

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

INTERVIEW **SENSEI:** PREPARATION WEBSITE

INTERVIEW

Akshat Jaiswal, Dr. Sadhna Rana & Dr. Anuj Singh Department of Computer Science Engineering Shri Ramswaroop Memorial College of Engineering & Management, Lucknow

Abstract:

In the highly competitive landscape of technical job seeking, effective interview preparation is crucial yet often challenging due to the lack of realistic simulation and integrated feedback on diverse skills. Traditional

methods primarily focus on technical aspects, neglecting critical communication and behavioral elements. This research presents "Interview Sensei" an innovative web application designed to provide a comprehensive,

AI-powered platform for technical interview preparation. Leveraging the advanced capabilities of the Google Gemini API, the system simulates real-world interview scenarios, offering real-time feedback on technical responses, communication clarity, and potentially non-verbal cues. The methodology involves a robust web application architecture built with Next.js, Node.js/Express.js, and Postgresql, with the Gemini API serving as the core AI engine for analyzing user input and generating insightful feedback. Key aspects of the system design, including user authentication, interview simulation modules, and the AI feedback loop, are discussed.

By integrating sophisticated AI analysis into a user-friendly platform, Interview Sensei aims to enhance candidate readiness, boost confidence, and provide a holistic approach to mastering technical interviews. The paper also discusses potential challenges and future enhancements in AI-powered educational tools. Empirical application demonstrates the potential of utilizing powerful pre-trained AI models like Gemini for creating effective and scalable tools in the domain of professional development.

Keywords: Interview Preparation, AI, Google Gemini API, Natural Language Processing, Computer Vision, Web Application, Next.js, Node.js, Machine Learning, Technical Skills, Communication Skills, Behavioral Skills, User Engagement, AI Feedback.

INTRODUCTION

The modern tech job market is marked by a more challenging and competitive work environment. Future programmers and technical experts must endure rigorous interview procedures that review not just their technical skills but also their problemsolving skills, communication skills, and behavioral traits. Although several resources are available for practicing coding questions, much falls short in offering harmonized, realistic, and full preparation that covers all aspects of a technical interview. Conventional approaches like

reading about theoretical topics or coding alone can't capture the pressure of a live interview and the dynamic interaction that takes place during one. Tooling with tools that provide customized, real-time feedback on multiple dimensions of skills becomes an imperative for effective preparation.

This paper introduces "Interview Sensei," an online platform to close the current technical interview practice gaps with an AIbased solution. Unlike typical materials that are mostly technical question-focused or static content-based, Interview Sensei utilizes the advanced capabilities of the Google Gemini API to provide

real-time, dynamic feedback on technical, communicative, and behavioral dimensions. The project aims to build an immersive simulation platform allowing candidates to practice several rounds of interviews while gaining practical knowledge enabled by advanced artificial intelligence.

The relevance of this research lies in its ability to revolutionize the ways in which candidates prepare for technical interviews. By providing personalized feedback through sophisticated AI analysis, Interview Sensei enables users to identify areas of improvement, refine their responses, and enhance their presentation skills in general. Such improvement not only increases their chances of getting desired jobs but also enables continuous

professional development. Utilization of a general-purpose powerful AI, like the Gemini API, is a new solution to building intelligent learning tools, enabling scalability and access to sophisticated AI functionality without deep custom model training for every task. This work explores the real-world application and benefits of such an approach in the domain of interview preparation.

Α.

PROBLEM STATEMENT

Preparation for technical interviews is inherently fragmented and complex in nature. Prospective candidates typically rely on a set of resources, like coding practice websites, data structures and algorithms textbooks, and behavioral question guides. These typically don't have a common platform that simulates the entire interview process. This kind of fragmentation leads to inefficiencies and a lack of aggregated feedback necessary for effective skill development.

The main matter investigated in this research concerns the lack of a comprehensive, integral, and realistically simulated environment for mock preparation of technical interviews that offers direct and realistic feedback on all competency areas needed. Existing platforms fall short in many of the key areas:

- 1. **Narrow Emphasis**: Most tools emphasize technical coding issues and overlook important elements such as clarity of communication, articulation of cognitive processes, and proper behavioral responses, all of which are crucial to establishing technical knowledge and cultural fit.
- 2. **Lack of Realism**: There is little likelihood that classic practice methods will replicate pressure, interactive dynamics, and spontaneity in a live interview, thus constraining candidates to perform optimally in actual circumstances.
- 3. **Insufficient Feedback**: The feedback typically consists of only code correctness measurements or static analysis, failing to introduce intensive, real-time feedback that is necessary to improve verbal communication, body language, and technical explanation delivery in an engaging and clear manner.
- 4. **Problems of Integration**: Integration of practice of technical, communication, and behavioral skills from multiple sources is not effective and fails to provide the overall picture of assessment that occurs in real interviews where the three dimensions are compared simultaneously.

The aim of this study is to close such gaps by developing Interview Sensei, a website providing an integrated, AI-based solution. Drawing upon the Google Gemini API, this project addresses in particular the challenge of offering sophisticated, real-time feedback on all avenues of interview performance in an integrated, simulated environment, thus offering an improved, more comprehensive preparation tool.

В.

METHODOLOGY

The methodology employed in developing Interview Sensei involves a multi-faceted approach encompassing system architecture design, frontend and backend development, database management, and the crucial integration of the Google Gemini API for AI-powered analysis and feedback generation. The system is designed with distinct components to ensure scalability and maintainability.

The system architecture is designed as a web application with a clear separation of concerns:

- 1. **Frontend:** Developed using Next.js, the frontend provides the user interface, simulates interview scenarios (including presenting questions, providing coding environments, and capturing audio/video input), and displays feedback. React's component-based architecture facilitates the creation of interactive and dynamic elements necessary for a realistic simulation, with a focus on a user-friendly and responsive design.
- 2. **Backend:** Built with Node.js and the Express.js framework, the backend handles user authentication (using Clerk), manages API requests, processes user inputs (sending data to the Gemini API), receives and processes responses from the Gemini API, and interacts with the database. Node.js's asynchronous nature is well-suited for handling real-time interactions and API calls efficiently. This backend can be conceptualized with services for user management, AI processing, and data processing.
- 3. **Database:** PostgreSQL is utilized as the relational database for storing user profiles, interview session data, performance metrics, and feedback history. PostgreSQL's robust features, support for structured data, and efficient querying capabilities support the dynamic nature of the application and the need for reliable data storage and retrieval for performance tracking and analytics.
- 4. **AI Integration (Google Gemini API):** This is the core of the AI functionality. The backend communicates with the Google Gemini API to perform various analytical tasks:
- Speech-to-Text: Transcribing user's spoken responses during behavioral or technical explanation sections.
- Natural Language Processing: Analyzing the transcribed text for content accuracy, clarity, structure, fluency, and potentially identifying key concepts or areas of vagueness. This is powered by Gemini's understanding of language and context, providing a deeper analysis than simpler NLP models.
- **Automated Response Evaluation:** Based on the analysis from the Gemini API and predefined criteria related to the interview questions, the system generates automated feedback on the quality and effectiveness of the user's responses. This evaluation aims to be nuanced and constructive.
- o **(Future/Exploratory) Computer Vision:** While the primary current focus is on Gemini's text/voice capabilities, the architecture is designed to potentially incorporate visual analysis (e.g., posture, eye contact) in the future, potentially also leveraging multimodal aspects of the Gemini API or other vision models, as explored in the future scope of AI diagnostics and interview preparation tools.

The development process followed an iterative approach, refining features and improving the accuracy of the AI-powered feedback based on testing and evaluation. The emphasis was placed on creating a seamless user experience that mimics a real interview while providing insightful and constructive feedback powered by the

Gemini API. The workflow can be visualized with steps for user authentication, accessing the dashboard/tools, engaging in simulations, processing data via the AI API, and receiving/viewing feedback.

SCOPE OF THE PROJECT

The Interview Sensei project is intended to provide an end-to-end and AI-driven platform focused on technical interview preparation. The main subject matters covered under the umbrella of the project are:

- Simulation of Technical Interview Rounds: Developing realistic simulations of different technical interview formats, such as coding problems, system design interviews, and technical Q&A, to enable users to practice explaining their problemsolving process.
- Simulation of Behavioral and Communication Interviews: Creating environments to practice answering behavioral questions and explaining technical terms in plain language, with a focus on clarity of communication and organization.
- Real-Time AI-Based Feedback: Having systems to accept user input (voice, text, code) and process it through the Google Gemini API to generate real-time, actionable feedback on performance, such as content, clarity, and potential fluency.
- Feedback Analysis: Utilizing the natural language comprehension and assessment abilities of the Gemini API to analyze the content, organization, coherency, and impact of the user response, thus providing useful insights for enhancement.
- Performance Monitoring: Storing user performance history and feedback history in the database (PostgreSQL) so users can track their progress over time, visualize improvement, and know what they should practice more.
- User Authentication and Control: Ensuring safe user registration, login, and profile management, preserving data privacy and personalized experiences.
- 7. **User Interface**: Developing an adaptive and friendly user interface that is available on various devices, allowing for a smooth experience in navigating through the platform and running simulations.

The project makes use of the Google Gemini API specifically as the basis for artificial intelligence analysis, demonstrating its capability in the processing and understanding of human language in a bid to provide relevant feedback. While the overall goal might span broader AI uses like computer vision for the interpretation of body language, the current core implementation focuses on applying Gemini for the analysis and evaluation of textual and verbal replies.

RELATED WORK

The market for interview preparation tools has expanded significantly, particularly with increasing integration of technological elements. Sites now may be broadly categorized by focus and technology employed.

Sites such as HackerRank and LeetCode are also widely known for their large sets of coding problems and technical problems. These types of sites set up spaces where users can practice their coding and frequently

provide automated feedback on code correctness and execution. Likewise, sites such as Coderbyte and Edabit concentrate on interactive coding exercises. Although they are essential for technical skill development, these sites don't usually have features for practicing the communication or behavioral parts of interviews.

Other materials, such as interview guides and reading (e.g., "Cracking the Coding Interview"), provide theoretical material and practice questions relevant to technical and behavioral interviews but do not have a dynamic or interactive practice environment.

Peer-to-peer mock interview platforms (such as Pramp) or mock interview platforms with trained interviewers (such as Interviewing, io) provide realistic simulation and tailored feedback. They are extremely effective but are constrained by availability and price.

As more AI technology is released, certain platforms have started incorporating machine learning for automated feedback. Initial methods may use rule-based systems or light ML models for basic analysis. More sophisticated systems have experimented with Natural Language Processing (NLP) to analyze text-based feedback or Computer Vision to detect basic nonverbal cues. For example, some studies have looked at using NLP to analyze sentiment in interview responses or training models for certain tasks like code quality evaluation.

Interview Sensei builds on this model by intentionally supplementing a robust, general AI model like the Google Gemini API. This is the reverse of building numerous small, task-specific models. With Gemini, Interview Sensei attempts to provide more informative and detailed feedback on different aspects of the interview process, like the subtleties of communication and language, that a large, pre-trained model can

manage. This focus on leveraging the advanced understanding and generation capabilities of Gemini to provide more humanlike and insightful responses positions Interview Sensei as a platform that seeks to balance the realism of simulated interviews with the scalability and accessibility that comes with an automated web-based solution, fueled by cutting-edge AI technology.

AI INTEGRATION USING GOOGLE GEMINI API

The core intelligence of the Interview Sensei platform is complemented by incorporating the Google Gemini API. Unlike platforms that require the creation of individual machine learning models for every function (e.g., individual models for speechto-text processing, natural language processing analysis, and response feedback), Interview Sensei takes advantage of the Gemini API's deep capabilities in executing these operations. By doing so, the platform can take advantage of Google's leading research in artificial intelligence and large language

models to provide complex analysis and feedback without extensive development and training of internal models for every discrete AI capability.

The Gemini API is used in the backend for the purpose of facilitating the processing of user data that is received via interview simulations. The most common types of API integration are:

- Speech-to-Text Translation: For interview components with voice responses (e.g., behavioral questions, describing a technical term), the user's voice input is forwarded to the Gemini API for precise transcription to text. This enables the system to subsequently examine the content of the voice response, transcending possible speech and accent differences.
- Natural Language Understanding and Analysis: The transcript (or direct text input for written responses) is analyzed by the Gemini API. Gemini's powerful NLP is applied to:
- Review the material for relevance, correctness, and fullness to the question presented, and identify primary themes and concepts.
- Evaluate the organization and coherence of the response, checking for the logical arrangement and structure. b.
- Evaluate the used language's clarity and concision, determining its sections characterized by vagueness or overelaboration.
- d. Potentially deduce sentiment or confidence levels from language clues, giving insight into the user's presentation.
- Automated Response Quality Analysis and Feedback Creation: Gemini API, by virtue of its analysis functionality, allows response quality analysis based on pre-established criteria relevant for each interview question. In addition, the API facilitates the creation of constructive and integrated feedback highlighting prominent strengths and also

suggesting specific areas of improvement in terms of content, delivery, and communication style. This feedback is made actionable as well as personalized in order to help the user achieve better responses.

(Future) Multimodal Analysis: The multimodal nature of the Gemini API opens up the possibility of future 4. development, such as analyzing video input as well as audio and text to provide feedback on non-verbal cues (e.g., body orientation, direction of gaze), thus enhancing realism and completeness of the feedback provided.

Interview Sensei uses the Gemini API to access an integrated and powerful AI model capable of handling a range of analytical activities, ranging from human communication and technical discourse. Integrating the models makes the process of development easier so that the platform is able to provide full, quality feedback without the hassle of handling multiple discrete machine learning models. Sensitivity and precision of the feedback entirely rely on the capabilities of the underlying Gemini model, with attention required to design the prompts and inspect the API output.

COMPARATIVE VIEW OF THE AI APPROACH

FEATURE	With Sandy and Statements and	TRADITIONAL TASK SPECIFIC ML MODEL APPROACH
Development Complexity	pre-trained, powerful models, reducing the need for extensive data collection and	Requires significant effort in data collection, preprocessing, model selection, training, and fine-tuning for each task, leading to higher development overhead.
AI Capabilities	with broad understanding and generative abilities, capable of handling complex and	Capabilities limited to the specific task each model was trained for; integrating multiple models adds complexity and potential compatibility issues.
Feedback Quality	context-aware, and integrated feedback	Feedback quality depends heavily on the performance and integration of individual models; may be less holistic and more

	and detailed suggestions.	focused on isolated aspects.
Scalability	(Google); usage-based pricing allows for	Requires managing and scaling individual model deployments, which can be complex and resource-intensive.
Flexibility	1 1	Requires retraining or developing new models for new tasks or significant changes, which can be time-consuming and costly.
Control & Transparency	understanding why certain feedback is	Full control over model architecture, training data, and parameters; greater transparency in model decision-making processes.
Resource Requirements	computational power needed for model inference, reducing infrastructure costs.	Requires significant computational resources for model training and potentially for inference depending on deployment, impacting hardware requirements.
Maintenance		Requires ongoing maintenance, retraining, and updates for each individual model.

By opting for the Google Gemini API, Interview Sensei prioritizes leveraging cutting-edge, integrated AI capabilities with reduced development overhead compared to building and managing numerous custom ML models. This allows the project to focus on creating a seamless user experience and effectively utilizing the powerful analytical and generative features of Gemini to provide high-quality, comprehensive feedback, which is a key differentiator for the platform.

CHALLENGES AND CONSIDERATION

Creating an AI-driven platform such as Interview Sensei, although extremely helpful, is beset with many challenges and necessitates meticulous deliberation typical to the construction of AI-driven entities.

- Accuracy and Reliability of AI Feedback: The reliability and accuracy of feedback from Interview Sensei depend on the performance of the Google Gemini API. The API must accurately transcribe speech, identify subtle phrasing differences, and provide useful and helpful feedback for different interview scenarios. This requires thorough testing and perhaps calibration of the prompts used to interact with the API.
- **User Acceptance and Trust**: Users must believe in the answers of the AI so that they can use Interview Sensei appropriately. User trust of AI systems, particularly those of a "black-box" type, needs to be established. Transparency of the way the feedback is produced and evidence of the efficacy of the platform are most important to establish trust.
- 3. Data Privacy and Security: User information, such as potentially sensitive video and audio records of practice interviews, requires to be treated under rigorous data security and privacy protocols. Itrequires strong encryption, secure storage, and adherence to applicable data protection laws to guard user data.

- 4. **API Usage is Costly**: Employing a robust commercial API like Google Gemini is not free, typically usage-based. Finding a balance between such costs and providing a service of value to the users is a business and technical challenge that needs to be addressed for platform sustainability.
- 5. **Technical Requirements and Accessibility**: The site would require stable internet connectivity and possibly advanced hardware (webcam, microphone) in order to function. Accessibility on different technical resources and internet connections is an important consideration.
- 6. **Handling Ambiguity and Subjectivity**: Interview answers, particularly behavioral ones, are subjective and subject to more than one interpretation. Assisting the AI in handling ambiguity and providing feedback perceived as fair and helpful to a wide range of answers proves to be a difficult task.

Addressing Interview Sensei's limitations through deliberate design, strong implementation, continuous testing, and user feedback is crucial to effective adoption and implementation of Interview Sensei as a useful interview preparation tool.

DIAGRAMS

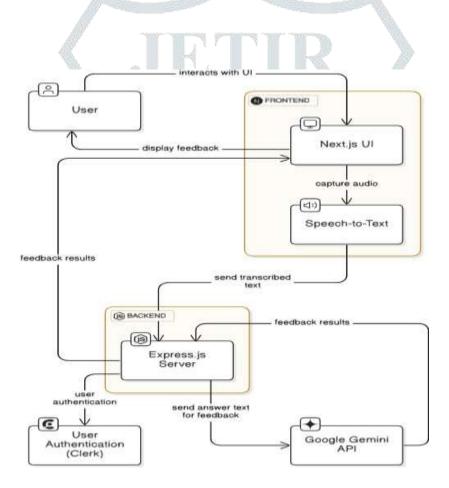


Figure 1. Workflow of Interview Sensei

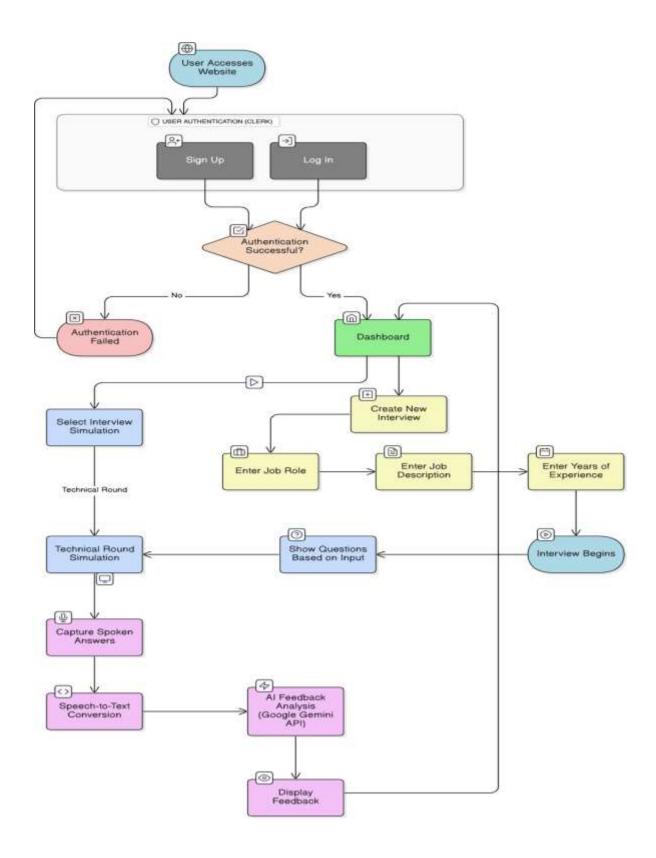


Figure 2. Flowchart of interview Sensei

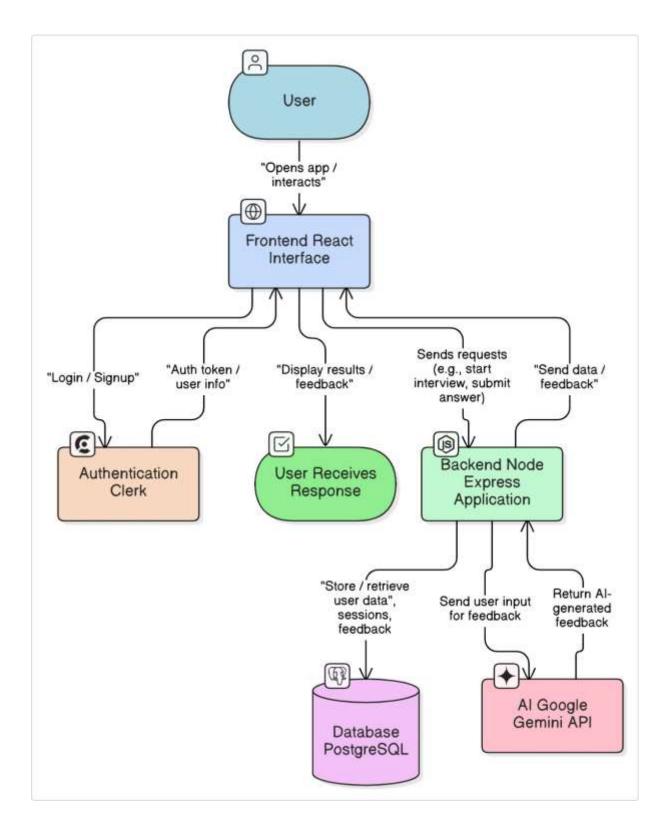


Figure 2. System Architecture of interview Sensei

CONCLUSION

Existing methods of preparing for technical interviews, which are disconnected and unrepresentative and don't provide detailed feedback, are the biggest hindrance for individuals who wish to advance their careers. The

"Interview Sensei" project addresses this problem by providing a better web application that uses artificial intelligence to provide a complete and realistic interview preparation experience.

Through the use of a robust system architecture that uses Next.js for the front-end, Node.js/Express.js to handle server-side functions, and PostgreSQL to store data, Interview Sensei creates an interactive simulation platform. The foundation of its abilities is the strategic incorporation of the Google Gemini API. With the use of the sophisticated features of Gemini for speech-to-text translation, natural language processing, and measuring automated response, the platform offers live, high-fidelity feedback on the technical, communicative, and behavioral aspects of a candidate's performance.

This study proves the feasibility and advantage of using a robust, general-purpose AI API such as Gemini in building advanced learning tools. The method streamlines the development process by using a single, highly versatile AI model, so the project can concentrate on user experience and the proper presentation of perceptive feedback. Interview Sensei not only complements conventional preparation techniques but also offers an economical and scalable option for interviewees to improve their interview preparedness and self-assurance.

Looking ahead, the potential for the expansion of Interview Sensei seems enormous. Possible future developments can be:

- 1. **Increased AI Integration**: Leveraging the multimodal capabilities of the Gemini API or integrating other dedicated AI platforms for even more advanced analyses, such as detailed feedback on non-verbal signals via computer vision methods.
- 2. **Diversification of Interview Types**: Adding simulations for more types of interviews, such as machine coding tests, pair programming tests, and possibly interviews for non-technical roles as well, thus increasing the platform's applicability.
- 3. **Personalized Learning Paths**: Developing AI-driven features that track users' performance over time and recommend custom practice approaches and materials.
- 4. **Multilingual Support**: Integrating support for multilingual interviews through the use of Gemini's language processing feature to support a global user base.
- 5. **Integration with Industry Tools**: Making connections with coding tools or applicant tracking systems, with user authorization, to provide contextually responsive practice stimuli and to increase the effectiveness of the job application process.
- 6. **Addressing Ethical and Trust-Based Issues**: Every step to enhance the accuracy and legibility of the AI-driven feedback is required if user trust is to be established and ethical usage of the platform guaranteed.

In brief, Interview Sensei is a major breakthrough in the field of AI-based professional development tools. By leveraging the Google Gemini API capabilities, it provides a holistic, actual, and informative platform that equips candidates to thrive in the challenging realm of tech interviews. This breakthrough marks the beginning of a new age of data-driven and AI-facilitated preparation, while at the same time recognizing and intending to overcome the intrinsic difficulties associated with the design and deployment of such tools.

REFERENCES

- 1. Harsh Koshti, Prathamesh Gosavi, Roshan Pagar, Prathamesh Khairnar and Sopan Talekar (2025). <u>AI-Powered Interview Preparation System: Integrating Resume Analysis, HR Simulation, and Technical Skill Assessment</u>, *ResearchGate*.
- 2. Mr.Madanachitran R, Austin A, Balaji K, Rajappan M (2025) AI Mock Interview Chatbot Using Gen AI, 13(2).
- 3. (2025). AI Powered Mock Interview Platform. *IJIRMPS*.
- 4. (2024). AI-Powered Mock Interview Coach. *ijrpr*.
- 5. (2022). Automated Analysis and Behavioural Prediction of Interview Performance using Computer Vision | Request PDF

, ResearchGate.

- Olasehinde, T. (2024). (PDF) AI-Powered Feedback Systems in Distance Learning for Skill Enhancement Tolamise 6. Olasehinde, ResearchGate.
- (2024). (PDF) Natural Language Processing (NLP) in AI-Driven Recruitment Systems, 7. ResearchGate.
- 8. Google Gemini API Documentation Gemini API | Google AI for Developers

