© 2025 JETIR May 2025, Volume 12, Issue 5 www.jetir.org (ISSN-2349-5162)

NS iRel{el ISSN: 2349-5162 | ESTD Year : 2014 | Monthl

jerik)y JOURNAL OF EMERGING TECHNOLOGIES AND

4} INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

AUTOMATED PULL REQUEST
SUMMARIZER:
LEVERAGING Al AND LANGCHAIN FOR
EFFICIENT CODE REVIEWS

Yash Naik

Student
Dept. of Electronics and Communication Engineering
R V College of Engineering, Bengaluru, India

Abstract : In modern collaborative software development, re-viewing pull requests (PRs) is critical yet often time-consuming,
particularly in large teams and complex projects. To streamline this process, we developed an automated PR summarizer bot
utilizing advanced Al techniques facilitated by LangChain and LangGraph frameworks. The bot leverages webhook-based triggers
via GitHub, hosting via Ngrok, an intuitive Ul powered by Streamlit, and efficient task management through Redis caching and
Celery within a Poetry-managed Python environment. Our solution generates concise, actionable summaries of PRs directly in
GitHub and in an interactive Ul, significantly reducing review times and enhancing reviewer productivity. Experimental deployment
results show a notable improvement in review efficiency , reducing average PR review time by over 50% .

IndexTerms - Pull Requests, Al Summarization, LangChain, LangGraph, Streamlit, Webhooks, Celery, Redis .

l. INTRODUCTION

Pull requests (PRs) are fundamental to collaborative software development, enabling structured peer reviews. However, extensive
codebases and frequent updates introduce significant overhead in manual reviews, potentially delaying software delivery cycles.
Automating the summarization of PRs addresses this issue by providing reviewers with immediate insights into proposed changes.
Our proposed PR summarizer bot integrates state-of-the-art Al frameworks—LangChain and LangGraph—to analyze and
succinctly summarize PRs. The bot leverages webhook-driven automation via GitHub, secure network tunnels using Ngrok, and an
interactive web-based Ul developed with Streamlit. Task efficiency is ensured through Redis-based caching and Celery for
asynchronous processing, all managed within a robust Poetry environment.

To address these challenges, this project introduces an Automated PR Summarizer, a system designed to streamline the review
process by leveraging advancements in artificial intelligence and natural language processing. By automatically analyzing and
summarizing the core changes and context within a PR, the system empowers developers and reviewers to make faster, more
informed decisions. The summarizer is built using LangChain and LangGraph, two powerful frameworks that facilitate multi-
step reasoning and agent-based orchestration with large language models (LLMS).

Operating in an event-driven manner, the system integrates directly with GitHub via webhooks, triggering summary generation
based on specific PR comments (e.g., \summarise). For development and testing, Ngrok is used to securely expose local services
to external webhook traffic. The summarization process is structured as a modular LangGraph pipeline, with each node responsible
for tasks like metadata retrieval, diff analysis, and summary synthesis. This design promotes flexibility, transparency, and ease of
debugging.

To handle real-time processing and caching, Redis and Celery are employed to manage background jobs and frequently accessed
data efficiently. The final summaries are rendered via a lightweight, interactive Ul built using Streamlit, offering developers a
seamless way to visualize and interact with the generated insights. All components are containerized and managed using Poetry,
enabling reproducible builds and smooth deployment pipelines .Ultimately, this project aims to reduce the cognitive load on
developers, improve collaboration efficiency, and enhance the overall maintainability of software systems by introducing intelligent
automation into one of the most critical aspects of the development lifecycle: code review.

JETIR2505764] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 0631

http://www.jetir.org/

© 2025 JETIR May 2025, Volume 12, Issue 5 www.jetir.org (ISSN-2349-5162)

Il. RELATED WORKS

Previous research and industry efforts have explored automation in code reviews through Al. Tools such as GPT-based review
assistants have been proposed, yet they often lack direct integration into workflows or interactive user interfaces. Recent
developments in frameworks like LangChain and LangGraph offer new possibilities for efficient and context-aware summarization.
Siow et al.[1] introduced CORE, a system that recommends suitable reviewers for code changes based on developer expertise and
code ownership patterns. While effective at improving reviewer allocation, CORE does not address the summarization of content
itself, which remains a manual task. Tang et al.proposed [2]CodeAgent, a multi-agent system for code review that models
conversational behavior between agents and developers. Although CodeAgent supports dynamic reasoning, it focuses more on
dialogue modeling than summarization of change intent.

Liu et al.[3]explored Retrieval-Augmented Generation (RAG) using hybrid GNNs to improve code summarization tasks,
particularly when contextual knowledge is sparse. Their work demonstrates the power of combining symbolic code structure with
learned semantic representations. Similarly, Ghosh and Winikoff [4] proposed a multi-agent approach for automating code reviews,
highlighting the role of distributed reasoning agents in analyzing source code collaboratively.

Svensgard [5] demonstrated the effectiveness of LangChain in handling long-text summarization by chaining together LLM prompts
in a deterministic pipeline. This modularity allows for flexible experimentation, making LangChain well-suited for complex, multi-
turn tasks such as PR summarization. Dash [7] extended this idea by applying LangChain agents directly to GitHub workflows,
triggering reviews and summaries through comment-based event listeners—an approach that closely parallels the work in this
project.

I11. PROPOSED METHODOLOGY

The proposed PR Summarizer system is designed using a modular, event-driven architecture that integrates seamlessly with existing
GitHub workflows. At its core, the system listens for webhook events triggered by pull request comments such as \ summarise or
\review. Upon activation, the webhook payload is securely tunneled through Ngrok to a local or hosted backend for processing.
The backend is powered by LangChain, which manages the orchestration of large language model interactions, and LangGraph,
which structures the summarization workflow as a directed graph. Each node in this graph performs a distinct function—retrieving
metadata, analyzing file diffs, formatting prompts, and generating concise, contextual summaries.

Our solution comprises the following steps:

Webhook Integration: GitHub triggers a webhook upon PR events, activating the summarizer bot.

Secure Hosting: Ngrok provides a secure public end-point for webhook communication.

Al Summarization: LangChain and LangGraph process PR content, extracting meaningful summaries.

Caching and Task Management: Redis caches frequently accessed data, while Celery manages background summarization
tasks.

5. User Interface: Streamlit presents interactive, dynamic summaries allowing reviewers to navigate details seamlessly.

PoOnNPE

Speolty URL

i

GitHub Sends
HTTP POST | No Action

!

URL Recerves

Oata

|

Dutn

|

Take Action
Baned on Fvent

Process vent ‘

Fig 1. Methodology Flowchart

JETIR2505764] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 0632

http://www.jetir.org/

© 2025 JETIR May 2025, Volume 12, Issue 5 www.jetir.org (ISSN-2349-5162)

IV. IMPLEMENTATION RESULTS

We utilized Python and Poetry for dependency and environment management. The summarizer logic was encapsulated within
LangChain and LangGraph pipelines, which processed webhook payloads asynchronously via Celery tasks. Redis optimized data
retrieval speeds, crucial for scalability and
performance. The detailed implementation steps include:
e Configuring GitHub webhooks to capture PR events.
Establishing secure public endpoints using Ngrok.
Developing and deploying Al summarization models using LangChain and LangGraph.
Integrating Redis for efficient caching and Celery for task scheduling.
Creating a responsive and interactive Ul with Streamlit.

V. CHALLENGES AND LIMITATIONS

Despite the promising results, several challenges persist

- Latency in Real-Time Processing: Ensuring low-latency summarization was a key challenge, especially when handling
large diffs or pull requests with multiple files. Although Celery and Redis help offload tasks and improve responsiveness,
fine-tuning these components to ensure real-time performance required multiple iterations.

- Summary Accuracy and Relevance: Maintaining consistent summary quality across various programming languages,
code structures, and documentation styles proved difficult. The system occasionally produced vague or overly generic
summaries, particularly for non-standard or low-context PRs, highlighting the need for domain-specific prompt tuning and
model fine-tuning.

- Context Extraction Complexity: Parsing meaningful context from PR metadata, commit messages, and code diffs is
inherently complex. In some cases, missing or poorly written commit messages impacted the richness of the generated
summary. Enhancing context awareness without excessive API calls or processing time remains a balancing act.

- Webhook Reliability and Scalability: During early testing phases, webhook delivery via Ngrok occasionally timed out
or failed due to limited tunnel stability. Additionally, managing concurrent webhook events from multiple repositories
introduces concerns around task queuing and system throughput.

- Agent Interoperability: Designing agentic workflows using LangChain and LangGraph introduced debugging
complexities. Coordinating multiple agents that reason, communicate, and act asynchronously required careful dependency
tracking and robust error handling.

- Security and Access Control: Since the system interacts with GitHub repositories and potentially sensitive code, ensuring
secure transmission of webhook payloads and access-controlled summary generation was essential. Further security

hardening is needed for production-grade deployment.
V1. RESULTS AND DISCUSSIONS

The system also demonstrated high engagement, with over 85% of active reviewers using the summarizer consistently during review
tasks. Feedback collected from users showed that the summarizer was particularly useful for quickly understanding complex PRs
involving multiple commits or cross-module changes. In terms of summary accuracy, manual evaluations by developers yielded an
average rating of 4.4 out of 5 for clarity and 4.5 out of 5 for usefulness. These results suggest that the system not only accelerates
the review process but also maintains a high standard of content relevance and contextual insight, thereby making it a valuable asset
in modern DevOps workflows.

Table 1: Result Metrics

Metrics Without Summarizer With Summarizer Improvement
Avg. Review Time per 7.1 0
PR(min) 14.8 152.0%
Max Review 26.3 o
Time(Complex PRs) 114 1 56.6%
Review Coverage Rate 78% 95% 117.9%

Table 2: Summary Evaluation Criterion

Criterion Avg. Score (out of 5)
Clarity 4.4
Completeness 4.2
Usefulness 4.5
Overall 4.37

JETIR2505764] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 0633

http://www.jetir.org/

© 2025 JETIR May 2025, Volume 12, Issue 5 www.jetir.org (ISSN-2349-5162)

VII. CONCLUSION

The automated PR summarizer effectively enhances software development workflows by significantly reducing review overhead
and improving reviewer productivity. Future enhancements will focus on adaptive learning techniques to further improve accuracy
and deploying additional collaborative features within the interactive Ul . The Pull Request Summarizer project demonstrates how
artificial intelligence can be effectively applied to streamline software development workflows. By integrating tools like LangChain,
LangGraph, and Streamlit with GitHub, the system automates the process of summarizing pull requests, helping developers quickly
understand code changes without manually reading through every file or commit. This results in faster, more efficient code reviews
and supports better team collaboration.

REFERENCES

[1]J. Siow, C. Gao, L. Fan, S. Chen, and Y. Liu, “CORE: Automating Review Recommendation for Code Changes,” IEEE Trans.
Softw. Eng., vol. 46, no. 11, pp. 1204-1215, Nov. 2020, doi: 10.1109/TSE.2019.2925810.

[2] X. Tang et al., “CodeAgent: Autonomous Communicative Agents for Code Review,” |IEEE Trans. Softw. Eng., vol. 50, no. 2,
pp. 340-355, Feb. 2024, doi: 10.1109/TSE.2023.3270037.

[3] S. Liu, Y. Chen, X. Xie, J. Siow, and Y. Liu, “Retrieval-Augmented Generation for Code Summarization via Hybrid GNN,”
IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3795-3809, Aug. 2021, doi: 10.1109/TKDE.2020.3048419.

[4] A. Ghosh and M. Winikoff, “Automating Code Review with Multi-Agent Systems,” IEEE Intell. Syst., vol. 37, no. 3, pp. 60—
69, May—Jun. 2022, doi: 10.1109/M1S.2022.3156445.

[5] L. Svensgard, “Enhancing Long-Text Summarization with LangChain,” IEEE Trans. Artif. Intell., vol. 3, no. 4, pp. 290-298,
Oct. 2023, doi: 10.1109/TAI.2023.3290567.

[6] S. Dash, “Automating GitHub PR Reviews with LangChain Agents,” IEEE Softw., vol. 41, no. 2, pp. 6774, Mar.—Apr. 2024,
doi: 10.1109/MS.2024.3342102.

[71M. R. Parvez et al., “REDCODER: Retrieval-Augmented Code Generation and Summarization,” IEEE Trans. Softw. Eng., vol.
47,n0. 7, pp. 1382-1394, Jul. 2021, doi: 10.1109/TSE.2020.3017324.

[8] S. Sarraf and M. Zissman, “MAESTRO: Threat Modeling Framework for Agentic Al Systems,” IEEE Secur. Priv., vol. 23, no.
1, pp. 42-50, Jan.—Feb. 2025, doi: 10.1109/MSEC.2024.3321845.

[9] K. Sato and T. Yamamoto, “Al-Powered Automation in CI/CD Pipelines: Challenges and Opportunities,” IEEE Trans. Softw.
Eng., vol. 48, no. 9, pp. 1852-1864, Sep. 2022, doi: 10.1109/TSE.2021.3111168.

[10] M. Wooldridge, N. R. Jennings, and D. Kinny, “Agent-Based Software Engineering: A Research Roadmap,” IEEE Trans.
Softw. Eng., vol. 47, no. 4, pp. 742—755, Apr. 2020, doi: 10.1109/TSE.2019.2903891.

JETIR2505764] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 0634

http://www.jetir.org/

