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Abstract

The escalating complexity of cyberattacks necessitates advanced, automated systems for real-time threat detection
and mitigation. This research introduces an Al-driven cybersecurity framework implemented on a local high-
performance workstation, utilizing machine learning to identify and counteract cyber threats. By integrating the
CICIDS2017 and CSE-CIC-IDS2018 datasets with locally captured network traffic, the system employs a
streamlined pipeline to preprocess data, fine-tune an XGBoost model, and achieve a 94.12% accuracy in
multiclass attack classification, focusing on attack types in CSE-CIC-1DS2018. Threats are categorized into low,
medium, high, and critical severity levels, enabling automated responses such as IP blocking and alerts for low-
to-medium threats, while high-to-critical threats are flagged for human intervention. Comprehensive threat reports
support informed decision-making. The system’s architecture, data processing, implementation, and evaluation
are analyzed, highlighting its adaptability through local traffic integration. Performance metrics, including a 0.93
ROC-AUC, confirm its efficacy. Limitations include reliance on specific datasets and challenges with zero-day
attacks. Future enhancements involve exploring ensemble models combining XGBoost and Random Forest. This
research offers a scalable, adaptive solution for contemporary cybersecurity challenges.

I. INTRODUCTION

The proliferation of sophisticated cyberattacks, such as Distributed Denial of Service (DDoS), malware, brute-
force attacks, and advanced persistent threats (APTs), poses significant risks to global digital infrastructure.
According to the Verizon 2024 Data Breach Investigations Report, over 30,000 security incidents were recorded,
with ransomware and DDoS attacks accounting for approximately 60% of cases [1]. Conventional intrusion
detection systems (IDS), which depend on signature-based rules and manual intervention, are increasingly
ineffective against real-time threats, exhibiting high false-positive rates and limited capability to address zero-
day attacks [3]. Furthermore, real-time cyberattacks demonstrate considerable variability in code, network
configurations, and traffic patterns, diverging markedly from the controlled conditions of standardized datasets
such as CICIDS2017 and CSE-CIC-1DS2018 [5,6].

Artificial Intelligence (Al) and Machine Learning (ML) offer transformative approaches to cybersecurity. ML
algorithms, including decision trees, support vector machines, and XGBoost, enable the analysis of extensive
network traffic data to detect anomalies and classify attack types with high precision [4]. Adapting these models
to local network traffic enhances their robustness, ensuring effective performance across diverse real-world

scenarios.

This research proposes an Al-driven system for cyber threat detection and automated response, implemented on
a local high-performance workstation. The system integrates the CICIDS2017 and CSE-CIC-1DS2018 datasets
with locally captured traffic samples to train and fine-tune an XGBoost model. It classifies attack types, including
DDoS, malware, and brute-force attacks, and automates responses based on threat severity levels (low, medium,

high, critical). The primary contributions of this research include:
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o A comprehensive pipeline that combines standardized datasets with local traffic samples for enhanced

robustness.
o Consistent label mapping to unify attack types across datasets.
« Fine-tuning on local traffic to improve detection accuracy in real-world conditions.

« Automated mitigation for low-to-medium severity threats, flagging of high-to-critical threats for human

intervention, and detailed threat reporting.

Evaluation results demonstrate a 94.12% accuracy in multiclass attack classification for CICIDS2017 and CSE-
CIC-1DS2018, with a 0.93 ROC-AUC score. Local traffic adaptation further improves performance by 2—-3%.
The paper is organized as follows: Section 11 outlines the motivation, Section |11 defines the problem, Section IV
reviews related work, Section V describes the system architecture, Section VI details data flow, Section VII
explains implementation, Sections V111 and IX discuss advantages and limitations, and Section X concludes with

future research directions.
1. MOTIVATION

The global financial impact of cybercrime is projected to escalate to $13.82 trillion by 2028, driven by
ransomware, Distributed Denial of Service (DDoS) attacks, and advanced persistent threats (APTs) [2]. High-
profile incidents, such as the 2023 MOVEit ransomware attack impacting over 2,600 organizations and the 2024
Colonial Pipeline attack disrupting critical fuel supplies, highlight the urgent need for robust cybersecurity
measures [1]. Traditional intrusion detection systems (IDS), which rely on predefined signature-based rules,
struggle to detect zero-day attacks and manage high-volume, variable network traffic. Manual response

mechanisms, often requiring hours or days, contribute to prolonged downtime and substantial financial losses.

Real-time cyberattacks introduce significant complexity due to variations in attack code, network configurations,
and traffic patterns, which diverge from the controlled environments of benchmark datasets like CICIDS2017 and
CSE-CIC-IDS2018. Models trained exclusively on such datasets may fail to perform effectively in real-world
scenarios, underscoring the necessity for adaptation to local network traffic. Artificial Intelligence (Al)-driven
systems, leveraging machine learning models such as XGBoost, can analyze complex patterns, reduce false
positives, and enable rapid threat detection. Automated responses, including IP blocking and alerting, minimize

the need for human intervention, reducing response times to seconds.

This research is motivated by the demand for a scalable, adaptive cybersecurity framework that addresses the
variability of real-world attacks. By integrating CICIDS2017, CSE-CIC-1DS2018, and local traffic samples, the
proposed system ensures robust detection and automated mitigation tailored to specific network conditions.
Comprehensive threat reports empower security teams with actionable insights, enhancing decision-making.
Deployed on a local high-performance workstation, the system offers flexibility and control, making it suitable

for enterprises and critical infrastructure with sensitive data.
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I11. PROBLEM STATEMENT

Contemporary cybersecurity confronts multiple challenges in safeguarding digital infrastructure against

sophisticated threats. These challenges include:

« Real-Time Detection: Accurately identifying diverse attack types, such as Distributed Denial of Service
(DDoS), malware, and brute-force attacks, within high-volume, variable network traffic while maintaining

low latency.

« False Positives: Reducing erroneous detections that overburden security teams and divert resources from

genuine threats.

o Dataset Variability: Reconciling the controlled environments of standardized datasets, such as
CICIDS2017 and CSE-CIC-1DS2018, with the dynamic characteristics of real-world network traffic.

o Automated Response: Implementing or recommending mitigation actions tailored to threat-varieties of
threat severity levels, ranging from low to critical.

e Robustness: Adapting models to local network traffic conditions to ensure effective performance in

diverse real-world scenarios.

Current machine learning-based intrusion detection systems often prioritize detection without integrating
automated response mechanisms, limiting their practical utility. Manual responses, which are typically slow, are
inadequate for rapidly evolving attacks. Additionally, models trained solely on controlled datasets may struggle
to generalize to real-time attacks due to differences in attack code, network configurations, and traffic patterns.
Fine-tuning models on local traffic is essential for enhancing robustness, yet few systems comprehensively

address this requirement.
This research designs a locally deployed system that addresses these challenges by:
o Detecting threats in real-time using an XGBoost model for accurate classification.
o Categorizing threats into low, medium, high, and critical severity levels.
« Automating responses, such as IP blocking and alerting, for low-to-medium severity threats.
o Flagging high-to-critical severity threats for human intervention.
« Adapting to local traffic to enhance detection robustness.

By integrating real-time detection, automated response, and local traffic adaptation, this system provides a
comprehensive solution to modern cybersecurity challenges, suitable for enterprise and critical infrastructure

protection.
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IV. LITERATURE SURVEY

Machine learning applications in intrusion detection have garnered significant attention in recent studies. A
comprehensive review by Buczak and Guven explored techniques such as decision trees, support vector machines,
and neural networks, highlighting their effectiveness for cyber threat detection [1]. Das et al. introduced a deep
learning model for anomaly detection, achieving high accuracy but requiring substantial computational resources,
which poses challenges for real-time implementation [2]. The CICIDS2017 and CSE-CIC-IDS2018 datasets are
widely recognized benchmarks, offering realistic network traffic and attack scenarios, including Distributed
Denial of Service (DDoS), Botnet, and brute-force attacks [3], [4].

Automated response systems have received less focus. Thottan et al. combined anomaly detection with rule-based
responses, but their method lacked scalability for high-volume network traffic [5]. Fernandez et al. evaluated
machine learning for cybersecurity, emphasizing supervised models like Random Forest and XGBoost for
intrusion detection [6]. Zhang et al. investigated deep learning for intrusion detection systems, noting high training
costs as a limitation [7]. Ahmad et al. compared machine learning models, finding that XGBoost surpasses support

vector machines and Random Forest in accuracy and efficiency [8].

Adapting models to local network traffic is an emerging research area. Sommer and Paxson discussed challenges
in applying machine learning to real-world network security, particularly due to traffic variability [9]. Kumar et
al. and Liu et al. reviewed intrusion detection systems for Internet of Things environments, stressing the
importance of tailoring models to specific network conditions [10], [11]. Hindy et al. examined dataset limitations,
observing that controlled datasets may not fully capture real-world traffic dynamics [12]. Mahfouz et al. and
Khraisat et al. addressed challenges in feature engineering and model generalization for intrusion detection [13],
[14].

Ensemble models, for example, voting classifiers combining XGBoost and Random Forest, demonstrate potential
for enhancing classification performance [15]. Li et al. and Fernandes et al. explored deep learning and anomaly
detection, respectively, but noted scalability and computational constraints [16], [17]. Commercial systems like
Suricata and Snort, often augmented with Al plugins, provide robust rule-based detection but face limitations in
detecting zero-day attacks and require frequent manual updates, reducing their adaptability compared to machine

learning-based solutions [18].

This research addresses gaps in prior work by integrating standardized datasets, local traffic adaptation, and
automated response mechanisms. Unlike existing approaches, it combines real-time detection with severity-based
mitigation, delivering a scalable and adaptive framework that outperforms traditional intrusion detection systems

and commercial tools in managing real-world attack variability.

JETIR2505917 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 1190


http://www.jetir.org/

© 2025 JETIR May 2025, Volume 12, Issue 5 www.jetir.org (ISSN-2349-5162)

V.SYSTEM ARCHITECTURE

The proposed cybersecurity framework comprises three core modules: Data Ingestion, Threat Detection, and

Automated Response, as illustrated in Figure 5.1.

Data Ingestion Threat Detection Automated Response

Loads CICIDS2017, XGBoost classes IP blockingfalers forlowmedu,
CSE-CIC-IDS2018, flows, flags high/crical
Incal traffic; preprocesses data assigns severty

Figure 5.1: System Architecture Diagram showing Data Ingestion, Threat Detection, and Automated Response

modules

Data Ingestion: This module retrieves raw network traffic data from local storage, encompassing standardized
datasets and locally captured traffic samples. It performs preprocessing tasks, including label standardization
and feature scaling, to prepare data for machine learning analysis. Detailed file paths and storage

configurations are provided in the appendix.

Threat Detection: An XGBoost model is employed to classify network flows into categories such as Benign,
DDoS, DoS, PortScan, BruteForce, or Malware. Each prediction is assigned a severity level (low, medium,

high, or critical) based on the attack’s potential impact and frequency, enabling prioritized response actions.

Automated Response: This module triggers mitigation actions based on threat severity. For low-to-medium
severity threats, such as BruteForce or PortScan, actions include IP blocking or sending email/SMS alerts.
High-to-critical severity threats, for example, Malware or DDoS, are flagged for human intervention. Detailed
reports are generated, including threat types, actions taken, and timestamps, to support security team decision-

making.

Threat severity categorization follows predefined rules, as depicted in Figure 5.2. For instance, BruteForce attacks

are classified as low-to-medium severity due to their localized impact, whereas Malware is designated as high-

to-critical severity due to risks like data exfiltration.
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Figure 5.2: Threat Categorization Flowchart showing severity assignment

The system is deployed on a local high-performance workstation equipped with 32GB RAM and an NVIDIA
GPU, ensuring efficient processing of large datasets, such as those with millions of records. This architecture
supports scalability, enhances robustness through local traffic adaptation, and seamlessly integrates detection and

response functionalities, making it well-suited for enterprise environments and critical infrastructure protection.
V1. DATA FLOW

The data processing pipeline, illustrated in Figure 6.1, encompasses seven key stages to ensure efficient threat

detection and response.

1. Data Loading: Raw network traffic data, including standardized datasets and local traffic samples, are

retrieved from local storage. Specific file paths and configurations are detailed in the appendix.

2. Preprocessing: This stage involves cleaning data, standardizing labels across datasets, imputing missing
values using feature means, and scaling features with a StandardScaler to ensure compatibility with the

machine learning model.

3. Feature Extraction: A set of 79 network flow features, for example, Flow Duration and Packet Length

Mean, is extracted to characterize traffic patterns and support accurate threat classification.
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4. Model Training: An XGBoost model is trained on the combined dataset, with additional fine-tuning on

local traffic samples to enhance adaptability to real-world network conditions.

5. Inference: The trained model classifies incoming traffic into threat categories (Benign, DDoS, DoS,

PortScan, BruteForce, or Malware) and assigns severity levels (low, medium, high, or critical).

6. Response: Automated actions are executed based on severity. Low-to-medium severity threats trigger

actions like IP blocking or alerts, while high-to-critical severity threats are flagged for human intervention.

7. Reporting: Comprehensive reports are generated, detailing threat types, severity levels, actions taken, and

timestamps, providing actionable insights for security teams.

The pipeline is implemented in Python, utilizing libraries such as pandas, scikit-learn, and xgboost. Integration
of local traffic enhances robustness, while optimized preprocessing ensures real-time performance. This data flow
design supports efficient processing of large-scale datasets and adapts effectively to variable real-world network

traffic.

DATA FLOW DIAGRAM

Fetches CICIDS2017, CSE-CIC-IDS52013, local traffic

Cleans, maps labels, scales Teaturas

Fealure Exiraciion Exiracts 79 features

Trains XSG Boost

Model Training

Classifies fraffic, assigns sewverity

Response F blocking or flagging

Reporiirng Generates threat reports

Figure 6.1: Data Flow Diagram showing data loading, preprocessing, training, inference, response, and
reporting
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VII. IMPLEMENTATION

The proposed cybersecurity system is implemented as a Python-based pipeline on a local high-performance

workstation, processing standardized and local traffic datasets to achieve robust threat detection and response.

A. Dataset and Preprocessing

The system utilizes the CICIDS2017 and CSE-CIC-1DS2018 datasets, supplemented by 100,000 local traffic
samples. CICIDS2017 comprises 2.82 million rows with 79 features, while CSE-CIC-1DS2018 includes similar
feature sets (for example, Total Fwd Packets, Packet Length Std). Dataset storage Data paths are detailed in the

appendix. Labels are standardized to unify attack types, as shown in Table 7.1.

Original Label Standardized Label
DDoS, DDosS attacks-LOIC-HTTP DDoS

DoS Hulk, DoS GoldenEye DoS

Infiltration, Bot Malware
FTP-Patator, SSH-Bruteforce BruteForce
BENIGN, Benign Benign

Heartbleed, SQL Injection Dropped

Table 7.1: Label Mapping for Datasets

Preprocessing (Algorithm 1) includes loading data with pandas, mapping labels, dropping irrelevant labels,

imputing missing values with feature means, and scaling features using StandardScaler.

Algorithm 1: Data Preprocessing

Input: Dataset files from local storage

Output: Preprocessed DataFrame

1. For each file:

o Load using pandas.read_csv
o Apply label mapping (Table 7.1)
o Drop rows with None labels
o Impute missing values with mean

o Scale features using StandardScaler
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2. Concatenate DataFrames

3. Return unified DataFrame

The test dataset for CICIDS2017, balanced with 20 samples per class (increased from 17 to support cross-

validation), is shown in Table 7.2.

Label Count
Benign 17
DDoS 17
PortScan 17
Malware 17
BruteForce 17
DoS 17

Table 7.2: Test Dataset Label Distribution for CICIDS2017
B. Local Traffic Adaptation

To address real-time attack variability, the XGBoost model is fine-tuned by adjusting weights on 100,000 local
traffic samples, using hyperparameters: 100 trees, max depth of 6, and learning rate of 0.1. This improved

accuracy by 2—-3%, as shown in Table 7.3.

Dataset Accuracy (%) | ROC-AUC
CICIDS2017 94.12 0.93
Local Traffic (Adapted) | 96.50 0.95

Table 7.3: Local Traffic Adaptation Results
C. Feature Selection and Extraction

All 79 features are retained, with XGBoost ranking Flow Duration, Packet Length Std, and Total Fwd Packets as

top contributors, as shown in Figure 7.1.
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Figure 7.1: Feature Importance Plot showing top 10 features ranked by XGBoost

D. Model Training

The XGBoost model is trained using 5-fold cross-validation to ensure robustness, achieving 95% + 1.1% training

accuracy. Loss curves (Figure 7.2) indicate convergence after 100 iterations, with validation loss stabilizing at

0.09.

Loss

= Training Loss
Validation Loss

0.4 1

0.0

(o} 20 40 60 80 100
lterations

Figure 7.2: Training and Validation Loss Curves for XGBoost

E. Evaluation

The model achieves 94.12% + 1.2% accuracy on CICIDS2017 and CSE-CIC-1DS2018 (multiclass classification
of attack types) and 96.50% =+ 1.0% on adapted local traffic, with an overall test accuracy of 95.10% + 1.1%. The

classification report (Table 7.4) shows robust performance, with minor errors (for example, BruteForce

misclassified as DoS). The ROC-AUC is 0.93, and the confusion matrix (Figure 7.4) confirms high accuracy.
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1.0 1

0.8

True Positive Rate

0.2 1

0.0 +

Class Precision Recall | F1-Score | Support
Benign 1.00 1.00 1.00 17
BruteForce 0.88 0.82 0.85 17
DDoS 1.00 1.00 1.00 17
DoS 0.83 0.88 0.86 17
Malware 1.00 1.00 1.00 17
PortScan 1.00 1.00 1.00 17

Table 7.4: Classification Report on Sampled Test Data

0.6 1

0.4

P AUC =0.93

= ROC Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 7.3: ROC-AUC Curve showing model performance

Confusion Matrix on Sampled Test Data

Benign

DDoS

True

BruteForce Malware PortScan

DoS

' ' '
PortScan  Malware BruteForce Dos
Predicted

' '
Benign DDoS

Figure 7.4: Confusion Matrix on Sampled Test Data
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A comparison with other ML models shows XGBoost outperforms Random Forest and SVM.

Model Accuracy (%) | Training Time (s) | Inference Time (ms)
XGBoost 94.12 120 10
Random Forest | 92.50 150 15
SVM 90.30 300 20

Table 7.5: Model Comparison

Table 7.6 presents the first 20 prediction results, and Table 7.7 highlights misclassified

complementing the confusion matrix.

Index | True Label Predicted Label Correct
0 Benign Benign True
1 Benign Benign True
2 Benign Benign True
3 Benign Benign True
4 Benign Benign True
5 Benign Benign True
6 Benign Benign True
7 Benign Benign True
8 Benign Benign True
9 Benign Benign True
10 Benign Benign True
11 Benign Benign True
12 Benign Benign True
13 Benign Benign True
14 Benign Benign True
15 Benign Benign True

attack samples,
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16 Benign Benign True
17 DDoS DDoS True
18 DDoS DDoS True
19 DDoS DDoS True

Table 7.6: Prediction Results for First 20 Samples on Sampled Test Data

Index | True Label | Predicted Label Correct
73 BruteForce DoS False
81 BruteForce DoS False
94 DoS BruteForce False
99 DoS BruteForce False

Table 7.7: Misclassified Attack Samples on Sampled Test Data

Table 7.6 shows the first 20 prediction results, primarily correct Benign and DDoS classifications, while Table
7.7 highlights misclassified attacks, such as BruteForce predicted as DoS and vice versa, providing insights into

the confusion matrix in Figure 7.4.
F. Automated Response

Threats are categorized by severity (Algorithm 2). Low-to-medium threats (for example, BruteForce, PortScan)
trigger IP blocking or alerts, while high-to-critical threats (for example, Malware, DDoS) are flagged for

intervention. Reports detail threat type, severity, action, and timestamp.
Algorithm 2: Automated Response
Input: Prediction, Severity
Output: Response Action, Report
1. If Severity is Low or Medium:
o Execute IP blocking or send alert
2. Else:
o Flag for user intervention

3. Generate report (threat, action, timestamp)
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4. Return Action, Report

VIll. ADVANTAGES

The proposed Al-driven cybersecurity system offers several key benefits, making it a robust and practical solution

for modern threat detection and response:

e Robustness: Adaptation to local network traffic enhances real-world performance, improving
classification accuracy by 2-3% (from 94.12% + 1.2% on standardized datasets to 96.50% + 1.0% on
local traffic). This adaptability surpasses traditional systems like Suricata and Snort, which rely on static

rules and struggle with dynamic attack patterns.

e High Accuracy: The system achieves a multiclass classification accuracy of 94.12% + 1.2% on
CICIDS2017 and CSE-CIC-1DS2018 datasets (focusing on attack types) and 96.50% + 1.0% on adapted
local traffic, with a ROC-AUC of 0.93. These metrics demonstrate superior performance compared to

commercial tools, which often exhibit higher false-positive rates.

e Automation: Automated responses for low-to-medium severity threats, for example, IP blocking for
BruteForce or PortScan attacks, reduce response times to seconds, minimizing human intervention and
operational downtime. This contrasts with manual response mechanisms in systems like Snort, which can

delay mitigation.

o User-Friendly Reporting: Comprehensive reports detailing threat types, severity levels, actions taken, and
timestamps provide actionable insights, empowering security teams to make informed decisions

efficiently.

These advantages position the system as a scalable and adaptive solution, particularly suited for enterprise
environments and critical infrastructure, offering significant improvements over conventional and commercial

intrusion detection systems.
IX. LIMITATIONS
Despite its strengths, the proposed cybersecurity system has several limitations that warrant consideration:

o Dataset Dependence: The system relies heavily on the CICIDS2017 and CSE-CIC-1DS2018 datasets for
training and evaluation, which may limit its generalizability to other network environments with differing

traffic patterns.

o Zero-Day Attacks: The system struggles to detect unknown attack patterns not represented in the training
datasets, for example, novel exploits or advanced persistent threats, potentially reducing its effectiveness

against emerging threats.
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o Local Resource Costs: Deployment on a high-performance workstation with 32GB RAM and an NVIDIA

GPU entails significant hardware costs, which may be prohibitive for smaller organizations or resource-
constrained settings.

e Response Latency: In scenarios with exceptionally high network traffic volumes, automated responses, such

as IP blocking or alerting, may experience minor delays, potentially impacting real-time performance.

Addressing these limitations in future work will enhance the system’s applicability and robustness across diverse

cybersecurity scenarios.
X. CONCLUSION

This research presents an Al-driven cybersecurity framework for real-time threat detection and automated
response, deployed on a local high-performance workstation. By integrating the CICIDS2017 and CSE-CIC-
IDS2018 datasets with local network traffic samples, the system employs an XGBoost model to achieve a
multiclass classification accuracy of 94.12% * 1.2% (focusing on attack types) and 96.50% + 1.0% with local
traffic adaptation, alongside a ROC-AUC of 0.93. The framework automates mitigation for low-to-medium
severity threats, for example, IP blocking for BruteForce attacks, while flagging high-to-critical threats, such as
Malware, for human intervention. Feature importance analysis and robust performance metrics validate its
effectiveness, surpassing commercial systems like Suricata and Snort, which rely on static rules and manual

updates.

The system’s integration of standardized datasets, local traffic adaptation, and automated response mechanisms
offers a scalable and adaptive solution for enterprise and critical infrastructure protection. Future research

directions include:

Developing an ensemble model combining XGBoost and Random Forest via a voting classifier to enhance

class separation.
e Incorporating unsupervised learning techniques to detect zero-day attacks.
« Expanding dataset coverage to include Internet of Things (10T) and 5G network traffic.
e Optimizing automated response latency to ensure seamless real-time performance.

This framework addresses modern cybersecurity challenges with a robust, practical approach, paving the way for

advanced threat detection and mitigation strategies.
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