
© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2506352 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d424

AUTOMATED KUBERNETES DEPLOYMENT

WITH ARGOCD AND ARGO ROLLOUTS: A

GITOPS-BASED APPROACH
1M.Pooja 2S.Miruthula 3M.Bhanupriya

1, 2 Department of Computer and Science Engineering

1, 2 Hindusthan Institute of Technology, Coimbatore, Tamil Nadu, India

ABSTRACT

The deployment methods of cloud-native applications

need to be both reliable and efficient. Older methods of

deploying applications such as rolling updates do not offer the

specified control and rigidity newer applications need. By

applying the GitOps model with tools like Argo CD and Argo

Rollouts, continuous deployment is improved. Argo CD

ensures that the application is in a desired state and managed

through a Git-based declarative system, enabling deployment

consistency across different environments [1]. Also, Argo

Rollouts enables progressive delivery with active monitoring

and automated rollback for advanced deployment strategies like

blue-green and canary deployments [2]. This paper discusses

the implementation of these tools and highlights their

advantages over rudimentary methods, and potential in

redefining Kubernetes deployments systems.

Keywords: Cloud-native applications, GitOps, Argo CD,

Continuous deployment, Kubernetes deployment

INTRODUCTION

The integration of microservices and containerization

has increased the demand for sophisticated deployment

techniques for Kubernetes systems. Older methods marking an

update as rolling where done incrementally lack the control that

is required when dealing with systematic restrictions and

minimal downtime [3]. Problems associated with complex

systems have been solved with the introduction of GitOps. An

example is a branch of GitOps that deals with continuous

delivery of Kubernetes applications known as Argo CD. It

implements declarative automation to application deployment

and is able to maintain the application state in sync with the

canonical Git repository. This gives the user the live and Git

states under control and unifies their definitions each in one

location [1]. In addition, Argo Rollouts extends the Argo

framework by enabling blue-green and canary deployment

strategies for more controlled and gradual deployment [2].

Enabling these observable automated deployment techniques

http://www.jetir.org/

© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2506352 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d425

shift the focus of developers and DevOps teams to maintaining

availability of the applications and safely rolling out changes

and new features [5][6].

Figure 1: Improved Delivery

CURRENT SYSTEM AND ITS LIMITATIONS

Like most of the modern container orchestration

systems, Kubernetes supports and provides well documented

rolling updates and recreate strategies for deployment. While

these techniques work, they do not provide any control over

production rollouts. Updating all the pods one after the other

(incrementally) or terminating all the old pods before creating

new ones (recreate) are the only two options. Both of these

options pose the risk of disruption on service if the new version

fails [7]. In addition, reverting back to the previous version is

known to take a lot of time and be prone to lethal mistakes [8].

Usually, there is not enough integration with user impact

metrics which makes monitoring during the deployment really

difficult [9]. This leads to the reduction of confidence to

operational cycles while exposing potential operational hazards

in intricate and critical availability environments [10].

OBJECTIVES:

 To set up a declarative application delivery through

GitOps with Argo CD for rigid application delivery.

 To implement canary, blue-green, and A/B testing

facilitation through integration of Argo Rollouts for

sophisticated strategies.

 To decentralize the entire CI/CD workflow from

committing code to deploying on Kubernetes,

adopting contemporary DevOps technologies.

 To mitigate the risk of application downtimes and

rollbacks by progressive and monitored deployments.

 To improve deployment observability through the

addition of Prometheus and Grafana for enhanced

monitoring.

 To demonstrate in contrast the proposed system

against the traditional methods of deploying onto

Kubernetes and showcase the advantages.

 To define reproducible and scalable workflows for

production use around the setup sandboxed

environments.

 To describe future work like anomaly detection using

AI and microservice tracing on a per level basis.

PROPOSED SYSTEM AND ADVANTAGES:

The set of methods combines Argo CD and Argo

Rollouts as a set into the existing deployment pipeline of

Kubernetes under GitOps based on the flow described above.

Assuming the existence of the Git repository as the single

source of truth allows stating that all deployments are tracked,

versioned, and recoverable at any point in time [1][4]. Argo CD

executes a continuous comparison of the live Kubernetes

environment as captured in the ecosystem and checks it against

the mirror set up on Git, Agra Rollouts then implements

additional deployment strategies of blue-green, canary, A/B

http://www.jetir.org/

© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2506352 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d426

testing, and shadow deployments [2][11]. These functionalities

allow for controlled rollouts that can be reversed automatically

upon failure. These functionalitites alongside rollback

capabilities reduce rsik and operational downtime signficantly.

Moreover, integration of observability tools like Prometheus or

Grafana permit scaling, and rollback to be executed on metrics

[12] allowing for a data driven and transparent deployment

lifecycle.

METHODOLOGY

THE IMPLEMENTATION PROCESS CONSIST OF THE

FOLLOWING:

Figure 2: Implementation Steps

Developer Commits to Git Repository:

The developer pushes an updated code to a Git repository which

gets picked by a CI server such as Jenkins or GitHub Actions

[13].

Image Build and Push:

A Docker image is created by the CI server and tagged with a

build number that is pushed into a Docker Registry [14].

Deployment to Minikube Using K8s Manifests: The image is

deployed into a Minikube instance using Kubernetes manifest

files (deployment.yaml, service.yaml) [15].

Testing and Approval Cycle:

A tester will check a build for functionality, If it is found to be

not functional the developer will need to recommit the repo – if

it’s approved the deployment configuration will be updated

[16].

GitOps Repository Management:

The deployment configuration which also includes

rollouts.yaml will be added into a distinct GitOps repository [1].

CD Server and ArgoCD Integration:

The Continuous Delivery server (ArgoCD) listens for changes

in rollouts.yaml files to validate strategies along with image

versions [2].

Rollout Strategy Execution:

Figure 3: Kubernetes Strategies

Based on the set configuration, Argo Rollouts implements the

corresponding rollout strategy—caniary or blue green—with

full traffic shifting and monitoring [2][17].

Monitoring and Rollback:

Integration with observability platforms enables the capturing

of key metrics during the rollout. Once certain thresholds are

crossed, rollbacks are automatically enabled by Argo Rollouts

http://www.jetir.org/

© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2506352 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d427

[18].

This approach guarantees full cycle operational transparency,

automation, as well as deployment lifecycle resiliency

throughout the entire system.

CONCLUSION

In summary, automated deployment strategies to

Kubernetes offer sophisticated methods for deploying

applications with minimal service interruption, reduced risk,

and flexible rollback options [7]. Strategies such as Recreate,

Rolling Updates, Blue-Green, Canary, A/B Testing, and

Shadow Deployment methodologies add strategic value based

on their specific use cases and business requirements [11][17].

The development of Argo CD and Argo Rollouts has facilitated

the use of continuous delivery based on GitOps principles

[1][2]. Future work may consider the incorporation of AI for

anomaly detection during rollouts that could automatically

suspend alters, or change the parameters of the deployment

strategies based on behavioral metrics. [19].

REFERENCES

1. Codefresh. (n.d.). Argo CD: Kubernetes GitOps

Continuous Delivery. Retrieved from

https://codefresh.io

2. Argo Rollouts. (n.d.). Advanced Deployment

Strategies for Kubernetes. Retrieved from

https://argoproj.github.io/argo-rollouts

3. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., &

Wilkes, J. (2016). Borg, Omega, and Kubernetes.

Communications of the ACM, 59(5), 50-57.

4. Weaveworks. (2021). GitOps - The Path to Modern

DevOps. Retrieved from https://www.weave.works

5. Kim, G., Humble, J., Debois, P., & Willis, J. (2016).

The DevOps Handbook. IT Revolution.

6. Fowler, M. (2013). Blue-Green Deployment.

MartinFowler.com.

7. Hightower, K., Burns, B., & Beda, J. (2017).

Kubernetes: Up and Running. O’Reilly Media.

8. Red Hat. (2020). Kubernetes Deployment Strategies.

Retrieved from https://redhat.com

9. HashiCorp. (2021). Deploying Microservices with

Confidence. Retrieved from https://hashicorp.com

10. CNCF. (2022). State of Kubernetes 2022. Cloud

Native Computing Foundation.

11. Google Cloud. (2020). Progressive Delivery with

Spinnaker and Argo. Retrieved from

https://cloud.google.com

12. Grafana Labs. (2022). Observability for Kubernetes

Rollouts. Retrieved from https://grafana.com

13. Jenkins. (2021). CI/CD for Kubernetes with Jenkins.

Retrieved from https://www.jenkins.io

14. Docker. (2022). Docker CI/CD Best Practices.

Retrieved from https://docs.docker.com

15. Kubernetes.io. (2023). Deploy Applications with

YAML. Retrieved from https://kubernetes.io

16. GitHub Docs. (2021). Automating Workflows with

GitHub Actions. Retrieved from

https://docs.github.com

17. Amazon Web Services. (2022). Safe Deployments

with Canary Releases on EKS. Retrieved from

https://aws.amazon.com

http://www.jetir.org/

© 2025 JETIR June 2025, Volume 12, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2506352 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d428

18. Prometheus. (2023). Monitoring Kubernetes

Deployments. Retrieved from https://prometheus.io

19. Datadog. (2021). AI-Powered Deployment Metrics.

Retrieved from https://www.datadoghq.com

20. Jaeger Tracing. (2022). Distributed Tracing for

Microservices. Retrieved from

https://www.jaegertracing.io

http://www.jetir.org/

