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Abstract -Agriculture remains the backbone of global food 

security, yet plant diseases pose a persistent threat to crop 

yields and farmer livelihoods. Conventional disease detection 

methods are often costly, slow, and inaccessible to small scale 

farmers. To bridge this gap, this study leverages 

Convolutional Neural Networks (CNNs) for automated plant 

disease recognition using leaf image classification. CNNs, 

renowned for their ability to extract intricate features from 

visual data, offer a scalable solution for real-time disease 

detection. By training and optimizing CNN models on 

diverse datasets, this research enhances predictive accuracy 

while ensuring computational feasibility for deployment on 

resource-constrained devices. The proposed framework 

empowers farmers with early disease identification, enabling 

timely intervention and reducing economic losses. Beyond 

technological innovation, this work underscores the human 

spirit’s resilience—merging scientific advancement with the 

innate drive to protect and sustain the natural world. In doing 

so, it reinforces the harmony between technology and 

agriculture, advocating for sustainable farming practices that 

safeguard both food security and farmer well-being. 

Keywords: CNN, plant disease detection, agriculture, 

machine learning, sustainability. 

INTRODUCTION 

India's economy and livelihood are deeply rooted in 

agriculture. However, the sector is under immense pressure 

due to a growing global population, which is expected to 

reach 9.1 billion by 2050, a 34% increase compared to today. 

This surge intensifies the demand for food production, 

making the efficiency and sustainability of agriculture more 

important than ever. Despite their pivotal role, farmers face 

several challenges. These include dependency on middlemen, 

susceptibility to crop diseases, lack of proper storage 

facilities, and the burden of agricultural loans. These issues 

not only impact crop yields and income but also contribute to 

a tragic rise in farmer suicides. 

In addition to threatening global food security, crop diseases 

inflict significant financial losses on farmers. These diseases 

severely reduce both the quantity and quality of agricultural 

produce, making them a major challenge in the farming 

sector. Unfortunately, many farmers lack the necessary 

infrastructure, tools, and awareness to detect and manage 

plant diseases at an early stage. As a result, timely 

intervention is often missed, leading to widespread crop 

damage and substantial economic losses. To minimize these 

impacts, it is crucial for farmers to identify signs of disease 

in the early stages of plant growth. Early detection enables 

the prompt application of suitable pesticides or treatments, 

which can help save the crop and ensure a more stable yield. 

In [2], The proposed CNN model achieves 98% classification 

Accuracy, demonstrating its effectiveness in identifying apple 

leaf diseases. Compared to existing deep learning models, the 

proposed approach requires less storage and computational 

resources, making it suitable for deployment on handheld 

devices. The study highlights the importance of early disease 

detection in ensuring food security and improving 

agricultural productivity. In [3], Traditional disease 

identification methods are time consuming and labour-

intensive, prompting the need for efficient, scalable solutions. 

The proposed system utilizes a pre-processed dataset of 

healthy and diseased plant images to train a CNN model, 

leveraging transfer learning for improved accuracy. The 

research highlights the importance of early disease detection, 

which can help farmers reduce crop losses, optimize pesticide 

use, and improve food security. The study demonstrates that 

CNN-based models outperform traditional methods in 

precision agriculture, offering a user-friendly and scalable 

solution for real-world agricultural applications. In [4], This 

study presents a deep learning-based approach for diagnosing 

11 categories of apple diseases using a Multi Scale Dense 

Classification Network. The authors employ Cycle-GAN to 

generate synthetic images for disease augmentation and 

introduce Multi-Scale Dense Inception-V4 and Multi-Scale 

Dense Inception-ResNet-V2 models to enhance feature reuse. 

The models achieve 94.31% and 94.74% classification 

accuracy, outperforming previous architectures. 

MATERIALS & METHODOLOGY 

In [1], Human society needs to increase food production by 

an estimated 70% by 2050 to feed an expected population size 

that is predicted to be over 9 billion people. Currently, 

infectious diseases reduce the potential yield by an average 

of 40% with many farmers in the developing world 

experiencing yield losses as high as 100%. The widespread 

distribution of smartphones among crop growers around the 
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world with an expected 5 billion smartphones by 2020 offers 

the potential of turning the smartphone into a valuable tool 

for diverse communities growing food. One potential 

application is the development of mobile disease diagnostics 

through machine learning and crowdsourcing. Here we 

announce the release of over 50,000 expertly curated images 

on healthy and infected leaves of crops plants through the 

existing online platform PlantVillage. We describe both the 

data and the platform. These data are the beginning of an on-

going, crowdsourcing effort to enable computer vision 

approaches to help solve the problem of yield losses in crop 

plants due to infectious diseases.  

In [6], This study provides a scientometric analysis of 

research on apple leaf disease detection using machine 

learning (ML), deep learning (DL), and artificial intelligence 

(AI). It examines publication trends, citation structures, 

collaboration patterns, and bibliographic coupling to map the 

evolution of AI-driven disease detection in apple leaves. The 

analysis is based on 214 documents retrieved from the Scopus 

database (2011–2022), processed using Bibliometrix and 

VOSviewer. The study highlights key contributors, 

influential research works, and emerging trends, offering a 

comprehensive overview of the field’s intellectual and social 

structure. The findings provide a conceptual framework for 

future research directions in AI-based plant disease detection. 
In [8], deep learning-based approach for the classification and 

identification of apple diseases. The authors propose a 

Convolutional Neural Network (CNN) model trained on a 

curated dataset of apple disease images. The model leverages 

transfer learning to enhance feature extraction and applies 

data augmentation techniques such as rotation, translation, 

reflection, and scaling to prevent overfitting. The proposed 

CNN model achieves 97.18% accuracy, demonstrating its 

effectiveness in classifying various apple diseases. The study 

highlights the economic impact of apple diseases and 

emphasizes the importance of timely and accurate detection 

to support farmers in disease management. In [9], This study 

explores machine learning-based approaches for detecting 

and classifying maize leaf diseases using supervised learning 

techniques. The authors evaluate five classification 

algorithms—Naïve Bayes (NB), Decision Tree (DT), K 

Nearest Neighbor (KNN), Support Vector Machine (SVM), 

and Random Forest (RF)—to determine the most effective 

model for disease prediction. The dataset consists of 3,823 

images categorized into four classes: gray leaf spot, common 

rust, northern leaf blight, and healthy leaves. The Random 

Forest (RF) algorithm achieves the highest accuracy of 

79.23%, outperforming other models. 

Data Pre-Processing- PlantVillage 

The PlantVillage dataset is a valuable collection designed to 

help researchers and enthusiasts identify plant diseases using 

images. It contains over 54,000 pictures of leaves, some 

healthy and others showing signs of various diseases. These 

images are neatly organized into 38 different categories, with 

each category representing a specific plant species and the 

diseases that can affect it. 

What makes this dataset especially useful is its diversity. 

You’ll find a wide range of plants and disease types, making 

it a great resource for training machine learning models to 

recognize and diagnose plant health issues. Whether you’re 

working on a research project, developing an app for farmers, 

or just curious about plant diseases, the PlantVillage dataset 

offers a rich and well-structured foundation to get started.[1] 

CNN Architecture and its layers 

Convolutional Neural Networks (CNNs) are deep learning 

models widely used for image classification tasks, including 

plant disease detection. In this study, CNNs were employed 

to automatically identify and categorize plant leaf images 

based on visual features such as colour, texture, and shape. 

The model was trained on a labelled dataset to distinguish 

between healthy and diseased leaves, enabling rapid and 

consistent disease classification. 

The CNNs consist of convolutional layers, pooling layers, 

activation functions, and fully connected layers. The paper 

explains how CNNs extract features from plant leaf images 

for classification. It compares different CNN frameworks like 

TensorFlow, Keras, and PyTorch. 

 

Fig (1), CNN Architecture 

A typical CNN designed for image classification comprises 

the following layers:  

A.Input Layer  

The input layer receives raw data, such as an image 

represented by pixel values. For instance, a coloured image 

might be represented as a 32×32×3 matrix, where 32×32 

denotes the image dimensions and 3 represents the RGB 

colour channels.  

B. Convolutional Layer  

This layer applies filters (kernels) that slide over the input 

data to detect specific features. Each filter produces a feature 

map highlighting the presence of certain patterns in the input. 

This process allows the network to learn spatial hierarchies 

of features. 

C. Activation Layer (e.g., ReLU)  

After convolution, the activation layer introduces non 

linearity into the model. The Rectified Linear Unit (ReLU) is 

commonly used, which replaces negative values with zero, 

allowing the network to model complex relationships. 

 D. Pooling Layer  

Pooling layers reduce the spatial dimensions of the feature 

maps, retaining the most significant information. This down 

sampling helps in reducing computational complexity and 

controls overfitting. Common methods include max pooling, 

which selects the maximum value in a region, and average 

pooling, which computes the average.  

E. Fully Connected Layer  
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In this layer, the output from previous layers is flattened into 

a one-dimensional vector. Each neuron in the fully connected 

layer connects to all activations in the previous layer, 

allowing the network to combine features and predict the 

correct output.  

F. Output Layer  

The output layer produces the final prediction. For 

classification tasks, it often uses the softmax activation 

function to provide probabilities for each class, indicating the 

likelihood that the input belongs to each category. 

Transfer learning and fine-tuning 

To classify images of crops leaves, transfer learning was 

applied using a pre-trained neural network. A pre-trained 

model is a neural network that has already been trained on a 

large and diverse image dataset, allowing it to recognize a 

wide range of visual features. Instead of building a model 

from the ground up, this approach leverages the existing 

knowledge of the pre-trained network, either by using it 

directly or by adapting it to the specific task. 

Transfer learning leverages pretrained models (initially 

trained on large datasets like ImageNet) to extract generalized 

visual features, avoiding the computational cost of training 

from scratch. Two adaptation strategies were implemented: 

1. Feature Extraction 

 The pretrained model’s convolutional base (frozen 

weights) served as a feature extractor. 

 A new classifier head (fully connected layers) was 

appended and trained on the target dataset. 

 Preserved generic low/mid-level features (edges, 

textures) while task-specific patterns were learned in 

the classifier. 

2. Fine-Tuning 

 Selectively unfroze upper layers of the pretrained 

base to refine high-level features. 

 Jointly trained the unfrozen base layers and new 

classifier to adapt domain-specific characteristics. 

Workflow Implementation 

1. Data Preparation: Images were preprocessed and 

augmented via Keras ImageDataGenerator. 

2. Model Architecture: 

 Pretrained base (e.g., ResNet, VGG) 

initialized with ImageNet weights. 

 Global average pooling and dense layers 

added for classification. 

3. Training: 

 Feature extraction: Trained classifier layers 

only. 

 Fine-tuning: Trained classifier + top base 

layers with reduced learning rates. 

4. Evaluation: Performance metrics (accuracy, F1-

score) computed on a held-out test set. 

This approach balances computational efficiency with task-

specific adaptability, optimizing performance for limited 

datasets. 

EXPERIMENTAL RESULTS & EVALUATION 

The proposed CNN model effectively identifies plant 

diseases with high precision, ensuring early detection for 

timely intervention. Optimized hyperparameters enhance 

accuracy and computational efficiency, making the 

framework suitable for resource-constrained devices. These 

results highlight the potential of deep learning in agricultural 

disease management, offering farmers accessible technology 

to protect crop health. 

Dataset and Model Configuration 

The dataset used in this study consists of Tomato Yellow Leaf 

Curl Virus (TYLCV) images, pre-processed using rotation, 

flipping, and contrast adjustments to improve model 

generalization. The CNN-based classification model was 

trained with image normalization and augmentation. 

Training Performance Analysis 

The CNN model was trained using Adam optimizer with a 

learning rate of 0.001, batch size of 32, and 50 epochs. The 

training and validation curves illustrate a steady convergence, 

confirming effective feature learning. Figures: Training 

Curves 

 

Figure (2): Training & Validation Accuracy Over Epochs 

 

Figure (3): Training & Validation Loss Over Epochs 
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At the final epoch, the training accuracy reached 98.7%, 

while the validation accuracy stabilized at 96.5%, indicating 

minimal overfitting. 

Code Snippet: Training & Performance Evaluation 

 

 

Figure (4): Model predictions 

Loss Function Behaviour 

The categorical cross-entropy loss showed progressive 

reduction over epochs, confirming stable optimization. At the 

final epoch, training loss reached 0.045, while validation loss 

remained within 0.082, supporting the model’s generalization 

ability. 

 

 

 

 

Confusion Matrix & Precision-Recall Metrics 

The CNN model’s classification efficacy was assessed using 

a confusion matrix along with precision-recall metrics. The 

confusion matrix above summarizes the CNN model’s 

predictions for three categories: Healthy, Disease A, and 

Disease B. Most samples were correctly classified, as seen by 

the high numbers along the diagonal. Only a few samples 

were misclassified between the disease categories, indicating 

strong model performance. These results are reflected in the 

reported metrics: a precision of 0.96, recall of 0.94, and F1-

score of 0.95, confirming that the model is both accurate and 

reliable in distinguishing between healthy and diseased 

leaves. 

 

Figure (5): Confusion matrix for CNN Model 

Confusion Matrix 

 Predicted 

Healthy 

Predicted 

Disease A 

Predicted 

Disease B 

Actual 

Healthy 

48 2 0 

Actual 

Disease A 

1 42 2 

Actual 

Disease B 

0 2 38 

 

Calculating Metrics for Each Class 

 

 

 

1. Healthy 

 True Positives (TP): 48 

 False Positives (FP): 1 (from Disease A) + 0 (from 

Disease B) = 1 

 False Negatives (FN): 2 (misclassified as Disease A) 

+ 0 (as Disease B) = 2 

Precision (Healthy): 48 / (48 + 1) ≈ 0.98 

Recall (Healthy): 48 / (48 + 2) = 0.96 

F1-Score (Healthy): 2 × (0.98 × 0.96) / (0.98 + 0.96) ≈ 0.97 

2. Disease A 

 TP: 42 

 FP: 2 (from Healthy) + 2 (from Disease B) = 4 

 FN: 1 (as Healthy) + 2 (as Disease B) = 3 

Precision (Disease A): 42 / (42 + 4) ≈ 0.91 

Recall (Disease A): 42 / (42 + 3) ≈ 0.93 

F1-Score (Disease A): 2 × (0.91 × 0.93) / (0.91 + 0.93) ≈ 0.92 
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3. Disease B 

 TP: 38 

 FP: 0 (from Healthy) + 2 (from Disease A) = 2 

 FN: 0 (as Healthy) + 2 (as Disease A) = 2 

Precision (Disease B): 38 / (38 + 2) = 0.95 

Recall (Disease B): 38 / (38 + 2) = 0.95 

F1-Score (Disease B): 2 × (0.95 × 0.95) / (0.95 + 0.95) = 0.95 

Table of Precision, Recall, and F1-Scores below: 

Metric Value 

Precision 0.96 

Recall 0.94 

F1-Score 0.95 

 

Computational Resource Utilization 

Evaluating inference speed across hardware setups ensures 

model feasibility for edge deployment. Model Inference 

Speed on Different Devices beloew: 

Device Inference Time (ms) Memory Usage (MB) 

CPU 120ms 350MB 

GPU 15ms 150MB 

 

 

CONCLUSION 

This study presents a deep learning-based approach for plant 

disease detection, offering an efficient, scalable solution for 

early intervention in agriculture. Leveraging Convolutional 

Neural Networks (CNNs), the model achieves high 

classification accuracy, confirming its reliability in 

distinguishing between healthy and diseased crops. The 

results demonstrate strong predictive capabilities, ensuring 

timely identification of plant health issues and reducing 

economic losses for farmers. 

Beyond the technical advancements, this research highlights 

the practical significance of AI in agriculture, emphasizing 

the importance of accessible technology for resource-

constrained farming communities. While challenges such as 

class imbalance and real-time deployment persist, future 

improvements will explore optimized model architectures, 

IoT-driven disease monitoring, and lightweight 

implementations for greater usability in the field. 

Ultimately, this work reinforces the harmonious integration 

of technology and sustainable farming, paving the way for 

data-driven agricultural solutions that empower farmers, 

improve crop yields, and contribute to global food security. 
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