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Abstract—  

Long Short-Term Memory (LSTM) networks have proven to 

be highly effective in time series forecasting tasks, 

particularly in predicting power consumption patterns. This 

study explores the application of LSTM neural networks to 

model and forecast future power consumption based on 

historical time series data. The LSTM model is well suited 

for this task due to its ability to capture long-term 

dependencies and patterns in sequential data, making it ideal 

for understanding seasonal trends, daily fluctuations, and 

other temporal dynamics in power usage. The process begins 

with preprocessing steps such as normalization, handling 

missing values, and splitting the data into training and test 

sets. The LSTM network is then trained on historical power 

consumption data, and features like temperature, time of day, 

and day of the week are incorporated to improve accuracy. 

The study also addresses challenges such as data sparsity, 

overfitting, and model tuning by using techniques like 

regularization and hyper parameter optimization. The 

performance of the LSTM model is evaluated using metrics 

such as Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and Mean Absolute Percentage Error 

(MAPE). The results demonstrate that LSTM models can 

outperform traditional time series models, providing highly 

accurate forecasts that can assist in energy management, load 

balancing, and optimizing energy consumption patterns for 

both residential and industrial sectors. 

 

This project focuses on developing a Long Short-Term 

Memory (LSTM) neural network to predict power 

consumption based on historical time series data. The 

accurate prediction of power consumption is crucial for 

efficient energy management, grid stability, and cost 

reduction. Traditional methods like ARIMA and exponential 

smoothing often fail to capture the nonlinear patterns in 

power consumption data. LSTM, a type of recurrent neural 

network (RNN), is well-suited for time series forecasting 

because it can learn long-term dependencies and patterns. 

This project leverages LSTM's capabilities to build a model 

that forecasts future power consumption based on past data, 

with the goal of providing utility companies and consumers 

with actionable insights for better energy planning 

I. INTRODUCTION  

Electricity is the cornerstone of modern civilization, 

powering industries, commercial establishments, homes, 

transportation, and communication systems. With the 

growing global demand for power, driven by rapid 

urbanization, industrial growth, and increased dependence on 

electrical devices, it is imperative to optimize the generation, 

distribution, and consumption of electricity. One of the key 

aspects of this optimization is the ability to accurately 

forecast electricity consumption. 

Accurate electricity consumption forecasting plays a pivotal 

role in energy planning and operational management. It helps 

power companies balance the supply and demand, prevent 

grid failures, manage peak loads, and reduce operational 

costs. For consumers, it enables informed decision-making 

for energy usage, cost management, and sustainability 

efforts. 
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Traditional statistical models like ARIMA, Holt-Winters, and 

linear regression have been widely used for energy 

forecasting. However, these models are often unable to 

capture the complex patterns and non-linear dependencies 

that exist in real-world electricity consumption data. Such 

models generally assume stationarity and linearity, which do 

not hold true in the context of electricity usage influenced by 

weather conditions, seasonal behaviour, socio-economic 

changes, and irregular consumption habits.  

With the advent of artificial intelligence and deep learning, 

models that are more robust have emerged. Among them, 

Long Short-Term Memory (LSTM), a type of Recurrent 

Neural Network (RNN), has shown promising results in time-

series prediction problems. LSTM networks are capable of 

learning long-term dependencies and managing sequences of 

data effectively, which makes them ideal for electricity load 

forecasting where past trends strongly influence future 

consumption patterns. 

This project leverages LSTM models to predict electricity 

consumption based on historical usage data. It involves data 

preprocessing, model building, evaluation, and visualization 

of results. The goal is to develop an intelligent forecasting 

system that can support utility providers, government bodies, 

and individual users in better managing and optimizing 

electricity usage. Through accurate and timely predictions, 

the system aims to contribute to energy efficiency, cost 

savings, and more sustainable energy consumption practices. 

1.2 STATEMENT OF THE PROBLEM  

      The rising complexity in electricity usage patterns, 

influenced by time, behavior, climate, and lifestyle, makes it 

difficult for traditional forecasting models to provide 

accurate predictions. These models often fail to handle non-

linear, noisy, and seasonally varying data. There is a need for 

an advanced, intelligent system that can analyze historical 

consumption data, learn temporal dependencies, and generate 

accurate forecasts to support smarter electricity management 

and planning. 

Predicting the demand for electrical energy in contemporary 

power systems is crucial because the world’s power markets 

continue transit- toning from centralized to deregulated 

systems. This transition demon- states the substantial impact 

of industrial customers on the electric- it systems because of 

their greater energy usage. It is imperative to change the load 

forecasting perspective from supply-focused to demand-

focused. 

The socioeconomic uplift of the country relies largely on the 

Elec- trinity sector. Per capita electricity consumption is an 

important mea- sure of a sustainable society’s growth, 

economically and environment- tally. An electrical power 

system supplies consumer with stable and secure electricity 

that can accommodate a range of loads and it ensures the 

supply–demand balance. Thus, improving the precision of 

Elec- trinity load forecasting is necessary because if 

prospective demand for. Electricity is undervalued; the 

system cannot provide consumers with sufficient supply.  

Which increases the risk of the electrical power system 

failure? If futuristic demand for electricity is 

overestimated, extra power generation will require 

storage and an increase in operational expenditures. 

With an accurate forecast of the peak demand, energy 

suppliers and Independent System Operators (ISOs) can 

better provide electricity. 

 

1.3 OBJECTIVES  

 To build a deep learning model using LSTM for 

accurate prediction of electricity consumption. 

 To effectively process sequential time-series data, 

capturing both short-term variations and long-term 

dependencies. 

 To evaluate the model using error metrics such as 

Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), and R² score. 

 To create a forecasting system that supports real-

time, daily, or weekly energy usage prediction. 

 To enable data-driven decision-making for utility 

providers, industries, and residential users.  

To visualize prediction trends and compare them with 

actual consumption for interpretability and 

transparency 

1.4 SCOPE  

This project focuses on developing and evaluating an LSTM-

based deep learning model for forecasting electricity 

consumption. The scope includes working with time-series 

data of electricity usage, performing data pre-processing, and 

designing a model that learns from historical trends to make 

future predictions. The system will be capable of making 

short-term forecasts (daily or weekly) and can be extended 

for longer durations with appropriate training. 

The project is primarily academic in nature, using publicly 

available or simulated electricity consumption datasets for 

model development and testing. However, the architecture is 

scalable and can be adapted for practical use in real-world 

applications such as smart grids, renewable energy 

management systems, and IoT-based energy monitoring 

tools. 

The model is designed to be general-purpose, and with 

minimal adjustments, it can be deployed for various sectors, 

including residential, commercial, and industrial domains. It 

provides a foundation for integrating additional influencing 

factors like weather data or holidays in the future to enhance 

prediction accuracy. The system will also include 

visualization components to clearly present the forecast 

results to users 

LIMITATIONS  

 The model's prediction accuracy is dependent on the 

availability and quality of historical consumption 

data. 

 It does not currently integrate external factors such 

as temperature, public holidays, or sudden 

disruptions. 

 Training deep learning models like LSTM can be 

computationally expensive and time-consuming. 
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 The system may need retraining or reconfiguration 

when applied to regions with drastically different 

consumption behavior. 

 Overfitting can occur if the dataset is not sufficiently 

large or diverse. 

 Difficulty in comprehensively capturing all 

influencing variables (e.g., socio-economic 

changes, policy shifts) beyond weather and 

time features. 

 Scaling the model for larger grids or higher-

resolution data (e.g., minute-level) could 

strain computational efficiency. 

 Large-scale LSTM training consumes significant 

energy, contradicting sustainability goals in 

energy management. 

 Focuses on outperforming traditional models 

(e.g., ARIMA) but omits benchmarking 

against newer architectures like Transformers 

or hybrid models. 

 Requires frequent retraining to maintain 

accuracy as consumption patterns evolve 

over time. 

 Struggles to adapt to abrupt shifts in 

consumption patterns (e.g., extreme weather 

events or pandemics) due to reliance on 

historical trends. 

 LSTMs act as "black boxes," making it difficult 

to explain predictions to stakeholders 

needing transparency in energy decisions. 

 

1.6 METHODOLOGY  

Data Collection: 

The first step involves collecting a historical dataset of power 

consumption. The dataset will be sourced from publicly 

available platforms such as the UCI Machine Learning 

Repository or Kaggle, which provide comprehensive power 

consumption data for residential, commercial, or industrial 

use. The data will include hourly, daily, or monthly power 

consumption, along with external factors like temperature 

and humidity. 

Data Pre-processing: 

The dataset will be cleaned to handle missing values, outliers, 

and inconsistencies. Key pre-processing steps will include: 

Normalization: The power consumption data will be 

normalized to a standard scale to improve model training.  

Feature Engineering: Time-based features such as day of 

the week, time of day, and seasonal factors will be extracted 

to provide the model with contextual information. 

Train-Test Split: The dataset will be split into training, 

validation, and test sets. The training set will be used to train 

the model, while the validation set will help tune hyper 

parameters. The test set will be reserved for evaluating model 

performance. 

 

Model Development: 

The LSTM model will be built using deep learning 

frameworks such as Tensor Flow or PyTorch. The model 

architecture will consist of multiple LSTM layers followed 

by dense layers for output prediction. LSTM layers will be 

used to capture the temporal dependencies in the power 

consumption data, while the dense layers will output the 

predicted power values. Hyper parameters such as learning 

rate, batch size, and the number of epochs will be tuned to 

optimize model performance. 

Training and Evaluation: 

The LSTM model will be trained using backpropagation 

through time (BPTT) with a mean squared error (MSE) loss 

function. During training, the model’s performance will be 

monitored using the validation set. The evaluation will 

include calculating metrics such as RMSE and MAPE to 

measure forecasting accuracy. The model’s performance will 

also be compared to ARIMA and other traditional methods to 

demonstrate its superiority. 

Performance Tuning: 

Techniques such as early stopping, dropout, and learning rate 

schedules will be employed to prevent overfitting and 

improve generalization. The model’s hyper parameters will 

be optimized using grid search or random search techniques.  

Integration and Deployment: 

Once trained, the LSTM model will be tested on real-world 

power consumption data. The final model will be deployed 

as part of an energy management system, where it can 

provide real-time forecasts for utility companies. The model 

will be integrated with data pipelines to continuously update 

forecasts based on new input data. 

 

 

II. LITERATURE SURVEY  

2.1 Time series forecasting has been a critical area of research 

for decades, with traditional methods like ARIMA, Holt-

Winters exponential smoothing, and Kalman filters being 

widely applied. These models have demonstrated success in 

linear and stationary datasets, but their performance tends to 

degrade when applied to complex, non-linear time series 

data, such as power consumption, which is influenced by 

numerous external and internal factors. 

With the advent of machine learning and deep learning 

techniques, new models like decision trees, support vector 

machines (SVM), and artificial neural networks (ANN) were 

introduced to improve the accuracy of time series predictions. 

However, these models were still limited in capturing long-

term dependencies and temporal patterns in data. This led to 

the introduction of Recurrent Neural Networks (RNNs), 

which are specifically designed for sequential data. RNNs 

use internal memory to process arbitrary sequences of inputs, 

making them suitable for time series analysis. 

LSTMs, a special kind of RNN, were introduced to overcome 

the vanishing gradient problem faced by traditional RNNs. 

LSTMs have gained widespread attention for their ability to 

retain information over long periods and have been 
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successfully applied to tasks like stock price prediction, 

weather forecasting, and natural language processing. For 

power consumption forecasting, several studies have 

demonstrated the superiority of LSTM networks over 

traditional methods. 

For instance, Zhang et al. (2019) applied LSTM to forecast 

energy demand in smart grids and found that the model 

outperformed ARIMA and feedforward neural networks. 

Similarly, Kong et al. (2020) explored LSTM models for 

short-term electricity load forecasting and concluded that 

LSTM's ability to handle temporal dependencies 

significantly improved forecasting accuracy. 

The use of LSTM in time series forecasting has been further 

enhanced by combining it with other techniques such as 

attention mechanisms and feature selection methods to 

improve model performance. These advancements in deep 

learning have made LSTM a powerful tool for power 

consumption prediction, offering better scalability and 

accuracy. 

 

Limitations: 

 

 Different Levels of Understanding: Users may have 

varying levels of financial literacy, making it challenging 

to create content and features that cater to everyone 

effectively.  

 Potential Neglect of Traditional Methods: Users may 

overly depend on the app and neglect basic financial 

principles, which can lead to a lack of foundational 

knowledge. 

 

III. SYSTEM ANALYSIS AND DESIGN  

  

System analysis and design form the foundation of any 

successful software project. This chapter details the 

analytical and design framework adopted for building the 

electricity consumption forecasting model using Long 

Short-Term Memory (LSTM). System analysis involves 

understanding the functional requirements of the system, 

identifying bottlenecks in existing solutions, and laying out 

a comprehensive plan for system improvements. It also 

involves assessing technical, operational, and economic 

feasibility to ensure the new system aligns with user 

expectations and technical constraints. 

The design process transforms these analytical insights into 

a blueprint that includes architectural frameworks, data 

flow, model design, and integration strategies. In this 

project, the goal is to develop a time-series prediction 

model that can learn from historical electricity usage data 

and produce accurate consumption forecasts. To achieve 

this, deep learning techniques—specifically LSTM 

networks—are applied, given their strength in modeling 

sequential data and capturing long-term dependencies. 

The chapter provides an in-depth look at the system’s 

architecture, highlighting its components, flow of data, and 

the logic behind the model design. Both existing and 

proposed systems are analyzed to illustrate the 

improvements brought by the deep learning approach. 

Furthermore, the design principles and procedures ensure a 

robust, scalable, and efficient forecasting system. 

3.1 Explanation of Architecture with Relevant 

Diagrams 

The architecture of the electricity consumption prediction 

system is composed of six key layers: data acquisition, 

preprocessing, sequence generation, model construction, 

training & validation, and prediction output. The system 

begins by collecting historical electricity usage data, which 

may come from smart meters or open datasets. This data is 

then cleaned and normalized in the preprocessing phase. 

Missing values are handled, and scaling techniques such as 

Min-Max normalization are applied to standardize input 

features. 

After preprocessing, the data is segmented into overlapping 

time windows using a sliding window technique. These 

windows serve as input sequences for the LSTM model. 

The architecture of the model itself includes: 

 Input Layer: Accepts sequences of 
electricity usage data. 

 LSTM Layers: Learn temporal patterns 

in sequential data. 

 Dropout Layer: Reduces overfitting by 
randomly deactivating neurons during training. 

 Dense Output Layer: Produces the final 

predicted consumption value. 

Model training is performed using the backpropagation 

algorithm with an Adam optimizer, and evaluation metrics 

like RMSE and MAE are used to assess the model’s 

performance. 

Architecture Diagram: 

 

 
  

3.3 PRINCIPLES  

The system design is grounded in several key software 

and deep learning principles to ensure scalability, 

accuracy, and performance:  

1 Modularity: The system is broken into discrete 

modules such as data pre-processing, model 

training, and result visualization. This allows for 

ease of maintenance, testing, and upgrades. 

2 Separation of Concerns: Each module performs a 

specific function without overlapping 

responsibilities. For instance, pre-processing only 

prepares the data, while the model module handles 

training. 

3 Reusability: Functions and model components are 

designed for reuse across different datasets or 

scenarios. The same LSTM architecture can be 

reused with modifications for other time-series 

datasets. 

4 Scalability: The system is designed to be scalable. 

With increased data or additional variables, the 

architecture can be extended to incorporate 

multivariate inputs and more layers. 

5 Efficiency: Pre-processing methods and model 

optimizations are chosen to reduce training time 
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and improve convergence speed. Techniques like 

batch training, early stopping, and dropout are 

used for this purpose. 

6 Data-Driven Decision Making: The entire system 

is based on extracting insights from historical data 

to guide future predictions. The LSTM’s memory 

gates ensure that relevant past information is 

retained to enhance decision-making. 

These principles ensure that the system is not only 

technically sound but also practical and adaptable 

to real-world applications. 

 

3.4 EXISTING SYSTEM 

  

The existing systems for electricity load forecasting primarily 

rely on statistical and rule-based models. Techniques such as 

ARIMA (Auto-Regressive Integrated Moving Average), 

Holt-Winters Exponential Smoothing, and simple linear 

regression have traditionally been used by utility providers 

and researchers. These models are effective when dealing 

with stationary and linear time-series data. However, 

electricity consumption data is often non-linear, noisy, and 

influenced by external factors like weather, holidays, and 

consumer behavior. 

Rule-based systems rely on predefined rules, thresholds, and 

historical averages, which fail to adapt to sudden changes in 

patterns. These methods are not dynamic, and their 

forecasting ability diminishes as the complexity of the dataset 

increases. Moreover, statistical models struggle to 

incorporate multiple features or understand complex 

dependencies between variables. 

Another major drawback of existing systems is their inability 

to perform well in long-term forecasting due to the absence 

of memory components. They often require manual tuning of 

parameters and are prone to overfitting when trained on 

highly variable datasets. While these systems are 

computationally efficient and interpretable, their limitations 

outweigh their benefits in modern applications.  

Hence, a need has arisen for more intelligent, adaptive 

systems that can analyze data patterns automatically and 

make more accurate and robust predictions. 

 

3.5 PROPOSED SYSTEM  

 

The proposed system leverages the power of Long Short-

Term Memory (LSTM) networks, a class of Recurrent Neural 

Networks (RNNs), to predict future electricity consumption 

values. Unlike traditional models, LSTM is designed to learn 

from sequential data and can remember long-term patterns 

using its memory cell architecture. This allows the system to 

detect trends and anomalies in electricity usage that span over 

days, weeks, or even months. 

The system begins with importing historical electricity usage 

data, followed by comprehensive preprocessing including 

missing value imputation, normalization, and sliding window 

generation. These sequences are then fed into an LSTM 

model, which processes the temporal patterns and outputs the 

predicted consumption values for future time steps. 

The model is evaluated using RMSE (Root Mean Squared 

Error), MAE (Mean Absolute Error), and R² (coefficient of 

determination) to assess prediction accuracy. The output is 

visualized using time-series plots to show how closely the 

predicted values align with actual data. 

Key advantages of this system include high adaptability, real-

time forecasting capability, noise resilience, and scalability 

for industrial-scale deployment. Additionally, the 

architecture allows integration of external features such as 

weather or holidays for enhanced forecasting. The proposed 

system thus bridges the gap between accuracy and 

complexity in energy consumption prediction. 

IV SYSTEM REQUIREMENTS  

4.1 HARDWARE REQUIREMENT  

 

The successful implementation and execution of the 

electricity consumption prediction system using LSTM 

requires a system with moderate to high computing power, 

especially during the model-training phase. Below are the 

hardware requirements needed for development and 

deployment: 

1. Processor (CPU): 

A multi-core processor such as Intel Core i5/i7 or AMD 

Ryzen 5/7 with at least 2.5 GHz clock speed is recommended 

to handle data preprocessing and training tasks efficiently.  

2. Memory (RAM): 

A minimum of 8 GB RAM is required, though 16 GB or 

more is preferred for better performance, especially when 

working with large datasets and during deep learning model 

training. 

3. Graphics Processing Unit (GPU): 

An NVIDIA GPU with CUDA support (e.g., NVIDIA GTX 

1660, RTX 2060 or higher) is recommended to accelerate the 

training of LSTM models significantly. 

4. Storage: 

At least 500 GB of hard disk space  or 256 GB SSD is 

needed to store datasets, model checkpoints, libraries, and 

intermediate results. An SSD is preferred for faster data 

access. 

5. Display: 

A screen resolution of at least 1366 x 768 pixels is necessary 

for better visualization of output plots, model architecture, 

and development environment. 

6. Power Backup and Cooling System:  

Continuous power supply and proper thermal management 

are essential during long training sessions to prevent 

overheating and data loss. 

 

        Figure 4.1 Household Electric power consumption 

4.2 SOFTWARE REQUIREMENT  
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The software stack for this project includes development 

environments, libraries, and platforms required to build, 

train, evaluate, and deploy the LSTM model. Below are 

the key software components required? 

1. Operating System:  

The system can be run on Windows 10/11, Ubuntu 

20.04+, or macOS. However, Linux-based systems like 

Ubuntu are preferred for deep learning due to better 

compatibility with Python-based libraries and CUDA 

drivers. 

2. Programming Language: 

The entire project is implemented in Python 3.7+, which 

offers excellent support for machine learning and deep 

learning libraries. 

3. Deep Learning Framework:  

TensorFlow 2.x and Keras are used to design and train 

the LSTM model. They provide high-level APIs for 

building and evaluating neural networks. 

4. Data Processing Libraries: 

NumPy and Pandas are essential for numerical 

operations, data preprocessing, and handling time-series 

datasets. 

5. Visualization Tools:  

Matplotlib and Seaborn are used for plotting graphs, 

prediction results, and error analysis to interpret model 

performance effectively. 

Development Environment / IDE:  

Tools such as Jupyter Notebook, Google Colab, or VS 

Code are required for coding, documentation, and 

interactive execution of Python notebooks. 

 

VI. CONCLUSION AND FUTURE SCOPE  

The increasing demand for electricity, driven by industrial 

growth and rapid urbanization, calls for advanced systems 

that can predict energy consumption accurately and in real-

time. This project, titled “Electricity Consumption 

Prediction Using Long Short-Term Memory (LSTM)”, 

was designed to address the challenges of forecasting 

dynamic and time-dependent electricity usage data using 

modern deep learning techniques. 

Throughout the course of this project, we successfully 

designed, implemented, and evaluated an LSTM-based 

forecasting model that predicts future electricity consumption 

by learning from historical patterns. Unlike traditional 

forecasting models like ARIMA and Holt-Winters, which fail 

to capture long-term dependencies and nonlinear trends, the 

LSTM model excels in understanding temporal relationships, 

seasonality, and irregular consumption behaviors. The 

system follows a structured pipeline—from data 

preprocessing and normalization to model training, testing, 

and visualization. 

Using a sliding window approach and time-series generator, 

the model was trained on historical data and then validated 

using metrics like RMSE, MAE, and R². Results from the 

model demonstrated strong predictive capabilities with 

minimal error. The final output was visualized to show actual 

vs. predicted consumption, highlighting the model’s ability 

to forecast short-term usage patterns with impressive 

accuracy. 

Moreover, the model is designed to be scalable, interpretable, 

and ready for integration into real-world energy systems. Its 

adaptability to various time intervals—hourly, daily, or 

weekly—makes it a valuable tool for energy providers, 

government agencies, industries, and even individual 

consumers seeking to monitor and optimize electricity usage.  

In conclusion, this project confirms the potential of deep 

learning, specifically LSTM, in addressing the complex 

challenge of energy forecasting. The system provides a 

foundation for future enhancements and real-world 

deployment in smart grids and IoT environments. 
Future Scope 

1. Incorporation of Weather Data: 

Integrate external parameters such as temperature, 

humidity, and rainfall to improve prediction 

accuracy. 

2. Real-Time Data Integration:  

Connect the model with smart meter APIs to fetch 

and forecast live electricity consumption data.  

3. Deployment as a Web/Mobile App:  

Develop a user-friendly platform that allows users 

to view consumption forecasts, receive alerts, and 

analyze trends. 

4. Multivariate Forecasting:  

Extend the system to include other factors like 

appliance-level data, regional demographics, and 

time-of-day effects. 

5. Hybrid Model Integration:  

Combine LSTM with other deep learning models 

like CNNs or Transformers to enhance pattern 

recognition and reduce error rates. 

6. Anomaly Detection Module: 

Add functionality to detect abnormal consumption 

behavior, helping prevent energy theft or 

equipment failure. 

7. Peak Load Prediction: 

Predict potential peak load hours to help utilities 

prepare for high-demand periods and avoid 

blackouts. 

8. Transfer Learning for Region Adaptation:  

Use transfer learning techniques to adapt the 

model for different geographic regions with 

minimal retraining. 

9. Energy Cost Forecasting:  

Predict not only consumption but also dynamic 

electricity pricing based on usage trends and 

external market factors. 

Integration with Smart Grids and IoT Systems: 

Enable deployment in smart grid environments for 

autonomous energy balancing and decision-

making. 
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