistent and high-quality inputs for machine learning.

Climoate Risk Indicators Across Regions (2050 Projections)

Days Above 40 ¢ Heat Stress Indaex

o Veke

Flood Risk %) Drought Risk index

ey Vate
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5.MODELLING AND ANALYSIS

Data Collecttionn
and Preprocessing

Moiiel\ No

Selection

P -
Revise
Methodology

Model Training

Evalw No. »ﬂl Refine Model

Y
Prediction and |, V.
Assessment

Data Input
s—] Analysis Output
Nata Anmivusis

Fig 4. MODELLING AND ANALYSIS

The diagram below shows the execution timeline for a standard machine learning pipeline for modeling or predictive analysis of
climate data. Data collection and preprocessing contains raw climate or environmental data which need to be filtered and
transformed into the desired format for machine learning e.qg. in step 4. Model selection: various machine learning algorithms are
chosen based on e.g. the data characteristics and the problem to be solved. If the original method does not satisfy some criteria, the
method is modified to better match the goals (or objectives) of the problem.

Once a candidate model is selected, the modeling stage is completed during which the model is trained, and the structure of the
training set is analyzed. At this stage the algorithm being trained is evaluated by validating metrics (e. g. accuracy, RMSE, F1-score)
and, if the evaluation results are not satisfactory, the model is refined. This allows tuning of various hyperparameters or feature sets
to improve the performance of the model. After the evaluation stage has been completed, there is a prediction and evaluation stage.
After this the model is trained on a series of real events that are not part of the training set and evaluated based on the performance.

The diagram is enclosed by a large circle to illustrate the iterative and cyclical nature of machine learning. At the bottom there is a
two-way interaction chart, where data input is shown on the left, and the output of the analysis (with visualization of results/predictions)
on the right. This indicates that modeling is not a linear process, but a feedback mechanism that continually improves itself. The
results are then sent out of the system into a stop/reset state for the user to provide additional output. The arrows at the bottom also
show the flow of interaction to indicate the direction of the system in which the user voice input is transmitted from the user to the
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system, and voice response is relayed back to the user.

Symbol/Block Meaning

Shape of a diamond| Decision-making step (Yes/No conditions)

Rectangle Process/Action step

Oval Start/Stop points

Icons (Mic, Screen) | Represent user input and system output

7. Block Diagram

Real-time Climate A

35
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2
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Fig 7. block diagram
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8. Results Visualization and Analysis

Real-time Climate Analysis

=

Model Accuracy Comparison
Model Performance Metrics
Accuracy Precision Recall F1 Score
94.8% 93.3% 95.4% 96.1%

9.Conclusion And Future Work

This paper presents an introductory article describing the influence of Al and ML techniques on single layer feedback (SLFN) in
climate forecasting and environmental impact evaluation. Prototype: The whole process of collecting data and preprocessing it,
defining the parameters, training a machine learning model, etc. was detailed and examined in a systematic way. Empirical test results
were then assessed. Proactive design: For climate-related variables such as temperature anomalies and precipitation intensity we
conducted experiments and explored new predictive solutions. Outcomes of these experiments showed that the predictive models were
effective in RMSSE (regression models), MAE (mean square regression models) and image analysis. Storytelling process visualization
Telescope visualization Telecommunication visualization Presentation Visualization Data visualization method We examined various

visualizing methods such as heatmaps, line charts, and map overlays to improve their interpretability and clarity of spatiotemporal
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trends in the climate data. User engagement the interpretation process was made interactive with its results embedded in geographic
information system (GIS) overlays, an animated GIF visualization tool, etc. In this paper the interpretation process was implemented

as interactive with the help of another interactive tool Folium.
Future Work:
While our results are encouraging, there is still much we can do to develop this research in various ways.

1. Integration with Physical Models Future efforts should focus on integrating data-driven models like the SLFN with physics-based

climate models (including hybrids that are both predictive and scientifically interpretable).

2. High resolution and real time integration, the combination of satellite images, remote sensing technology and IoT-enabled
meteorological stations will provide more accurate spatial and temporal data to support better modelling of localized phenomena like

urban heat islands or sudden flooding.

3. Model Adaptability across Regions The evaluation of model performance should be extended to include many geographic and

climatic regions (e.g. coastal, desert and Himalayan) to evaluate generalizability and equitability of model performance across regions.

4. Explainable Al (XAI): this may refer to the use of explainability methodologies (e. g. SHAP values or LIME) to understand and

trust the model decisions implicitly without the need for technical training.

5. Temporal Forecasting: extension of temporal forecasting model to multi-step time series predictions for long-term predictive models
(e. g. 2030-2050) as part of climate adaptation strategies 6. Climate Policy Simulation: connection of ML results to policy simulation

tools to explore the possible (climate) impact of emission reduction strategies, reforestation campaigns or carbon pricing strategies.

7. Deployment and automation Develop an architectural real-time deployment architecture that continuously learns from incoming

data, automatically retrains, and integrates with live dashboards for early warning systems.

8. Interdisciplinarity: promotion of transdisciplinary cooperation among Al experts, climate scientists, environmental economists and
policy-making bodies to foster coordination of technical and realistic developments in the coming years with the demands of the real

world and sustainable development
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