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Abstract

In the past few years, lipid nanoparticles, or LNPs, such as solid lipid nanoparticles (SLNs) and nanostructured
lipid carriers (NLCs) have garnered particular attention. Since they have advantages like a promising release
profile and targeted drug delivery with high physical stability, SLNs were designed to address the constraints of
prevailing colloidal carriers. NLCs are the next group of lipid nanoparticles with better capacity loading and
durability. There are three potential structural models of NLCs. These LNPs may find usage in the arenas of
clinical medicine, research, cosmetics, and drug delivery.

Keywords: Drug delivery systems; Nanoparticles; Nanostructured lipid carriers (NLCs); Solid lipid
nanoparticles (SLNs).

Introduction

In the previous few years, numerous drug-delivery technologies have attracted academic attention. One
particularly interesting aspect of this has remained the advancement of nanomedicine and nano-delivery
systems [1,2]. Several nanoparticulate systems can be utilized to increase drug bioavailability by various
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methods, such as increasing drug penetration, controlling the first-pass effect, or increasing P-glycoprotein (P-
gp) efflux. The majority of lipids are biocompatible, biodegradable, and have low chronic toxicity. During in
vivo breakdown, several polymeric nanoparticles have demonstrated harmful consequences [3,4]. Lipids'
biocompatibility, physiochemical diversity, and capacity to increase drug bioavailability have made them viable
options for drug delivery. Also, lipid-based formulations can increase intestinal drug dilution, enhance
membrane permeability, increase solubilization capacity, inhibit P-gp efflux trans-porters, decrease CYP
enzymatic activity, and increase lymphatic transport rate to enhance drug absorption [5].

Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) are the two chief categories into which
lipid nanoparticles fall. They combine the benefits of emulsions, liposomes, and polymeric nanoparticles [6, 7].
The largest degree of flexibility in modifying the drug release patterns can be obtained from the solid matrix,
which can shield the integrated active ingredients from chemical deterioration. The use of lipidic stabilizers or
biodegradable physiological lipids that are generally recognized as safe (GRAS) or have regulatory approval
status, as well as a potentially broad treatment spectrum (oral, intravenous, and cutaneous), are advantages of
SLN and NLC [8].

TYPES OF LIPID NANOPARTICLES

Emulsifiers stabilize the lipids that make up solid lipid nanoparticles (SLNs), which are contained of lipids that
are solid at body temperature [9]. Submicron (less than 1000 nm) is the size of SLNs. About 0.1 to 30 (% w/w)
of solid fat that has been distributed in an aqueous phase makes up SLNs. To increase stability, surfactants are
used at doses extending from 0.5 to 5%. Triglycerides, diglycerides, waxes, fatty acids, and steroids are among
the lipids utilized in the preparation of SLNs.
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Figure 1: Representation of Solid Lipid nanoparticle (SLN) and Nanostructured lipid nanocarrier (NLC)

They can protect drugs against harsh environmental conditions, facilitate large-scale production by utilizing a
high-pressure homogenization process, and be both biocompatible and biodegradable, among other advantages
[10]. SLNs also have several disadvantages, such as low drug loading effectiveness and the likelihood of drug
expulsion as a result of crystallization during storage due to their flawless crystalline structure. Initial burst
release is another disadvantage. Drug molecules in SLNs are directed among fatty acid chains or glycerides, and
there is a propensity for formerly dissolved drugs to be expelled in SLNs throughout storage times and
polymorphic fluctuations in solid lipid structures.
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Figure 2: Illustration of drug loading and release in SLNs and NLCs
Three potential models of drug distribution in SLNs have been identified by several studies using transmission
electron microscopy (TEM) and scanning electron microscopy (SEM) due to the production conditions, type,
and concentration of excipients. Table 1 provides a detailed description of each model depicted in Figure 3

[11,12].

Table 1. Differentiation between Models

Solid solution model

Core-shell model (drug-
enriched shell)

Core-shell model (drug-
enriched core)

Development of this
model in cold
homogenization method

hot homogenization technique

The drug that dissolves in the
lipid becomes supersaturated as
a result of dispersion cooling.

Utilizing no drug-
solubilizing surfactant

At the temperature at which
lipids recrystallize, the lipid core
forms.

Drug Precipitation in melted
lipid

Drug dispersed in lipid
matrix

When dispersion cools, the drug
re-partitions into the lipid phase.

Lastly, additional cooling leads
to recrystallization of the lipid

There is a strong contact
among lipid and drug

Concentration of drug in nearby
membrane

Formation of drug-enriched core

..00..'.. ...0000..
o ., a °
o ) . 9 B
L o 0 0%% L
. P o A 2.9 "
* g=-ae » VA
) s (V) ¢ )
e >V y o
. s ) -9
e s 2" 9 -
e S % N {
? 39 a-e
$ 5-a¥ 9,9
9 B0 .59
& e 9% C N
o . Y »
o e ¢ . L
° v PagR0 e v o
.. a "Yoe© 'ﬁ
- .
. * ) 14
L o¥ e °»®
Conoe® LT
Type || model Type W model

Figure 3. a) Solid solution model, b) Core-shell model, ¢) Core-shell model.

Because the elements of nanostructured lipid carriers (NLCs) contain distinct moieties, they have an
unstructured matrix. NLCs are the next generation of lipid-based nanocarriers that are generated from a blend of
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liquid and solid lipids [13, 14]. NLCs were formed to get around the restrictions of SLNs. NLCs have a higher
drug-loading capacity and can circumvent drug expulsion by stopping lipid crystallization throughout the
production and storage stages due to their flawed crystal structure. The formulation of NLCs contains liquid
lipids, which minimize the removal of loaded drugs both during and after formulation. In contrast to SLNs,
NLCs can exhibit more controlled release profiles and can also boost drug solubility in lipid matrices [15].
NLCs possess a low melting point compared to SLNs, despite being solid at body temperature [16]. NLCs have
a higher loading capacity than SLNGs.

The major three structures in which NLCs are found have been identified by studies using TEM and SEM
microscopy:

e The first form of NLCs is called Amorphous type (non-crystalline matrix), which is sometimes referred
to as formless type because it lacks a crystalline structure and hereafter inhibits the expulsion of loaded
drugs. In this type, crystals occur while cooling, and to prevent them, a certain lipid combination needs
to be used.

e The subsequent class of lipid structure is imperfect, containing of a blend of liquid and solid fats, or oil.
The extreme disorder is produced during the crystallization process by certain conditions.

e The third kind is known as the multiple type; drugs in this class are more soluble in liquid lipids than in
solid lipids, protecting them from solid lipid breakdown. w/o/w emulsions and this type of NLC are
comparable [17, 18].
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Figure 3. Class 1 (Amorphous), class II (Imperfect), class II1 (Multiple)

Recent progress in SLNs

Solid lipids with a diameter ranging from 50 to 1000 nm make up SLNs, a particular kind of nanosphere. These
lipidic components can be complicated mixes of glycerides, refined triglycerides, or even waxes that are
dissolved in an appropriate surfactant and solid at room temperature (25 °C) as well as the temperature of the
human body (about 37 °C). SLN positions itself as an alternative drug delivery strategy in comparison to more
conventional carriers including liposomes, emulsions, and polymeric micro- and nanoparticles [19, 20].

SLNs are exceptional lipid-based drug carriers for a variety of reasons, such as:

a. the materials utilized are biodegradable, low toxicity, and biocompatible;

b. following drug encapsulation, the particles' average size is between 50 and 1000 nm.; and

c. the particle production process is inexpensive and can be scaled up quickly.

They can give simultaneous diagnosis and treatment by carrying anti-tumor drugs and contrast chemicals, as
demonstrated by the results of ongoing research projects. SLNs have been investigated for the incorporation of
different contrasting agents, including carbon dots and iron oxide [21]. The current cancer therapy options were
made possible by using a quantum dot as a contrast agent to encapsulate an SLN. For particular uses, SLNs can
contain small-sized pharmacological molecules made up of proteins and peptides as well as biomacromolecules
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[22, 23]. SLNs have several drawbacks, including limited loading efficiency, drug leakage as a result of
polymorphic modification, and relatively high-water content in the dispersions [24].

Recent progress in NLCs

NLC systems were introduced to fix the issues with SLN. The core matrix of the NLCs is often collected as a
combination of lipids, both liquid and solid. They consist of a variety of lipid molecules. Compared to SLNs,
these induce defections in the matrix structure to provide room for additional drug molecules [25,26]. NLCs
have a better ability to stop particle coalescence via the solid matrix than emulsion. The advantages of SLNs,
including biodegradation, reduced toxicity potential, sustained drug release, shield against hostile conditions,
and avoidance of organic solvents throughout manufacture, are also present in NLCs [27].

METHODS OF PREPARATION

1. High-pressure homogenization technique

a) Hot homogenization
The approach includes heating the lipid phase to 90 °C and then dispersing the hot lipid phase into an aqueous
phase that also contains surfactants at the identical temperature. The pre-emulsion is homogenized in three high-
pressure homogenizer cycles at 5 x 107 Pa at 90 °C. To solidify SLNs or NLCs, the formed emulsion is finally
cooled to room temperature [28].
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Figure 4. Hot homogenization technique

b) Cold homogenization
This process includes cooling the molten lipid phase till it solidifies, then crushing it to make lipid
microparticles. To create pre-suspension, attained lipid microparticles are distributed in a cold aqueous phase
holding surfactants. Subsequently, the pre-suspension undergoes five cycles of high-pressure homogenization at

ambient temperature and 1.5 x 10® Pa of pressure [29].
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Figure 5. Cold homogenization technique
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2. Solvent emulsification/evaporation technique
By an organic solvent, the lipid segment is dissolved. Subsequently, the aqueous phase (surfactant solution in
water) is mixed continuously at a temperature of 70—80°C while the organic phase is introduced. Up till the
organic phase fully evaporates, the stirring will be done. Lipid nanoparticles are subsequently solidified by
cooling the resulting nanoemulsion to less than 5 °C [30].

Drug + polymer in
organic solvent

*°®,%
—> e 0 0
o o
8
Continuous phase
f
(aqueous) O/W emulsion  Solvent evaporation Recovery o

Micro/nanoparticles

Figure 6. Solvent emulsification/evaporation technique

3. Microemulsion formation technique
This approach involves heating an aqueous phase comprising surfactants to the similar temperature as the lipids,
which are melted at the proper temperature. After that, as the hot aqueous phase is added, the melted lipids will
be stirred at the same temperature. Lipid nanoparticles are solidified by dispersing the hot oil in water
microemulsion in cold water ata 1:50 ratio [31].
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Figure 7. Microemulsion formation technique

4. Ultrasonic solvent emulsification method
This process includes heating the lipid phase to 50 °C after dissolving it in an organic solvent, such as
dichloromethane. After that, the aqueous phase that comprises the emulsifiers and surfactants is heated to the
same temperature [32]. Dichloromethane is partially evaporated, and then the organic phase and aqueous phase
are combined at 50 °C while being stirred. Lipid nanoparticles are solidified by cooling the obtained emulsion
in an ice bath after it has been sonicated for the proper amount of time.

5. Phase Inversion Temperature (PIT) Technique
It has proven possible to create SLNs, NLCs, and nanoemulsions using the PIT approach [33]. The method
relies on the inversions of w/o to o/w emulsions and vice versa caused by temperature. Non-ionic
polyoxyethylated surfactants with temperature-dependent characteristics are needed for this approach [34].
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Figure 8. Phase Inversion Temperature (PIT) Technique

The temperature at which the surfactants' affinities for the lipid and aqueous phases are equal is known as PIT.
The surfactants preferentially produce w/o emulsions at temperatures > PIT, although they also create o/w
emulsions at temperatures < PIT [35]. Oil, water, and surfactant are initially heated to a temperature > PIT while
stirring to generate w/o emulsions before being used to make SLNs and NLCs. They are then rapidly chilled
while being stirred continuously, which encourages the disintegration of w/o microemulsions and causes o/w
nanoemulsions to develop. Low-temperature precipitation of lipids results in the development of SLNs and
NLCs.
6. Membrane Contactor Process

A lipid phase is enforced over membrane holes whereas the temperature is set above the melting point of the
solid lipid. Tiny droplets are formed as a result of this phase. On the other side of the membrane within a
module, an aqueous phase comprising surfactants is circulating concurrently. It travels tangentially toward the
membrane's surface, eliminating droplets that originate from pore outputs. The hot emulsion is allowed to cool
to room temperature to generate SLNs and NLCs [36].
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Figure 9. Membrane Contactor Process

7. Spray drying
This approach produces pharmaceutical products from aqueous SLN dispersion as a substitute for the
lyophilization method [37]. Although spray drying is more economical than lyophilization, it is not frequently
employed in the lipid synthesis process. Particle aggregation results from the high temperatures and shear
pressures employed in this manner. Lipids that have a melting point higher than 70 °C are appropriate for spray
drying, according to earlier research.
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Figure 10. Spray drying
Applications of SLN & NLC
Topical application
Skin correlation is a worldwide ailment that is widespread. The ineffectiveness of drugs in passing through the
skin is the primary obstacle to healing this sickness. The primary skin barrier is the stratum corneum. However,
this can be avoided by switching the permeation from follicular or transcellular to paracellular [38,39]. Skin
penetration has been improved through the manufacture of SLNs and NLCs. With a small modification, a novel
solvent diffusion process was used to create topical amphotericin B SLNs, which were then lyophilized both
with and without cryoprotectants to test their stability. It was noted that when lyophilized without
cryoprotectants, the SLN formulations' particle sizes significantly increased.
Oral application
The primary issue is restricted oral bioavailability, which can be ascribed to fractional drug solubility or a
hepatic first-pass impact. Using drug delivery methods based on nanoparticles results in increased oral
bioavailability. Oral drug absorption was enhanced by the chitosan surface modification of nanoparticles [40].
Other key concerns are P-gp efflux pumps and enzymatic or chemical degradation. Lipid nanoparticles may
reduce the first-pass hepatic impact and enhance lymphatic transfer. To increase bioavailability, consider an oral
baicalin-NLC carrier system. The low-temperature solidification method and emulsion evaporation were used
to create the NLC. The entrapment and drug loading efficiencies were 59.51% and 3.54%, respectively.
Ocular application
Ocular drug administration presents several challenges. Usually, the frontal portion of the eye receives drug
administration. There are many obstacles to be overcome, including conjunctival blood flow, the ocular blood
barrier, the corneal epithelium, and tear drainage [41]. Lipid nanoparticles can shield drugs from lacrimal
enzymes, regulate drug release, and pass the ocular blood barrier. Non-viral gene delivery with SLNs and NLCs
has been utilized in gene therapy to target specific retinal illnesses. The purpose of creating indomethacin (IN)-
SLNs and NLCs was to investigate their possible application in topical ocular administration. SLNs loaded with
IN were created using a hot homogenization method. The ocular penetration of IN was enhanced by the
chitosan surface modification of the SLNs. NLCs (0.8% w/v) and IN SLNs (0.1% w/v) were accomplished with
success.
Parenteral application
Lipid nanoparticles loaded with drugs can be directed intravenously, subcutaneously, intramuscularly, or just
next to the intended organs. NLCs are therefore acceptable substitutes, whereas SLNs are inappropriate carriers
due to insufficient drug loading. A warm microemulsion approach was used to manufacture carvacrol NLCs,
taking into account the impact of component concentration and lipid matrix on NLC production. Using
surfactant and beeswax, the NLC preparation with the small particle size, maximum encapsulation
effectiveness, and finest size distribution was optimized [42].
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Pulmonary application

It is a non-invasive way to deliver drugs for together local and systemic therapy. This direct delivery profile
may allow for a reduction in drug dosage, which would therefore lessen the negative effects of the drug. For
example, sildenafil citrate is one of the phosphodiesterase type 5 inhibitors that is important in the treatment of
pulmonary hypertension [43, 44]. Utilizing a modified melt emulsification technique, SLNs were created. Over
24 hours, there was a continuous release and greater encapsulation efficiency (88—100%) of the payload.

Brain application

One of the major problems caused by the BBB is the passage of drugs to the brain. Because nanoparticles can
subsequently cross the reticuloendothelial system (RES), they are appropriate as candidates for brain drug
delivery agents. Insufficient drug penetration and drug transporters' efflux from the brain into the bloodstream
are the two chief issues with brain drug delivery. SLNs and NLCs have been used as colloidal drug delivery
methods to allay these worries [45].

CHARACTERIZATION OF SLNS AND NLCS [46, 47]

Drug loading (DL) and Entrapment efficiency (EE)

It represents the mass of the nanoparticles that the encapsulated drug contributes to.

% DL = (Mass of entrapped drug/Mass of nanoparticles) x 100........... (1)
The % of drug that is effectively encapsulated in the nanoparticles is known as encapsulation efficiency [48].
% EE = (Mass of entrapped drug/Mass of drug added) x 100 ............. (2)

Several methods, including ultracentrifugation, can be used to separate the drug that is entrapped in particles
from the free drug. Analyzing the isolated supernatant will yield the free drug content [49].

Particle size and distribution

Laser diffraction and dynamic light scattering (DLS) are well-established methods for determining particle size.
These techniques are capable of measuring particles with sizes between 0.01 and 3500 pm and between 0.1 and
10 um. Light is disseminated at small angles by bulky particles and at large angles by small particles. A
parameter derived from DLS called the polydispersity index (PDI or PI) is used to show the distribution of
particle sizes. To depict monodispersed nanoparticles, a PDI value of 0.3 or less is deemed appropriate [50].
Zeta potential

The zeta potential is the total charge on the particle surface. Electrophoretic light scattering is a useful tool for
measuring zeta potential. It is commonly accepted that a zeta potential of £30 mV produces an electrostatic
repulsion force that is sufficient to improve the physical steadiness of dispersion [51].

Degree of crystallinity

Lipid carrier crystallinity behavior is frequently studied using X-ray diffraction (XRD) and differential scanning
calorimetry (DSC). In DSC, phase transition changes are tracked by comparing a sample's heat energy
absorption to a reference. In X-ray reflectometry, the sample is exposed to X-rays, and the radiation strength
dispersed at various angles is measured. The structural details of the lipid nanoparticles, including their phases,
crystal orientations, crystallinity, and crystal defects, are provided by XRD [52].

Co-existence of dissimilar colloidal species

Nuclear magnetic resonance (NMR) can distinguish among dissimilar nuclei, elements, and isotopes [53].
Information on the quantity of nuclei and how they interact with their surroundings can be found in NMR
spectra [54].

In vitro drug release

The dialysis bag diffusion technique is a useful tool. Fill a dialysis bag with lipid dispersion and continuously
stir while it is submerged in a dissolving liquid at a regulated temperature in the dialysis process. The aliquots
of the dissolving media are taken out at the appropriate intervals and replaced simultaneously with an equal
volume of fresh dissolving medium [55]. The drug content in the aliquots is determined with suitable methods,
like UV-Vis spectrophotometer and HPLC.
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Table 1: Recent work on SLN and NLC

Drug Category/Indication Delivery Year | Reference
route
Ribociclib Anti-cancer Oral 2022 56
Celecoxib Non-steroidal anti- Topical 2021 57
inflammatory drug (NSAID)
Acitretin Anti-Psoriasis Topical 2021 58
Diacerein osteoarthritis Topical 2020 59
Nisoldipine Antihypertensive Topical 2020 60
Simvastatin HMG CoA reductase inhibitor | Topical 2019 61
20(S)-Protopanaxadiol | Anti-cancer, Anti-fatigue, and | Topical 2019 62
skin-whitening effects
Hydrochlorothiazide Antihypertensive Oral 2018 63

CONCLUSION

Comparing lipid nanoparticles to other colloidal and polymeric nanocarriers, they are unique drug delivery
vehicles with numerous benefits. Lipid carriers offer several benefits, chief among them being their
biocompatibility, biodegradability, scalability, and ability to have regulated and customized release patterns.
NLCs, being the second generation, have demonstrated superior performance in targeted drug delivery and are

increasingly being explored for alternative modes of administration. Several delivery methods are obtainable for

their administration and each of these nanoparticles' administration routes has unique benefits and drawbacks

that need to be taken into account. Lipid nanoparticles have a lot of potential as a drug delivery system for a

range of pharmaceutically important active ingredients, including proteins, genes, and small compounds.
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