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Abstract— Pathfinding is a fundamental challenge in robotics, particularly for autonomous navigation in structured and unstructured 

environments. This paper presents a comparative analysis of five widely used pathfinding algorithms: Flood Fill, A*, Dijkstra ’s Algorithm, 

Greedy Best-First Search (GBFS), and Wall Following, implemented on an ATmega328P-based autonomous robot to navigate mazes of varying 

complexities. The study evaluates each algorithm based on execution time, memory consumption, and scalability across different maze sizes 

(7×7, 9×9, 11×11, and 13×13). The performance metrics are analyzed to determine the trade-offs between computation time, optimal path 

efficiency, and resource utilization. The findings reveal that informed search algorithms such as A* and Dijkstra's Algorithm outperform 

others in terms of path optimality and reliability, while uninformed search methods like Flood Fill and BFS ensure completeness but at the 

cost of increased computational overhead. The Wall-Following algorithm, though simplistic, demonstrates guaranteed path discovery in 

connected mazes but lacks efficiency in minimizing traversal length. The experimental results provide insight into the suitab ility of these 

algorithms for real-world applications, emphasizing their applicability in constrained environments such as robotics, artificial intelligence, 

and emergency response systems. 
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I. INTRODUCTION 

Pathfinding is a fundamental problem in robotics and artificial intelligence, playing a critical role in enabling autonomous systems to navigate 
complex environments efficiently and accurately. The ability of a robot to determine an optimal path from a designated starting position to a goal 

while avoiding obstacles is essential for a variety of real-world applications, including robotics, artificial intelligence, video game development, 

network routing, and search-and-rescue operations. Pathfinding algorithms provide the computational framework necessary for autonomous agents 

to traverse environments that contain branching pathways, dead ends, and obstacles, ensuring effective and reliable navigation. In robotics, the 
efficiency of navigation is heavily dependent on the algorithm employed for pathfinding. An optimal algorithm must balance computational 

efficiency, memory consumption, and execution speed while ensuring accurate path discovery. Various classical algorithms have been extensively 

studied and implemented across multiple domains to facilitate effective pathfinding. These include uninformed search methods such as Breadth-

First Search (BFS) and Flood Fill, which explore the search space systematically without heuristic guidance, as well as informed search techniques 
such as A*, Dijkstra's Algorithm, and Greedy Best-First Search (GBFS), which leverage heuristics to improve search efficiency. Additionally, 

reactive navigation strategies like Wall Following offer a simple yet effective means of path discovery in constrained environments where heuristic 

or complete search methods may not be practical. The objective of this study is to conduct a comparative analysis of five widely used pathfinding 

algorithms—Flood Fill, A, Dijkstra’s Algorithm, Greedy Best-First Search (GBFS), and Wall Following*—in the context of guiding an 
autonomous robot through a structured maze environment. The maze represents a grid-based environment where each cell is classified as either 

open (passable) or blocked (impassable), requiring the robot to identify a valid route to reach the goal. By evaluating these algorithms on key 

performance metrics such as execution time, memory consumption, and scalability, this research aims to provide insights into their relative 

advantages and limitations, thereby aiding in the selection of the most suitable algorithm for different robotic navigation scenarios. The significance 
of this study lies in its relevance to both academic research and practical applications. In domains where autonomous robots must navigate intricate 

and dynamic environments, selecting an appropriate pathfinding strategy can greatly influence operational efficiency. For instance, in disaster 

response scenarios where robots are deployed for search-and-rescue missions, an algorithm with minimal execution time is preferred. Conversely, 

in resource-constrained environments such as embedded robotic systems, memory efficiency becomes a critical factor. Understanding the trade-
offs between execution speed, computational requirements, and scalability is crucial for optimizing robotic navigation in diverse real-world 

conditions. 
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II. LITERATURE REVIEW: 

This study proposes enhancements to the traditional A-star algorithm[12]. This paper provides a theoretical probabilistic framework for visual 
perception, influencing algorithms that rely on environmental understanding[18]. This review traces the evolution of SLAM techniques, for robust 

navigation[14]. Emphasizing the integration of visual data with pathfinding algorithms for improved environmental perception has been presented 

[2]. A broad spectrum of autonomous navigation techniques have been reviewed [5]. This comprehensive review discusses localization techniques, 

critical for accurate pathfinding in autonomous systems [11]. A foundational paper on SLAM, detailing methodologies that support effective 
pathfinding in mobile robots [17]. Highlights key challenges in social robot navigation, including dynamic obstacle management, human-robot 

interaction [1]. Focused on maze-solving strategies, this study compares algorithmic approaches to finding efficient paths in constrained 

environments [19]. Focusing on small unmanned aerial systems, review of intelligent navigation advancements, discussing algorithm adaptations 

for aerial environments have been discussed [6]. The study presents current vision-based localization techniques, essential for enhancing 
pathfinding algorithms through precise environmental mapping[7]. This study evaluates navigation technologies in surface vehicles, providing 

performance benchmarks relevant to pathfinding algorithms [9]. exploration of machine learning approaches in motion planning and control [3]. 

The paper focuses on algorithms designed to find the shortest path in maze environments, offering comparative insights into algorithmic efficiency 

and accuracy [10]. The paper compares boundary fill and flood fill algorithms, providing performance metrics applicable to pathfinding scenarios 
[13]. The study demonstrates EKF-SLAM applications [15]. This paper introduces FastSLAM with SIFT features [16]. 

III. PROPOSED SYSTEM 

 

System Overview 

This study evaluates and compares the performance of the five distinct pathfinding algorithms—Flood Fill, A*, Dijkstra's, Greedy Best-First 

Search, and Wall Following which will then be applied to a robot which will navigate its way out of that maze. The maze is represented by a 7x7, 

9x9, 11x11 and 13x13 grid, where each cell is either an open path (0) or blocked by a wall (1). The robot’s task is to determine a viable path from 
a predefined start position to an end position. 

 

Hardware Configuration: 
It consists of three major parts which are the Arduino Uno r3 which is equipped with ATmega328P, DC motors, L298N motor drive and a power 
supply. Arduino Uno R3 is being used as the primary microcontroller used for executing the algorithms, controlling the robot’s movement. The 

Arduino handles algorithmic logic and motor control based on the calculated path. Motors drive the robot according to the path computed by the 

algorithm, while a motor driver regulates motor speed and direction. A battery pack provides 7.4v to operate the motor drive, Arduino and the 

motors. 

Software Configuration: 

The environment is structured as a grid with fixed dimensions, where the starting and target locations are predefined for simplicity. Algorithms are 

programmed in Arduino Specific C++ and executed within the Arduino IDE. The following sections detail the implementation and behavior of the 

pathfinding algorithms used in this study: Dijkstra's, Greedy Best First Search, A*, Flood Fill, and Wall Following. 
Dijkstra’s algorithm employs a queue-based approach to systematically explore nodes in a structured search process, adhering to a First-In-First-

Out (FIFO) strategy.To enable path reconstruction, a separate structure records the predecessor of each node. A validation function ensures that 

only permissible moves,those within boundaries and along accessible paths are considered.Following a shortest-path approach, the algorithm 

iterates through potential movement directions, updating distances when a shorter route is found. This process continues until the target location 
is identified. Once reached, the recorded predecessor information is used to reconstruct the optimal path, which is subsequently outputted. 

Greedy Best First Search algorithm progresses by selecting the most promising move at each step.To ensure efficiency, it maintains a record of 

visited locations, preventing redundant exploration. A validation mechanism ensures that only feasible moves are considered, adhering to boundary 

constraints and path availability. The search expands directionally, evaluating each possible step based on the heuristic, continuously refining its 
path selection.If the destination is reached, the sequence of moves leading to the goal is reconstructed by retracing steps. If an impasse is 

encountered, alternative routes are explored, adjusting the approach dynamically. 

A* algorithm uses a priority-based approach to determine the next location to explore, favoring positions that minimize overall travel effort. A 

function ensures that movement remains within defined boundaries and avoids restricted zones. The search process iterates through potential 
movements in multiple directions, maintaining both the cumulative travel effort and an estimate of remaining distance. Each explored location 

retains a reference to its predecessor, enabling the reconstruction of the traversed route upon reaching the objective. Once the destination is 

identified, the path is traced back to its origin. The method ensures that no location is revisited unnecessarily, and a tracking mechanism prevents 

redundant exploration. 
Flood Fill algorithm, a depth-first search-inspired strategy, explores the environment. Movement occurs in steps, subject to constraints. A validation 

function ensures movement stays within boundaries, avoids obstacles, and prevents revisiting locations. The traversal path is  recorded for 

backtracking. The search expands recursively until the target is reached or no further progress is possible. Impasses trigger backtracking to explore 

alternative paths. 
Wall following algorithm starts from a defined entry point and aims to reach a predetermined goal while adhering to a predefined rule that ensures 

continuous movement along a reference boundary. Movement decisions prioritize an initial directional adjustment before proceeding forward, 

resorting to alternative directions when obstacles are encountered. If no viable path is available, a history mechanism enables backtracking to 

explore alternate routes. This mechanism maintains a record of previous states, allowing the entity to systematically reverse its course when 
necessary. 

 

IV. METHODOLOGY 

The work presented in this study focuses on a ATmega328P based robot which autonomously navigates a maze which is a complex and branched 

structure in which the algorithm must navigate from a specific start point to an end point. It is a grid in which each cell in the maze is classified as 

either open (passable) or blocked (impassable), requiring the robot to determine a valid path through the maze. In the domain of robotics, 

pathfinding algorithms are crucial for enabling autonomous agents to traverse intricate environments with both efficiency and precision. These 

algorithms compute the optimal route for the agent, facilitating intelligent decision-making. Pathfinding algorithms are integral to fields such as 

robotics, artificial intelligence, video game development, network routing, hazardous environment navigation, evacuation in disaster ridden areas 

and maze-solving robots, where ensuring safe and efficient navigation is important. This paper presents a comparative analysis of five widely used 

pathfinding algorithms: Flood Fill, A*, Dijkstra’s Algorithm, Greedy Best-First Search (GBFS), and Wall Following, focusing on their application 

to guiding an autonomous robot through a maze. Each algorithm possesses unique characteristics in its exploration strategy, particularly regarding 

how it balances distance minimization, heuristic guidance, and computational efficiency. Without effective pathfinding algorithms, autonomous 
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robots risk inefficiency, suboptimal navigation, or unsafe behavior, potentially undermining the utility of these systems in real-world applications. 

Consequently, understanding the strengths and limitations of various pathfinding approaches is critical for enhancing the performance of 

autonomous robots across diverse domains and future use. The algorithms chosen for this particular study are all classical algorithms which have 

proven to be robust and have been implemented in various industrial and information technological applications. 

The Breadth-First Search (BFS) algorithm is a graph traversal method that explores all nodes at a given depth level before proceeding to the next. 

The Flood Fill algorithm is a brute-force pathfinding technique that explores all possible paths from the starting point by expanding outward in a 

wave-like manner until it reaches the goal. Greedy Best-First Search selects nodes for expansion based solely on their estimated proximity to the 

goal, determined by a heuristic function h(n); this algorithm may not give optimal solutions in certain cases. The A* algorithm combines the actual 

traversal cost g(n) and the heuristic cost h(n) to compute a total cost function f(n)=g(n)+h(n), it balances exploration and heuristic guidance, making 

it a reliable algorithm in case of robotics and gaming. Dijkstra’s Algorithm is a specific case of UCS (uniform cost search) that identifies the 

shortest path from a single source to all nodes in a graph with non-negative weights. 

Algorithms such as BFS and Floodfill fall under the category of uninformed search algorithms which operate without prior knowledge of the 

search space’s structure or characteristics, while algorithms;  A* Dijkstra's Algorithm, Greedy Best-First Search (GBFS) falls under the category 

of informed search algorithms which use heuristic functions to estimate the cost from the current node to the goal. Wall-following on the other 

hand is a simple, reactive approach where the robot continuously follows a wall until it finds the goal, this method is less efficient but guarantees 

that the robot will find a path as long as one exists. Each algorithm offers a different approach to solving a maze, making them suitable for 

comparative analysis. Complete algorithms like BFS, A*, and Dijkstra’s Algorithm guarantees finding a solution if one exists, even in large or 

complex graphs. In contrast, incomplete algorithms such as Greedy Best-First Search may fail due to infinite loops or over-reliance on heuristics. 

Therefore depending on the application, one can determine which algorithm fits best.  

Evaluation Metrics: 

The performance of the pathfinding algorithms will be evaluated on three parameters: running time (execution time), memory consumption and 

scalability. These metrics provide a comprehensive understanding of each algorithm's efficiency, resource consumption, and suitability for different 

maze sizes. 

Running Time (Execution Time):This metric measures the total time taken by each algorithm to find a solution, from the start of the algorithm 

to the identification of the goal or the conclusion that no solution exists. Running time is crucial for assessing the efficiency of an algorithm in 

real-time applications, where rapid decision-making is necessary. It will be quantified in terms of milliseconds or seconds, depending on the 

complexity of the maze and the algorithm. 

Memory Usage:Memory Usage refers to the amount of memory consumed by the algorithm during execution. This includes the storage required 

for the maze itself, visited cell tracking, open lists (in algorithms like A* and Dijkstra), and the storage of the final path. Algorithms with high 

space complexity may encounter performance limitations on memory-constrained platforms, such as microcontrollers like Arduino. Therefore, a 

detailed analysis of memory consumption will help determine the feasibility of each algorithm for resource-limited environments. 

Scalability: Scalability evaluates how well each algorithm performs as the size of the maze increases. This will be tested by running the algorithms 

on grids of varying dimensions, such as 7x7, 9x9, 11x11, and 13x13. To quantify scalability, the percentage increase in the time taken by the 

algorithm as the maze size grows will be calculated. Specifically, the scalability percentage will be determined by comparing the execution time 

for larger grid sizes to that of the smaller grid sizes, as expressed by the formula: 

Scalability Percentage = ((Time for larger grid – Time for smaller grid)/Time for smaller grid) *100 

This metric will help assess the algorithm's efficiency in handling increasingly large and intricate maze structures. A low scalability percentage 

indicates that the algorithm can manage larger mazes with minimal performance degradation, which is crucial for its practical application in more 

complex environments. Additionally, both time and space aspects will be considered to evaluate the overall performance as the problem size grows. 
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V. SYSTEM ARCHITECTURE AND PROCESS FLOW 

 
Figure 1 Process Flow 

The process flow of the autonomous maze-solving robot is structured into two key components: the System and Arduino, each with distinct yet 

interconnected responsibilities that collectively enable efficient pathfinding and autonomous navigation. This workflow is designed to generate 

randomized mazes, process them in a structured manner, compute the shortest path using graph search algorithms, and execute navigation 

commands to drive the robot through the maze successfully. 

The first stage of the process occurs within the System, where mazes of varying dimensions—7×7, 9×9, 11×11, and 13×13—are randomly 

generated using the Depth-First Search (DFS) algorithm. DFS is a recursive, backtracking-based algorithm widely used for maze generation due 

to its ability to create a complex, branching structure with a single connected path between any two points in the grid. By employing DFS, the 

system ensures that the generated mazes provide a diverse range of challenges for the pathfinding algorithms, allowing for a robust comparative 

analysis across different levels of complexity. The variation in maze sizes further enables an investigation into the scalability of the algorithms, 

evaluating how their computational efficiency and memory requirements fluctuate as the problem size increases.  

Once the mazes are generated, they must be formatted into a structure that the Arduino microcontroller can interpret and process. To achieve this, 

the system exports the maze data in the form of a header file, a standardized format that encodes the maze structure into a form that can be readily 

accessed by the Arduino’s firmware. This step is crucial as it ensures seamless integration between the computational capabilities of the system 

and the execution environment of the microcontroller, allowing for real-time path planning and robot movement. 

In the next phase, the Arduino takes over the processing of the maze. It begins by importing the header file, which contains the maze structure, 

ensuring that all the information regarding open pathways and obstacles is accurately transferred. Once the maze data is successfully imported, the 

pathfinding algorithm is applied to determine the optimal route from the start point to the goal. In this particular implementation, the Breadth-First 

Search (BFS) algorithm is utilized to compute the shortest path. BFS is a graph traversal algorithm that systematically explores all nodes at a given 

depth level before proceeding to the next level, ensuring that the shortest path is always identified in an unweighted graph scenario. The use of 

BFS is particularly advantageous in this application due to its completeness and optimality, meaning that if a solution exists, BFS will always find 

the shortest possible path in terms of the number of moves. 

After BFS computes the shortest path, the robot executes movement commands based on the computed path. The path is translated into a series of 

movement instructions—such as moving forward, turning left, or turning right—which are then sent to the robot’s motor driver for execution. The 

robot follows the planned trajectory while continuously validating its position within the maze, ensuring accurate navigation from the starting 

point to the designated goal. This real-world execution of the computed path serves as the final validation step, demonstrating the effectiveness of 

BFS in guiding the robot through dynamically generated mazes. 

This structured process flow highlights the integration of algorithmic decision-making with physical execution in autonomous robotics, 

emphasizing how computational techniques like DFS for maze generation and BFS for pathfinding are leveraged to enable real-world navigation. 

The inclusion of varying maze sizes allows for an in-depth evaluation of the performance metrics, including execution time, memory consumption, 

and scalability, providing insights into the suitability of different algorithms for robotic navigation in constrained environments. By following this 

approach, the study systematically assesses the feasibility of BFS as a pathfinding solution for autonomous robots while laying the groundwork 

for future explorations into more advanced, heuristic-driven algorithms. 
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VI. IMPLEMENTATION 

The images presented below illustrate the complete process of maze generation, path computation, and real-time execution by the Arduino-based 

autonomous robot. The first set of images showcases how the system generates 7×7, 9×9, 11×11, and 13×13 mazes using the Depth-First Search 

(DFS) algorithm, ensuring a structured yet randomized environment for the pathfinding algorithms to operate. 

       

                 Figure 2 random maze of size 7x7                                    Figure 3 random maze of size 9x9 

 

      

             Figure 4 random maze of size 11x11                         Figure 5 random maze of size 13x13 

 

 

Additional images provide insights into the real-time execution of the algorithm on the Arduino, displaying the serial monitor output in the Arduino 

IDE, which logs the robot’s decision-making process as it navigates through the maze. The serial monitor outputs key information such as path 

traversal steps, offering a clear view of how the algorithm is executed in a resource-constrained microcontroller environment. By visualizing the 

entire process—from maze generation to real-world navigation—these images serve as crucial evidence of the system’s effectiveness in solving 

mazes of increasing complexity, validating the feasibility of BFS for autonomous robotic applications. 
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            Figure 6 optimum path for 7x7 on-chip                                      Figure 7 optimum path for 9x9 on-chip 

 

Figure 8 optimum path for 11x11 on-chip 

VII.  RESULTS 

By analysing the metrics in section 4, the study aims to provide a nuanced comparison of each algorithm's performance in terms of both 

computational efficiency and its suitability for real-world applications in robotics. 

 

Table 1 Comparative performace analysis 

Table compares the performance of five pathfinding algorithms (FloodFill, Dijkstra, Greedy Best-First, Wall Following, and A*) in solving mazes 

of varying sizes (7x7, 9x9, 11x11, and 13x13). The comparison is done on the following metrics, execution time in ms is the time taken by each 

algorithm with increasing maze sizes, wall following algorithm requires a lot more time than others as it is a blind and local search algorithm. The 

memory consumed increases with increasing maze size. Scalability wrt time and memory represents the relative time and memory increment 

calculated as percentage increase. 

In addition to the comparative theoretical and software-based evaluations, the algorithms and system framework discussed in this study were 

successfully deployed on a physical autonomous robot platform. The robot was programmed with the maze-solving logic and physically tested in 

a controlled environment using printed mazes of size 7×7. The mazes were structured using a plywood grid over white foam sheets and were 

carefully mapped to correspond with the encoded maze data fed to the robot. The robot demonstrated real-time decision-making capabilities and 

accurate traversal using movement instructions derived from the pathfinding algorithm. The microcontroller interpreted the maze structure, 

computed the path, and executed motion commands precisely to complete the maze. 
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To validate the implementation, several test runs were conducted using each algorithm across different maze variants. Among the tested methods, 

Breadth-First Search (BFS) was utilized for the final hardware implementation due to its completeness, robustness in unweighted graphs, and ease 

of path reconstruction. The robot exhibited successful traversal in all maze configurations, with minimal deviations or errors, highlighting the 

practical feasibility of the proposed approach. The performance matched the software-based simulation metrics closely in terms of path length and 

decision time, considering the inherent latency introduced by hardware-level actuation. 

To further reinforce the credibility of the physical implementation, snapshots from the execution have been included, showing the robot mid-

operation within various maze setups. The photos are captured amid traversal. The robot followed computed paths with high reliability. The visual 

validation serves as empirical evidence that the algorithms and system pipeline are not only theoretically sound but also practically deployable. 

This real-world validation bridges the gap between simulation and physical deployment, demonstrating that the performance metrics observed in 

the comparative analysis effectively translate into tangible robotic behaviour. The hardware realization reinforces the study’s emphasis on selecting 

appropriate algorithms based on computational constraints and real-world applicability. 

 

Figure 9 traversal of the robot in a 7x7 maze 

VIII. CONCLUSION 

This study presents a comparative analysis of various pathfinding algorithms for autonomous robot navigation in maze environments, evaluating 

their execution time, memory consumption, and scalability. The results indicate that heuristic-based algorithms, particularly A* and FloodFill, 

offer a balanced trade-off between computational efficiency and memory usage, making them suitable for real-time applications. In contrast, 

Dijkstra and Greedy Best-First Search struggle with memory scalability, limiting their effectiveness for larger mazes. Wall Following, while 

memory-efficient, exhibits significantly higher execution times due to its lack of heuristic guidance, the scalability analysis revealed that as the 

difficulty of the maze increases, the execution time grows substantially. These findings emphasize the importance of selecting an algorithm based 

on application constraints, such as available computational resources and real-time processing needs. Future work could explore hybrid approaches 

that combine heuristic-based search with memory-efficient strategies to further optimize pathfinding for autonomous navigation systems. 

X. FUTURE SCOPE 

The research lays a foundation for further advancements in pathfinding optimization and real-time robotic navigation. Implementing reinforcement 

learning-based heuristics can enhance algorithm adaptability, allowing robots to learn optimal movement strategies dynamically rather than relying 

solely on pre-defined heuristics. Expanding the study to real-world navigation problems such as urban transportation, warehouse logistics, and 

disaster rescue operations where environments are dynamic and obstacles may change over time. Further studies can focus on hardware 

acceleration using FPGA-based implementations or parallel processing on microcontrollers to improve execution speed. Integration with SLAM 

(Simultaneous Localization and Mapping) techniques to enhance real-world navigation by enabling autonomous robots to map and adapt to 

unknown environments. 
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