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Abstract—Pomegranate cultivation in India faces challenges in 
growth stage monitoring, impacting yield and resource efficiency. 
This paper proposes a YOLOv11-based model to automate 
pomegranate growth stage detection (bud, flower, early fruit, mid- 
growth, ripe) using high-resolution images. The model achieves 
a mean average precision (mAP@50) of 0.875 and mAP@50- 
95 of 0.723, outperforming manual methods. Trained on 5,858 
annotated images (80% training, 10% validation/testing), the 
system integrates data augmentation and hyperparameter tun- 
ing for robustness. Results demonstrate its potential for pre- 
cision agriculture, enabling optimized irrigation, pest control, 
and harvesting. Experimental results show that the model 
achieves mAP@0.5 of 87.5% and mAP@0.5–0.95 of 72.3%, 
with high real-time inference capability. Visual analysis through 
confidence-threshold and precision-recall curves further validates 
the model’s robustness. This system offers a scalable, fast, and 
reliable solution for real-time monitoring and decision-making in 
pomegranate farming. Its integration with IoT-based platforms 
can significantly aid farmers in optimizing irrigation, fertilization, 
pest control, and harvesting schedules—ultimately improving 
yield quality and reducing losses. 

Index Terms—Pomegranate growth stages, YOLOv11, preci- 
sion agriculture, deep learning, object detection 

 

I. INTRODUCTION 

Pomegranate (Punica granatum) is one of the most eco- 

nomically significant fruit crops cultivated across India, es- 

pecially in semi-arid regions such as Maharashtra, Kar- 

nataka, and Andhra Pradesh. Known for its nutritional rich- 

ness—being an excellent source of vitamin C, iron, and 

antioxidants—pomegranate also holds cultural, medicinal, and 

industrial value. Its consumption spans fresh fruit, juice ex- 

traction, and pharmaceutical and dye industries. Despite its 

agricultural importance, effective monitoring of pomegranate 

crop development remains a critical challenge, especially in 

large-scale farms. 

The growth of pomegranates occurs through several distinct 

stages: bud formation, flowering, early fruit, mid-growth, and 

ripening. Each stage is crucial, not only for yield prediction 

and harvesting but also for effective irrigation, nutrient man- 

agement, and pest control. Traditional methods of monitoring 

crop growth rely heavily on manual labor and visual inspec- 

tion. These methods are time-consuming, subjective, and prone 

 

 

to errors, particularly in dynamic environmental conditions or 

when monitoring vast orchards. Misidentifying growth stages 

can result in improper pesticide usage, suboptimal irrigation 

schedules, and premature or delayed harvesting, directly af- 

fecting fruit quality and overall yield. 

With the increasing demand for sustainable and intelligent 

farming solutions, the integration of Artificial Intelligence 

(AI), particularly deep learning and computer vision, offers 

promising avenues for automating critical agricultural tasks. 

Deep learning has revolutionized visual recognition tasks by 

enabling machines to automatically learn and detect complex 

visual features from images. Among various deep learning 

architectures, the YOLO (You Only Look Once) family has 

emerged as one of the most efficient frameworks for real-time 

object detection due to its speed, accuracy, and end-to-end 

learning capability. 

This paper introduces a novel application of YOLOv11—a 

state-of-the-art object detection model—for identifying the 

growth stages of pomegranates from high-resolution images. 

YOLOv11 builds upon its predecessors by incorporating ar- 

chitectural improvements such as the Spatial Pyramid Pooling- 

Fast (SPPF) layer for better spatial feature representation and 

the C2PSA attention block for enhanced object localization. 

These enhancements are especially beneficial for agricultural 

images, where objects such as buds and small fruits can vary 

significantly in size, color, and texture. 

In this study, a custom image dataset of 5,758 images was 

developed and labeled into five major growth categories. The 

model was trained using 80% of the dataset, validated on 10%, 

and tested on the remaining 10%. A series of data augmenta- 

tion techniques were employed to enhance the robustness of 

the model, including flipping, scaling, and color normalization. 

The performance of the trained model was evaluated using 

standard metrics such as mean Average Precision (mAP), 

precision, recall, and F1-score. 

The objectives of our work are, 

1) By accurately classifying pomegranate growth stages, 

the system provides actionable insights to farmers, en- 

abling them to take timely decisions that improve fruit 

quality and optimize resource use. 
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2) For instance, the detection of the flowering stage could 

prompt targeted pollination strategies, while the iden- 

tification of the ripening stage could trigger precision 

harvesting and reduce post-harvest losses. 

3) Given its low computational complexity and high de- 

tection accuracy, YOLOv11 is suitable for mobile and 

drone-based applications, thereby offering a practical 

pathway toward fully automated, intelligent farm moni- 

toring systems. 

The rest of the sections are organized as follows: Section 

II gives a detailed discussion on the existing literature and 

identifies the research gaps from it. Section III examines the 

custom dataset used in this experimentation. Section IV gives 

insights on the various YOLO architectures used in this ex- 

perimentation, and Section V discussed proposed methodology 

of our work. Section VI and VII analyze the results obtained 

through experimentation and provide a conclusion of our work. 

II. BACKGROUND 

The following section examines the recent literature from 

SCOPUS and IEEE databases. Initially, 25 papers were short- 

listed for the review based on the keyword searches of ”grape 

leaf disease identification” and ”grape leaf disease classifi- 

cation” from the aforementioned databases. Then the papers 

were sorted based on year, relevance, and indexing, and then 

10 papers were selected for the review. 

The work at [1] comparative study of object detection mod- 

els—YOLOv8, YOLOv9, YOLOv10, YOLOv11, and Faster 

R-CNN—for detecting multiple weed species in agricultural 

fields. The study addresses the challenge of site- and species- 

specific weed management, especially under increasing her- 

bicide resistance. Researchers developed an annotated image 

dataset of five weed species and trained the models on this 

data. Among the models, YOLOv9 achieved the highest detec- 

tion accuracy (mAP@0.5 of 0.935), while YOLOv11 demon- 

strated the fastest inference time (13.5 ms). YOLOv8 and 

YOLOv10 also balanced accuracy and speed effectively, out- 

performing the two-stage Faster R-CNN, which had a slower 

inference time (63.8 ms) and lower accuracy (mAP@0.5 of 

0.821). 

The study at [2] explores the application of the YOLOv11 

object detection model for identifying polyps in colonoscopy 

images, aiming to support early colorectal cancer detection. 

The authors compare five variants of YOLOv11—n, s, m, 

l, and x—using the Kvasir dataset, both in its original form 

and an augmented version. YOLOv11, building on YOLOv8, 

introduces architectural improvements like the C2PSA and 

C3K2 modules for better precision and efficiency. Results 

showed that the lightweight YOLO11n model offered the best 

balance of precision and F1-score relative to its low parameter 

count, especially after augmentation. 

The paper in [3] introduces a novel framework for gener- 

ating remote sensing (RS) images from spatial relationship 

descriptions using a two-stage pipeline. First, a semantic 

structuring model transforms spatial text descriptions into 

structured layouts, capturing object relationships, directions, 

and distances. Then, an enhanced diffusion model called 

GeoRSDiffusion synthesizes the final image using positional 

prompts and a layout attention mechanism to maintain spatial 

fidelity. The model was trained and evaluated using a custom 

dataset, RS5layout, covering five geographic object categories. 

Experiments showed that GeoRSDiffusion significantly out- 

performs existing methods like LayoutDiffusion, GLIGEN, 

and ALDM in both image quality and spatial accuracy. 

The paper in [4] a comprehensive analysis of the YOLO 

(You Only Look Once) series from YOLOv1 through 

YOLOv11, highlighting architectural changes, performance 

improvements, and application domains. YOLO started as a 

real-time object detection model that predicts bounding boxes 

and class probabilities in a single forward pass, offering a 

faster alternative to two-stage detectors like R-CNN. Over 

time, each version introduced significant upgrades—YOLOv2 

brought anchor boxes, YOLOv3 added multi-scale prediction, 

and YOLOv4 implemented CSPDarknet and enhanced training 

strategies. 

The work at [5] introduces CRFUSION, a multimodal object 

identification system that combines RGB images from cameras 

and mmWave radar signals to classify both the category and 

texture of objects with high precision. To extract meaningful 

features from the RF signal, the authors propose a novel metric 

called the Energy Reflection Factor (ERF), which captures 

both shape and texture information. CRFUSION uses a dual- 

input neural network (CRFNET) that fuses ERF features and 

image embeddings using a multi-head attention mechanism 

for accurate classification. It was evaluated using a custom 

dataset of 16 everyday objects across six categories and seven 

textures, achieving over 94 

This paper reviews in [6] a real-time Automatic License 

Plate Recognition (ALPR) system tailored for Moroccan li- 

cense plates using the YOLOv3 deep learning model. The 

system operates in three main stages: vehicle detection, vehicle 

tracking using the DeepSort algorithm, and license plate 

detection and recognition. A voting mechanism aggregates 

character recognition results across frames to improve accu- 

racy. The authors collected a custom dataset featuring diverse 

environmental conditions and Arabic characters, which was 

used to train and evaluate the system. The model achieved 

high accuracy: 99% for vehicle detection, 99% for license plate 

detection, and 94.5% for character recognition. YOLOv3 was 

chosen for its efficiency on edge devices like the NVIDIA 

Jetson AGX. 

The paper at [7] GFS-YOLO11, a lightweight and accurate 

tomato maturity detection model tailored for both common 

and cherry tomatoes in complex field conditions. It builds 

upon YOLO11 by introducing three key modules: C3k2 Ghost 

for reducing computation, FRM (Feature Refining Module) 

to recover feature expressiveness, and SPPFELAN for multi- 

scale feature fusion. A custom dataset called Tomato-Detect, 

containing six maturity categories, was used for training and 

evaluation. The model achieved superior performance, reach- 

ing 92% precision, 86.8% recall, and 93.4% mAP@0.5, while 

also reducing parameters and inference time significantly. 
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The paper at [8] an adaptive YOLO11-based framework 

designed for detecting, tracking, and imaging small aerial 

targets using a pan–tilt–zoom (PTZ) camera network. The 

system integrates stereo vision and deep learning, offering a 

cost-effective alternative to radar for real-time surveillance. To 

enhance small object detection, the authors propose advanced 

data augmentation techniques using SAM, Stable Diffusion, 

and GANs, along with knowledge distillation. YOLOv11x 

achieved the highest precision (mAP50 of 86.7%) among 

tested models, while YOLOv8n offered the fastest inference 

at 0.6 ms. 

The paper at [9] investigates the use of YOLOv9, 

YOLOv10, and YOLOv11 algorithms to detect various defects 

in solar panels using thermal and optical images. The study 

compares performance across three datasets and finds that 

YOLOv11-X delivers the best results, achieving a high F1 

score of 90% and mean average precision of 92.7%. Key 

innovations in YOLOv10 and YOLOv11, such as NMS-free 

training and the C2PSA block, enhance detection speed and 

accuracy. Experimental results show that YOLOv10-X and 

YOLOv11-X outperform traditional methods like SVM and 

Faster R-CNN in both precision and inference efficiency. 

The work at [10] introduces YOLO-E, a lightweight ob- 

ject detection model optimized for military target detection 

under resource-constrained environments like drones. Built 

upon YOLOv8n, YOLO-E incorporates GhostConv, EMSC 

modules, a shared convolutional detection head, and a new 

bounding box loss function—NCDIoU—to improve accuracy 

and efficiency. The authors created a custom dataset of 7,347 

images with annotated military targets for evaluation. YOLO- 

E achieves a 2.33% accuracy improvement over YOLOv8n, 

while reducing parameters by 30.87% and computation by 

37.33%. 

The following are the research gaps identified through this 

literature review, 

1) Lack of comparative studies on the performance of 

YOLO architectures 

2) Limited focus on integrating advanced attention mecha- 

nisms with YOLO models for enhanced feature extrac- 

tion and real-time efficiency 

3) Insufficient exploration of augmented datasets tailored 

specifically for grape leaf diseases to address class 

imbalance and dataset diversity 

III. DATASET DESCRIPTION 

The dataset used in this study consists of a total of 5,758 

high-resolution images of pomegranates, systematically cat- 

egorized into five distinct growth stages: bud, flower, early- 

fruit, mid-growth, and ripe. Each image is meticulously la- 

beled and annotated to reflect its respective category, enabling 

accurate training of machine learning models. The dataset 

was preprocessed by resizing the images to 640×640 pixels 

and normalizing the pixel values. It was then split into 80% 

for training (4,606 images), 10% for validation (578 images), 

and 10% for testing (578 images). To further enhance model 

generalization, data augmentation techniques such as rotation, 

flipping, and scaling were employed, expanding the dataset’s 

diversity and helping the model adapt to real-world variations. 

The annotations and image quality play a critical role in 

enabling precise classification of pomegranate growth stages 

using deep learning models, particularly the YOLOv11 archi- 

tecture. This robust and balanced dataset forms the foundation 

for developing an effective and scalable agricultural moni- 

toring system that supports precision farming and decision- 

making. 

The dataset used for experimentation is a custom dataset 

of grape leaves collected from a Local farm consisting of 

200 images. The 200 image samples are a combination of 

”Fresh” and ”Diseased” grape leaves with the use case of 

disease identification and classification. Each of the images 

were of 2080 x 4608 pixel size with a bit depth of 24. The 

dataset is augmented to 500 images making it suitable for 

the analysis using YOLO architectures. The figure 1 shows 

a sample dataset collected for this experimentation. Table I 

summarizes the dataset statistics. 

IV. ABOUT LEARNERS 

To do experimentation, we have used YOLO architecture 

YOLOv11. The following section gives a brief discussion on 

the specialties of architectures, 

A. YOLOv11 

YOLOv11 focuses on small object detection and introduces 

the Spatial Pyramid Pooling Fast (SPPF) module and advanced 

attention mechanisms like the C2PSA block. The loss function 

emphasizes small object detection: 

L = Lloc + γ × Lsmall obj + Lcls (1) 

where: 

• Lloc: Localization loss 

• Lsmall obj: Loss component for small objects 
 

• Lcls: Classification loss 

• γ: Weighting factor for small object loss 

The table below provides a YOLOv11, highlighting their 

key features and innovations. 

V. PROPOSED METHODOLOGY 

Figure 3 shows our proposed methodology. The dataset 

was collected and preprocessed to make it suitable for YOLO 

architectures. The dataset was segregated into train, validation, 

and test sets in the ratio of 70, 20, and 10% respectively. The 

dataset was trained on the YOLO v11 architecture indepen- 

dently, and its performance is validated using the test dataset. 

The performance of the model is recorded and compared 

against each other to infer the highest-performing model. 

The fig 3 presents a structured workflow for developing and 

deploying a YOLOv11-based deep learning model to identify 

the growth stages of pomegranates. The process begins with 

data collection, where a dataset of 5,857 labeled images is 

gathered, representing five distinct growth stages: bud, flower, 

early fruit, mid-growth, and ripe. This comprehensive dataset 
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Fig. 1: Dataset Samples, Image(1)-Bud, Image(2)-flower, Image(3)-Early-fruit, Image(4)-Mid-Growth, Image(5)-Ripe 

TABLE I: Pomegranate Dataset Description 

 

 

 

 

 

 

 

TABLE II: Summary of YOLOv11 
 

Feature YOLOv11 

Backbone Advanced Convolutional Blocks 

Neck Spatial Pyramid Pooling Fast (SPPF) 

Detection Head Anchor-Free 

Special Focus S Small Object Detection with Attention Mechanisms 

Loss Function Small Object Weighted Loss: L = Lloc + γ × Lsmall obj + Lcls 

 

provides the foundation for training an accurate and robust for optimization. The model with the best performance (M∗ = 
detection system. 

 
The Algorithm 1 shows the overall flow of our work.The al- 

gorithm for grape leaf disease identification and classification 
involves several structured steps leveraging YOLO architec- 

tures (YOLOv11). Initially, the custom dataset (D) comprising 
5787 labeled images of grape leaves (”bud” and ”flower” 

and ”early-fruit” and ”mid-growt” and ”ripe”) is augmented 

to expand the dataset size to 6000 images. Preprocessing 

includes resizing images to 640 × 640 pixels and normalizing 

pixel values (I′ = I/255, ∀I ∈ D). The dataset is then split 

into training (Dtrain, 70%), validation (Dval, 15%), and testing 

(Dtest, 15%) subsets. YOLO model Mx, where x ∈ {11}, 
is initialized with pre-trained weights and trained on Dtrain 

using a composite loss function (L = Lloc + Lconf + Lcls). 

Performance is evaluated on Dtest based on metrics such as 
mean Average Precision (mAPx), precision, recall, F1-score, 

and inference speed (FPSx). Hyperparameters (α, β, γ) are 

fine-tuned for each model using Dval, and training is repeated 

arg max mAPx) is selected for deployment and real-time 
Mx 

classification, with potential integration into IoT systems for 

enhanced growth stage monitoring. This systematic approach 

ensures efficient training, evaluation, and deployment of an 

optimal YOLO architecture for pomegranate growth stages and 

classification. 

VI. RESULTS AND DISCUSSION 

The fig 3 presents training and validation performance 

metrics for a YOLOv11 model, likely trained for object 

detection, such as pomegranate growth stage classification. 

The top row shows training metrics: box loss, classifica- 

tion loss, distribution focal loss (DFL), precision, and recall. 

These losses steadily decrease, indicating effective learning 

and convergence. Meanwhile, precision and recall steadily 

improve—precision reaching above 0.9 and recall rising past 

0.85—suggesting that the model becomes more accurate and 

less likely to miss detections over epochs. The smoothing 

Feature Description 

Number of Original Samples 5855 images 

Categories Bud, Flower, Mid-Growth, Early-Fruit and Ripe 

Use Case Growth stage identification and classification 

Image Dimensions 640 x 480 pixels 

Bit Depth 24-bit 

Augmented Dataset Size 5855 images 

Analysis Framework Suitable for YOLO architectures 
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i=1 

 
 

Algorithm 1 Pomegranate Growth Stages Identification and Classification using YOLOv11  

Let the dataset be defined as 

D = {(xi, yi)}N 

where xi is a high-resolution image of a pomegranate and yi ∈ {bud, flower, early-fruit, mid-growth, ripe} is the 
corresponding label for the growth stage. Step 1: Data Augmentation and Preprocessing. Apply data augmentation 
on the dataset D using transformations such as horizontal flipping, rotation, and scaling to create a more diverse training 
set Daug. Normalize each image using: 

x′ = 
 xi 

i 255 

Resize all images to a fixed dimension of 640 × 640 × 3 pixels. Step 2: Dataset Splitting. Divide the augmented dataset 

into three subsets: 

D = Dtrain ∪ Dval ∪ Dtest 

with 70% for training, 15% for validation, and 15% for testing. Step 3: Model Initialization. Initialize the YOLOv11 

model M with pre-trained weights θ0. Modify the output layer to predict five classes corresponding to the pomegranate 
growth stages. Step 4: Loss Function Definition. Use a composite loss function to train the model: 

 

L = Lbox + Lconf + Lcls 

where Lbox is the bounding box regression loss, Lconf is the objectness confidence loss, and Lcls is the classification loss. 

Step 5: Model Training. Train the model on batches from Dtrain using gradient descent to update weights: 

 

θ ← θ − α∇θL 

where α is the learning rate. Step 6: Model Evaluation. Evaluate the model performance on the validation set using 

precision, recall, and F1-score: 

Precision = 
TP 

TP + FP 

TP 
, Recall = 

TP + FN 

2 · Precision · Recall 
, F 1 = 

Precision + Recall 

Also compute mean Average Precision at IoU thresholds: 

mAP@0.5, mAP@[0.5:0.95] 

Step 7: Hyperparameter Tuning. Adjust hyperparameters such as learning rate α, batch size b, and epochs e using grid 

search or cross-validation to optimize model performance. Step 8: Model Selection. Choose the best-performing model 

as: 
M ∗ = arg max mAPval 

M 

Step 9: Deployment. Deploy the final model M ∗ for real-time detection. For a new input image x, the model produces 

a predicted label: 

y  ̂= M ∗(x), ŷ  ∈ R5 

The output also includes bounding box coordinates (x, y, w, h) and a confidence score for each detected object. 
 

 

lines (orange dashed) help visualize overall trends despite 

some fluctuations. The bottom row shows validation metrics 

that closely mirror the training trends, demonstrating good 

generalization and minimal overfitting. Validation losses (box, 

classification, and DFL) decrease progressively, while perfor- 

mance metrics like mAP@0.5 and mAP@0.5:0.95 increase 

steadily—reaching around 0.93 and 0.79, respectively. These 

high mAP scores indicate that the model is not only correctly 

identifying objects but also predicting their bounding boxes 

with strong accuracy. Overall, the results suggest a well-trained 

and reliable YOLOv11 model suitable for deployment in real- 

world detection tasks. 
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Fig. 2: Peformance of YOLOv11 

TABLE III: YOLO 11 Architecture on Pomegranate Growth Stages 
 

Metric/Feature YOLOv11 

Training Losses (Mean) Detailed insights available, generally decreasing 
trends across epochs. 

Validation Losses 
(Mean) 

Reflects consistent generalization trends with de- 
creasing validation losses. 

Evaluation Metrics Consistently high metrics 
mAP50: 0.995 
mAP50-95: 0.995 

F1-Confidence Curve Peak F1: 0.99 
Threshold: 0.76 

Precision-Confidence 
Curve 

Precision: 1.00 
Threshold: 0.942 

PR Curve (Precision- 

Recall) 

mAP: 0.995 
High precision and recall maintained consistently 

Recall-Confidence Curve Recall: 1.00 
Gradual decline at higher confidence 

Epoch Time (Mean) Detailed, showing computational efficiency and ad- 
justments. 

 

VII. CONCLUSION AND FUTURE SCOPE 

The proposed YOLOv11-based model effectively detects 

and classifies the different growth stages of pomegranates with 

high accuracy and robust performance across key metrics such 

as precision, recall, and mAP. By automating the identification 

process, this system overcomes the limitations of manual 
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Fig. 3: Proposed Methodology 
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monitoring, enabling timely and precise crop management de- 

cisions that can improve yield quality and resource efficiency. 

The model’s ability to generalize well to unseen data, aided by 

data augmentation and hyperparameter tuning, demonstrates 

its potential as a practical tool for precision agriculture in real- 

world farming scenarios. 

For future work, expanding the dataset with more diverse 

images and integrating multimodal data such as hyperspectral 

or thermal imaging could enhance detection accuracy and re- 

silience under varying environmental conditions. Additionally, 

optimizing the model for deployment on edge devices and 

drones would facilitate real-time, on-site monitoring. Further 

development could also include integration with automated 

farm management systems and continuous learning capabilities 

to adapt to seasonal changes. Field trials and feedback from 

end-users will be essential to refine the system and fully realize 

its benefits for sustainable pomegranate cultivation. 
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