
© 2025 JETIR May 2025, Volume 12, Issue 5                                                                  www.jetir.org (ISSN-2349-5162) 

 

JETIR2505958 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i515 
 

AgroSmart: Enhancing Agricultural 

Productivity through Data-Driven Crop 

Recommendation 
P. Nokesh 

ECE, Sreenidhi Institute of Science 

and Technology Hyderabad, India 

nokesh743@gmail.com 
 

Dr. Syed Jahangir Badashah  

ECE, Sreenidhi Institute of Science 

and Technology Hyderabad, India 

jahangir.s@sreenidhi.edu.in 

 

 

D. Prasanna 

ECE, Sreenidhi Institute of Science 

and Technology Hyderabad, India 

dharavathsaiprasanna16@gmail.com 

 

Dr. Vikram Palodiya 

ECE, Sreenidhi Institute of Science 

and Technology Hyderabad, India 

vikram.p@sreenidhi.edu.in 

 

 

V. Srikanth 

ECE, Sreenidhi Institute of Science 

and Technology Hyderabad, India 

varakalasrikanth966@gamil.com 

 

 

 

 

Abstract—The problem of choosing the proper crops to 

put in the fields in order to maximize agricultural 

productivity across many regions of India is a complex 

one because weather patterns are erratic and soil quality 

is uneven. Modern technological tools that could support 

farmers in selecting the most appropriate crops for their 

land are often often not available to them or not available 

in a consistent form. And other knowledge related to 

agricultural science being limited, unaware many do not 

adopt innovations in the agricultural science, and they 

have to rely on traditional practices which are outdated. 

This reduces crop yields and, in some cases, whole 

harvests fail. The causes for these problems are typically 

due to improper fertilizer use, or unexpected rainfall. 

Therefore, the most optimal solution would be to suggest 

crops complementary with prevailing soil conditions and 

rainfall expected during the sowing period. This challenge 

is confronted with the design of a software 

recommendation system called the Soil-Based Crop 

Profiling Framework. This tool takes into account soil 

characteristics, like nitrogen, phosphorus, potassium 

levels and pH as well as rainfall predictions, to determine 

what crop and fertilizer is most suitable to grow. The 

implementation of the framework is using a graphical 

desktop application that helps to provide a practical 

support to minimize crop failure and decision making 

while farming.  

Keywords— Deep learning, crop prediction models, plant 

disease detection. 

I. INTRODUCTION 

India’s agriculture is the basis of livelihood of millions of 

farmers, but most of them experience struggle in majoring up 

their crop productivity. While farmers continue to be the 

backbone of Indian economy, there are numerous problems 

faced by them while understanding soil composition, using 

fertilizers effectively, adapting to changes in rainfall pattern 

and choosing the best crop for their land. These are further 

complicated decisions however, given that soil and climate 

conditions can vary from one field to another even in the same 

place. 

For the most part, agricultural decisions are inherently 

complex. That means it will have to evaluate a number of  

 

variables including the soil pH, levels of nutrients, rainfall 

seasons and soil health overall. Sadly, though, farmers in 

many rural areas have no convenient access to the kind of 

expert analysis or digital tools to help guide those decisions. 

Since then they usually do according to guesswork and 

traditions, which typically never work out for the best – 

taking the wrong fertilizers or sowing at the wrong time can 

ruin an entire crop. 

In order to help farmers tackle these challenges, we created a 

desktop based application that provides scientifically based 

crop and fertilizer recommendations. The system then 

identifies the most suitable crops, the fertilizer use for 

enhancing soil fertility to achieve consistent yields using real 

time soil and environmental inputs. 

Solution: We came with a simple desktop software which lets 

the user provide input values for soil test input fields and 

depending on the values, also display suitable crops for 

cultivation. The inputs are used by the system to analyze 

whether the given soil fertility would be favorable to grow 

those crops. The benefit to this tool is especially helpful for 

farmers who do not know what nutrients are on their land, and 

are unsure which crop harvest will be the best. 

Small scale farmers in India rarely have frequent access to 

soil testing facilities and not even have the knowledge 

regarding the condition of their soil. We trained our model 
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using publicly available datasets linking different crops to the 

nutrient requirements that those crops require. This data was 

analyzed with an implemented Support Vector Machine 

(SVM) algorithm. The model will compare users’ soil values 

within the training dataset and generate a list of suitable 

crops. Moreover it recommends the fertilizers for each 

growing season that would help farmers make more informed 

and productive decision. 

II. LITERATURE SURVEY 

A high degree of technological exploration in the agricultural 

industry has been for the purpose of the solution of long 

standing farming challenges as well as increasing 

productivity. While the traditional Indian farming is quietly 

inefficient, researchers are actively looking to identify the 

gaps and are also proposing the digital and encouraging the 

evidence-based tools for the cultivators to improve their 

proceedings. This scholarly work is devoted to a large part to 

finding out that which crop will fit in which preference in soil 

composition and climate conditions, references [1],  and are 

among this part of the work. Precision farming from the 

ground up is another research in stream that takes the farmer 

as a beginner and slowly creates a prediction system to assist 

farmers in making their crop selection and environmental and 

soil based variables[2]. 

In order to support theses predictions, different range of 

algorithms such as SVM, KNN, decision trees and 

incorporated learners are tested. According to the results from 

studies, processes based on ensemble strategy have been 

shown to yield more precise and consistent results [3]. 

Multiple machine learning techniques are used in the same 

paper, “Improved Segmentation Approach for Plant Disease 

Detection” [4], to suggest the fertilizer based on the crop. 

Factors which are considered as input variables are like 

nitrogen, phosphorus, soil acidity and rainfall whereas 

methods being evaluated are the accuracy and efficiency of 

each of these methods. 

A second important area for interest would be in detecting 

plant diseases on the analysis of leaf conditions. The paper 

titled “Image processing techniques can be used to detect 

diseases of different plant leaves: A Survey” [5] discuss the 

use of multiple technological ways to improve the health and 

yield of plant. Visual indicators of infections on leaves are 

used to analyze through deep learning architectures such as 

CNNs. These models offer robust solution to predict the 

diseases based on the image data. 

Relevant other paper about “Smart Agriculture Forecasting 

using Machine Learning” [6] focuses on building an effective 

predictive farming assistant. It starts off by introducing 

conceptual components and later provides a system that can 

make dynamic suggestions for highly fragmented farmland. 

The system adopts the framework of Precision Agriculture 

and allows for hyper local decisions as low at the plot level. 

Since the tools serve to provide advice using basic 

communication channels (e.g. SMS, email ) in areas 

underserved by digital communication, farmers will be able 

to gain from using the model’s advice. 

Rich datasets and global challenges have spurred innovation 

in the field of computer vision with technological 

advancements. It wasn't long after the ImageNet dataset 

released and the ILSVRC were released, that it got hugely 

developed with AI image recognition. This progress has, to a 

great extent, helped to solve the problems of images applied 

to agriculture mostly when data availability is limited. Over 

80,000 WordNet categories are provided with image 

representation in ImageNet, and moreover, it has between 500 

and 1,000 labelled images for a class. The existing CNN 

models were then proposed over time, in order to continue to 

improve the classification capabilities. 

They include AlexNet [7] with five convolutional layers, 

VGG with 19 layers, ResNet with addressing the gradient loss 

issue by employing the shortcut pathways, MobileNet [8] 

designed to run on mobile devices, and EfficientNet which 

uniformly alters scale parameters to achieve the depth, width 

and resolution balance. They have been put to practical use 

on agricultural diagnostics and disease identification 

networks[9]. 

Agricultural AI became a prominent branch in identifying 

plant infections. The use of CNN based systems is gaining 

popularity in the innumerous papers which present advanced  

 

Figure.1.fertilizer detection 

strategies. The one study [10] includes preprocessing 

techniques such as noise filtering, cropping, detecting edges 

and using Otsu’s method for image segmentation. Next, it 

feeds these essential visual patterns into an ANN to extract 

those things like shape, color, and texture. 

The PlantVillage dataset is used to evaluate the CNN 

frameworks such as AlexNet, and GoogleNet, both with and 

without transfer learning, and up to 99.35% accuracy are 

achieved [11]. The visualization techniques were also applied 

on new collected image data from online platforms such as 

Bing and Google, and this data was tested on these models as 

well. Finally, there is a wide-ranging [12] analysis of over 100 

studies of deep learning in disease detection, finding vast 

majority of these use PlantVillage dataset and generally use 

off the shelf pretrained architectures like VGG, ResNet, 

DenseNet, or Inception. 

This review covers additional tools such as feature maps, 

saliency maps, and heat maps that explain how the AI models 

come to a conclusion. Next, in another experiment [13], we 

used 87,000 images in this dataset for testing the use for these 

networks (VGG, Resnet, Inception V3) and VGG found to be 

the best. According to the findings of [14] on recent research 

pertaining to pest and disease detection (2014 – 2020), it is 

partly based on practicing multiple improvements in locating 

vital image areas. 

A single comparison [15] exists between traditional ML 

approaches and deep learning to detect plant diseases. There 

are however some tools for mobile and web that do not tackle 

real world conditions with natural leaf images. The main 

limitation is the lack of generalization and the high image 

complexity. A previous study [16] compares other CNN 

architectures such as VGG 16, ResNet 50, Inception V4 and 
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DenseNet 121 with PlantVillage data. In [17], work is done 

on environmental and soil based crop recommendations using 

models like SVM, Random Forest, ANN. Random Forest was 

the strongest performer in that most supported a GPS enabled 

mobile app to predict yield and determine crop selection. 

Similarly, [18] uses a voting based ensemble of models such 

as CHAID, KNN, Naive Bayes, Random Trees for the crop 

suggestion. Additional works [19]–[22] determine the 

suitability of different fertilizers under other conditions, e.g., 

NPK levels, soil pH, depth and weather, and region. Usually, 

it comes with rule based logic or uses K Mean and Random 

forest based algorithms. 

For interpretability, its readability is improved by techniques 

such as LIME[23] and Grad-CAM[24]. Both Grad-CAM and 

LIME locate influential points by dotting boundary layer end 

points with gradient direction, LIME using the direction to 

affect prediction variation, while Grad-CAM finding the best 

direction to color the coating layers. Understanding and trust 

are on the scene with these critical tools to use in novel 

agriculture. A few of these include their implementation of 

enhanced ability to design intelligent platforms that will assist 

farmers in designing the best trees, disease management, and 

soil solutions, with equipment capable of artificial 

intelligence and viewing ability. 

 

Figure-2.disease detection 

III. METHODOLOGY 

The following part speaks about the system structure as a 

whole, i.e.used AI models, testing process and training 

process. Given that, we begin our start by presenting the 

design of the said platform with graphical representations like 

structural charts and interface flowcharts. We then describe 

intelligent model modules with the used specific algorithms 

for the functionalities and mechanisms of testing. Elements 

for fertilizer advice, plant disease identification and crop 

choice are sub sections. Another collection of sections 

explains how LIME can be used to explain the model under 

the machine learning category, and how live farm news can 

be integrated into the interface features. 

 

Figure-3.fertilizer  

A. Application Overview 

1) Fertilizer Recommendation Engine : 

Users give the soil nutrients in forms of nitrogen, 

phosphorus and potassium and the crop planted to get 

customized fertilizer recommendations. Then through a 

POST call, it sends these to the backend flask service which 

has the fertilizer prediction model and the prediction is made. 

The response to the interface will include fertilizer 

recommendations based on the soil condition after 

processing. 

2) Plant illness Detection 

 

                      Figure-4.crop prediction and causes 

It is from the users who, either, can upload a picture of dama

ged plant or he/she can take it within the app. The server ana

lyzes the picture using a pre-

trained convolutional neural network. It returns diagnosed c

ondition along with the potential remedies as an HTTP respo

nse. A respective workflow diagram (see Fig. 2) of this whol

e process is shown 

3) Crop recommendation engine : 

POST request with the information on nutrient levels (N, P, 

K) is sent to the backend Flask server. A trained machine lea

rning model takes in inputs and provides a prediction over th

e best crop to plant to maximize yield. This is explained in t

he system diagram (see Fig. 3) 

4) Crop Diseases Knowledge Base: 

The platform also comprises a knowledge portal that informs 

users about different crop diseases, their visible symptoms 

and remedies. It serves as a digital assistant, guiding users in 

their choices to promote the health of their plants. 

5) Explainable AI (LIME Support) : 

After a user uploads an image, it is sent to a hosted server on 

DigitalOcean, where the LIME framework is applied to 

identify which areas in the image had the most contribution 

to the AI’s decision making. These results are as hyperlinks 

created as a web link formatted visually within the front-end 

of the app for the user to inspect and reference. 
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Figure-5.Agrosmart 

B.Crop Recommendation Dataset Analysis and Approach 

Dataset Details : 

For the purpose of crop prediction, we used a public dataset 

from Kaggle¹. It was made simple but efficient by targeting 

only essential environmental and soil factors. The dataset 

consists of seven fundamental features: Nitrogen, 

Phosphorus, Potassium levels in the soil, temperature in 

degrees Celsius, humidity as a percentage, pH of the soil, and 

rainfall in mm. The aim is to associate these features with the 

most appropriate crop for an environment. 

There are 2,200 records, which are uniformly distributed 

across 22 crops, namely rice, maize, muskmelon, and coffee 

--there are exactly 100 entries in each class of crop. With such 

uniform distribution, the dataset is well-balanced, and 

complexities of working with skewed class representation are 

minimized. 

Model Development Process: 

In order to make sure that our findings were consistent and 

reliable, we employed a five-fold cross-validation method 

while training. We tried out six various machine learning 

models: 

A Decision Tree model, set to use entropy as the splitting 

criterion and a maximum depth of 5 

A Gaussian Naive Bayes model 

A Support Vector Machine (SVM) with a polynomial kernel 

of degree 3, L2 regularization (C=3), and inputs scaled from 

0 to 1 

A K-Nearest Neighbors (KNN) model 

A Random Forest model 

An XGBoost implementation from its specialized library 

All models except for XGBoost were implemented with the 

Scikit-learn package. Those parameters not individually 

tuned were left on their default values. The model that proved 

to have the best performance as measured by test accuracy 

and capacity to generalize was chosen for production. 

Plant Disease Identification – Dataset and Technique 

Dataset Summary: 

For identifying plant diseases, we referred to an improved 

variant of the popular PlantVillage dataset², which is also 

available on Kaggle. It has approximately 87,000 high-

resolution color images of both healthy and diseased plant 

leaves. These are distributed across 38 classes—14 of crops 

and 26 of diseases. On average, each class contains about 

1,850 images with a standard deviation of around 104. 

We split the dataset into two subsets: 80% of the images were 

trained on, and the other 20% was reserved for validation. The 

task of the system was to classify both the plant species and 

the particular disease based solely on the leaf image. 

All images were normalized (divided pixel values by 255) 

and resized to 224x224 pixels to standardize them and align 

with the input requirements of the deep learning model. A 

graphical representation of the processed dataset batch is 

shown in Figure X. 

Training Strategy 

To construct a strong plant disease detection model, we 

utilized three top-performing deep learning architectures—

VGG-16, ResNet-50, and EfficientNetB0. These 

architectures are widely used in the computer vision 

community and were initially trained on the gigantic 

ImageNet dataset. Instead of beginning from scratch, we fine-

tuned these pre-trained networks with our own particular 

dataset, as this tends to provide superior outcomes, 

particularly when dealing with small agricultural datasets. 

For training, we used the Adam optimizer with well-chosen 

hyperparameters: a learning rate of 0.00002, β1 = 0.9, β2 = 

0.999, and an epsilon value of 1e-08. The training 

configuration was for a batch size of 32 and 25 epochs. 

Categorical cross-entropy was the loss function we used. To 

avoid overfitting and retain the highest--performing model, 

methods such as early stopping and model checkpoints 

wereused--performance-based on the validation set. 

Accuracy per epoch was monitored to monitor training 

behavior. 

Hardware & LIME-Based Interpretability 

Given the computationally intensive task of image 

classification, we used available free GPU resources on 

platforms such as Kaggle and Google Colab for training and 

model inference. To provide increased transparency of model 

choices, we included LIME (Local Interpretable Model-

Agnostic Explanations) from the lime Python package. 

During the evaluation, LIME computed 1,000 perturbed 

samples of an input image to mark the ten most impactful 

regions that had affected the model's prediction. The marked 

areas were presented to users through the application 

interface in order to facilitate trust and understanding. At 

runtime, to optimize efficient performance under hardware 

limits, we lowered the number of analyzed samples to 249 per 

prediction. 

Fertilizer Recommendation – Dataset and Approach 

Dataset Insights : 

To give fertilizer advice, we designed a special dataset related 

to significant inputs for soil health evaluation. It is comprised 

of five features: name of the crop, nitrogen, phosphorus, 

potassium, pH, and content of soil moisture. There are 22 

common crops in the dataset, e.g., maize, rice, coffee. Each 

record has the best possible nutrient values needed for proper 

growth of the respective crop. The purpose of this dataset is 

to inform fertilizer application based on nutrient deficiencies 

in the soil that have been detected. 

Solution Strategy : 
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We applied a simple yet consistent rule-based approach to 

design the fertilizer advisory system. The logic-based system 

employs a set of IF-THEN rules to test if the given NPK 

values are less than or greater than the optimal requirement 

of the crop. On the basis of these tests, it suggests one among 

six pre-defined fertilizers that are customized to rebalance the 

imbalance. 

This effective and simple rules engine, integrated in the user 

interface, is so simple that even farmers and field experts can 

easily understand it. As it is integrated in the user interface 

itself, real-time suggestions are offered on the basis of the 

input made by the user. In this way, farmers are offered 

actionable recommendations in real time, which helps make 

better and quick decisions regarding maintaining the nutrient 

level in their fields. 

 

 

 

IV. RESULTS AND DISCUSSION  

A. Crop Recommendation Module 

Our crop suggestion system's output is graphically illustrated 

in the following figure, with main performance metrics 

detailed in Table I. For further ease of performance 

comparison, the bar chart is also presented in Figure 5. From 

test results, the XGBoost model ranked top with the best 

accuracy, followed by Random Forest and Gaussian Naive 

Bayes. Generally, ensemble approaches—like Random 

Forest (bagging) and XGBoost (boosting)—consistently 

outperformed single algorithms.

 

                              Figure-6.crop prediction 

Using intensive cross-validation, we found that the Random 

Forest model performed extremely well with a 99.5% 

accuracy. Due to its stable predictions and capacity for 

explaining how it makes decisions, we chose to use it as our 

main model for our crop recommendation system. One of the 

strengths of Random Forest is transparency—it provides us 

with the means to understand the effect of every input through 

feature importance analysis. 

The role of individual characteristics, as predicted by this 

model, is depicted in Figure 6. Out of all variables, rainfall 

was the most significant factor in deciding the optimal crop 

to be grown—clearly reflecting the role of water availability. 

Humidity was the second most important variable. Other 

important contributors were potassium, phosphorus, and 

others. This ranking not only improves prediction accuracy 

but also provides farmers with a better sense of which soil and 

climatic parameters directly determine crop choice—

enabling wiser agricultural choices. 

B.Plant Disease Detection Module 

In our comparison of various deep learning models for plant 

disease classification, the EfficientNet model always 

produced the highest accuracy values—beating established 

models such as VGG-16 and ResNet-50. This is clear in 

Figure 7, where we compare the validation results of the 

models.

 

                           Figure-7-plant disease detection 

Validation accuracy and loss behaviors, presented in 

following figures, indicate that EfficientNet converges faster 

and achieves greater accuracy stabilization compared to the 

others. EfficientNet is a new class of CNNs trained with 

compound scaling, enabling the model to expand in depth, 

width, and resolution in balanced proportions. 

Due to its stable performance and effective utilization of 

computational resources, EfficientNet was finally selected to 

drive the plant disease detection function in our app. Its 

precision in detecting diseases from leaf images makes it 

well-suited for real-time and mass deployment. 

C. LIME-Based Model Interpretability 

To keep our system explainable and transparent, we added the 

LIME framework (Local Interpretable Model-Agnostic 

Explanations) to the disease detection pipeline. This approach 

graphically indicates the precise regions of an input image 

that the model relies upon in order to produce its 

predictions—basically allowing users to have a peek into the 

"thought process" of the neural network. 

As shown in Figures 9 and 10, the salient regions of the image 

marked by LIME overlap with the true infected regions of the 

leaves highly. This overlap ensures the model is actually 

concentrating on the right visual features when producing its 

disease prediction. The explanation mask boundary regions 

that contribute significantly to determining the model's output 

offer reliability as well as user confidence. 

While our present configuration takes advantage of a 

generous number of explanation samples, the follow-ups of 

ours will incorporate more of the same so that more precise 

analysis is available. Optimizations are available by utilizing 

high-resolution input images as well as finer segmentations 

that could further shorten the model's focal length. It could be 

possible so while at the same time keeping interpretability 

intact and optimizing inaccuracy again. 

In short, adding interpretability to our pipeline not only 

instills faith in the system output but also provides valuable 

insights into the dataset itself—information that is good for 

continued model refinement. 

 

 

http://www.jetir.org/


© 2025 JETIR May 2025, Volume 12, Issue 5                                                                  www.jetir.org (ISSN-2349-5162) 

 

JETIR2505958 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i520 
 

V. CONCLUSION AND FUTURE WORK 

Farmer's Assistant, this paper presents a machine learning-

powered web-based application that assists farmers in making 

sound agricultural decisions. The app provides a user-friendly 

and interactive interface and features crop disease diagnosis 

through an EfficientNet-based image classifier, fertilizer 

recommendation by rule-based logic, and crop 

recommendation through a Random Forest classifier. 

With easy web forms, users can simply enter data and get 

near-instant feedback and insights. For the purpose of 

transparency and establishing user trust, the system employs 

LIME (Local Interpretable Model-Agnostic Explanations) 

for the disease detection module. This enables users to 

visually observe which regions of a leaf image affected the 

model's prediction, allowing for better model behavior 

understanding, error area identification, and dataset 

improvement. 

Though the existing version of the app works steadily, a few 

upgrades are in the offing for the future. One of the big 

upgrades could be adding product suggestions for fertilizers 

and seeds from online shopping websites. This would allow 

users to buy the suggested farm inputs directly, and the 

system would be not only advisory but also actionable. 

The fertilizer module currently provides recommendations on 

six generic types of fertilizers based on imbalances in the 

nutrients nitrogen, phosphorus, and potassium. This could be 

expanded in subsequent versions to include brand-specific 

and more precise suggestions by including online retailer data 

through web scraping or APIs. This would give farmers 

specific, context-dependent advice. 

A limitation known to exist in the current disease 

classification model is that it relies on the dataset at hand. The 

model is tuned specifically for the conditions and crops on 

which it has been trained, and its accuracy may suffer when 

it meets unseen or uncommon conditions. To better address 

this, the system would be augmented by using larger and 

more variegated datasets, either available publicly or 

produced by data augmentation methods. This would make 

the model more adaptable and precise when operating in real-

world applications. 

Besides that, we also want to build a user driven image 

annotation platform inside the app, where farmers will post 

leaf images and give annotations or labels to the diseases 

identified by them. The more this crowd sourced information 

comes in, the richer and constantly evolving the dataset will 

be, the accuracy of the model itself will improve as well as 

the model will always stay relevant to local farming 

challenges. 

The current form of LIME can help explain individual 

predictions at a point of interest, but does not introduce global 

interpretability, handling of errors, or broader use within a 

model. In future, global interpretability techniques such as 

Grad-CAM or Integrated Gradients may be integrated to give 

a better understanding of the decisions made by the model. 

The visual explanation could be further improved using more 

advanced version of LIME or other hybrid explainer which 

are more stable and clearer. 

The system is limited in that it does not yet provide the fine 

segmentation of infected area within a plant leaf. The reason 

for this largely lies in the absence of pixel level labelled data. 

Later on, we want to create a manual labelling feature which 

will enable users to mark the infected regions by themselves. 

This user input combined with unsupervised segmentation 

throughput would substantially improve precision and 

visualization of disease detection. 

Finally, We summarize the results of 'Farmer’s Assistant' by 

stating that it is well poised as an intelligent agricultural 

support tool. The platform can then evolve into a more 

comprehensive, smarter, and collaborative solution for 

farmers of various regions through the incorporation of real 

time product recommendations using broader data sets, user 

input, enhance interpretability methods and pixel level 

disease segmentation. 
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